
Reinforcement Learning for Mixed
Cooperative/Competitive Dynamic Spectrum Access

Caleb Bowyer, David Greene, Tyler Ward, Marco Menendez, John Shea, and Tan Wong
University of Florida

{c.bowyer, djgreene, tsward, marcomenendez}@ufl.edu {jshea, twong}@ece.ufl.edu,

Abstract—A dynamic spectrum sharing problem with a mixed
collaborative/competitive objective and partial information about
peers’ performances that arises from the DARPA Spectrum
Collaboration Challenge is considered. Because of the very high
complexity of the problem and the enormous size of the state
space, it is broken down into the subproblems of channel
selection, flow admission control, and transmission schedule
assignment. The channel selection problem is the focus of this
paper. A reinforcement learning algorithm based on a reduced
state is developed to select channels, and a neural network is
used as a function approximator to fill in missing values in the
resulting input-action matrix. The performance is compared with
that obtained by a hand-tuned expert system.

I. INTRODUCTION

Many papers have considered the application of machine
learning (ML) to cognitive radio systems. Because of the
page limit, we refer interested readers to consult, for instance,
[1]–[3] and references therein for a complete review of the
literature. In this paper, we consider the problem of deter-
mining which channels to use in a dynamic spectrum access
system with a mixed collaborative/competitive objective and
partial information about peers’ performances. The problem
scenario comes from our participation in the DARPA Spectrum
Collaboration Challenge (SC2). In SC2 matches, multiple
teams of radios must operate in a shared radio frequency
(RF) environment that emulates mobile ad hoc networking
scenarios. Each team can score points by delivering traffic
flows, but teams have a cooperative objective that in each
measurement period, their score will be limited to the lowest
score of all of the teams unless all teams’ scores are above
a specified threshold. The problem is complicated by the fact
that teams that are scoring above the threshold can just report
the scoring threshold, and not their true score. This motivates
us to apply ML to determine a good channel use strategy to
maximize our team’s score in this scenario.

We found that the state space for applying ML to channel
use in the SC2 scenarios was huge compared to many previous
works. To arrive at a practically implementable solution, we
have to break down into the subproblems of channel selection,
flow admission control, and transmission schedule assignment.
The focus of this paper is on channel selection, and we develop
a reinforcement learning algorithm to adapt our channel use.

Our participation in the DARPA SC2 was supported in part by a prize
from the DARPA Spectrum Collaboration Challenge, the National Science
Foundation under Grant 1738065, and by AFOSR award number FA9550-19-
1-0169.

Even focusing on just channel selection, we are required to
choose a vastly reduced input space for our reinforcement
algorithm and to apply neural network-based matrix smoothing
techniques to both be able to collect enough data for effective
learning and to be able to store the resulting input-action
matrices in our radio. We also describe an expert system
(ES) approach to channel selection, and we compare the
performance of the ML and ES approaches.

II. SYSTEM OVERVIEW

The dynamic spectrum access system consists of multiple
teams (networks) of radios communicating in a specified fre-
quency band. Teams engage with each other during matches,
which have reproducible, time-varying radio channel charac-
teristics (produced using a channel emulator) and traffic flows.
Each team receives a score based on the traffic flows that
it is able to successfully deliver, as well as the traffic flows
delivered by the other teams’ networks. For each traffic flow,
a mandate is provided that details the quality-of-service (QoS)
that must be achieved to score points for that flow. Flows either
come regularly and have specified throughput and latency
requirements, or come as file bursts, for which 90% of the
packets have to be delivered before a specified file transfer
deadline. Each flow has an associated number of points that
can be achieved in each measurement period in which the
QoS is achieved, along with a hold time, which is a number
of seconds for which the mandated QoS must be sustained
before that flow scores any points. Each team has a mandate
threshold, and the match score achieved in any scoring interval
is limited to the lowest score among the teams if any team is
below its mandate threshold.

The teams do not have any information about the radio
implementations and strategies of the other teams, except for
information they can gather during the matches. Each team
has one radio that acts as a gateway (GW), and the GW can
communicate a limited set of collaboration information to peer
networks over a separate collaboration channel. The informa-
tion carried over the collaboration channel must adhere to a
specified Collaborative Intelligent Radio Network Interaction
Language (CIL) and includes:

• locations of the radios, specified as GPS coordinates,
• frequencies used and information on which radios are

using which frequency bands, and
• number of achieved mandates and the mandate threshold.

2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

978-1-7281-2376-9/19/$31.00 ©2019 IEEE

DATA DATA DATA HOT POCKET DATA

DATA DATA DATA DATA HOT POCKET

DATA HOT POCKET DATA DATA DATA

DATA DATA HOT POCKET DATA DATA

HOT POCKET DATA DATA DATA DATA

Time
Fr

eq
 /

C
ha

nn
el

(a) Illustration of a scheduling frame

DATA Pocket
Hot Pocket

Guard Time

Measured PSD (dBFS)

(b) Measured power spectral density

Fig. 1. Time-frequency pocket structure for channel access.

When teams are scoring below the mandate threshold, they
must report their actual scores to their peers. However, when
teams are scoring at or above the mandate threshold, they can
report the mandate threshold instead.

We provide an overview of our team’s channelization
method and decision process below.

A. Channel access

Channel access in our radio network follows a time-
frequency structure as shown in Fig. 1. The available frequency
band is channelized into overlapping channels of 1 MHz in
bandwidth. Adjacent channels are separated by 0.5 MHz. A
subset of non-overlapping channels is dynamically selected to
support the data flows admitted by our radio network.

The channels are subdivided in time into a repeating sched-
ule of frames, each of which consists of a fixed number of
time slots, as illustrated in Fig. 1. A given time-frequency slot
is called a pocket. Most pockets are used for data transmission
from a single source to one or more destinations. In addition,
a randomized subset of pockets, referred to as hot pockets,
is used to broadcast network management information and
acknowledgments (ACKs). Each hot pocket is divided into
minislots, and each radio sends its network management
information and ACKs in an assigned minislot.

Transmission in each pocket is packetized into physical-
layer (PHY) packets of a fixed duration. The PHY signaling
is based on single-carrier frequency-domain (SC/FD) equal-
ization with adaptive modulation and coding that is chosen
based on channel conditions and flow QoS requirements. Each
radio is capable of simultaneously transmitting and receiving
on multiple channels.

B. Network and channel information

Each radio in our network has a spectrum sensor that
can measure the power spectral density (PSD) of the whole
frequency band. The PSD measurements are used to estimate
the occupancy percentage of each channel. Spectrum usage
and GPS information of peer networks obtained from the CIL
network are fused with the PSD measurements to form an
interference map at the GW. Through the use of a simple path-
loss model, the GW then calculates the interference power
seen at each channel of each radio and provides signal-to-
interference-and-noise ratio (SINR) estimates for the current
and future time.

C. Decision Engine

The decision engine is responsible for determining what
channels our radio network will use and which flows can be
supported using those channels. In what follows, we partition
the set of flows into those that are latency bound, meaning
that they require more than one pocket per frame and those
that are non-latency bound. For the scenario considered in this
paper, the relevant inputs to the DE consist of:

• the set of specified mandates for our team’s flows,
• the estimated number of achieved mandates and the total

mandates for our network,
• information on the throughput per pocket that is expected

between each source-destination pair,
• the channels used by our network and by the peer

networks,
• estimated channel occupancies from our spectrum sensor,
• computed SINRs from our interference map, and
• the estimated achieved and total mandates from competi-

tor networks.
The decision engine, which we call the pocket scheduler, is
responsible for determining which flows are transmitted and
in which pockets they will be transmitted, with the goal of
maximizing our team’s match score. The output from this
process is the pocket schedule, which is a list of pockets
(time-frequency slots) and the source and destination(s) that
will communicate in that slot. Because of the complexity of
this optimization problem, the problem is decomposed into the
following six steps:

1) The target set of channels to be used, C is determined
based on the mandate performances of all of the teams,
as well as channel occupancy information. The chosen
set of channels has an impact on our team’s performance
because it limits what flows can be supported, and it im-
pacts other teams’ performances through the interference
caused by our transmissions. Thus, how to chose the set
of channels to use is the primary focus of this paper: in
Section III, we give an overview of our expert systems
approach, and in Section IV, we discuss our machine-
learning approach.

2) Given the target set of channels C, admission control
is performed by estimating the number of pockets or
fractions of a pocket needed to support each flow, taking

2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

into account the latency and throughput requirements of
the flow, as well as the estimated bits/pocket that can
be delivered for the source-destination for each flow.
The cardinality of C determines the maximum number
of pockets available, and an iterative process is used to
choose the set of flows that maximizes the number of
points that can be scored under the constraint on the
number of pockets.

3) After the set of flows to be supported is determined, a
linear program is used to allocate the pockets needed
for sources to satisfy the latency requirements of their
latency-bound flows to a set of virtual channels, which
will be mapped to physical channels in a later step.

4) The linear program determines the number of pockets
that each source uses on each channel but does not
determine a particular set of pockets that satisfies the
specified latency requirements and restrictions on the
number of simultaneous transmissions. Thus, in this
step, an iterative algorithm is used to search for a specific
pocket assignment that can be used to satisfy the latency
requirements for all sources.

5) The remaining pockets are assigned to satisfy the total
throughput requirements from each source, subject to
constraints on the number of possible simultaneous
transmissions from a radio in a slot.

6) In the last step, the virtual channels are mapped to
physical channels based on maximizing the worst-case
SINR of any of the source-destination pairs assigned
to the virtual channel. Let CA ⊆ C denote the set of
channels that will be used for transmission; if the offered
traffic requires fewer channels than are available in C,
then |CA| < |C|.

III. EXPERT SYSTEM APPROACH TO CHANNEL SELECTION

The expert system (ES) approach to channel selection
consists of two parts. First, a target number of channels is
selected using various heuristics, depending on the relative
performances of the teams. Second, the specific channels
to be added to C are chosen from a sequence of channel
subsets, from most desirable to least desirable. For the sake of
conciseness, we give a high-level overview of each of these
steps without specific details.

The number of channels starts at a high number each time
a set of new mandates are received. The number of channels
is then adapted based on the relative performance of our team
versus our peers. Here we specify only the specific rules that
apply with two peer teams. First we consider cases where at
least one peer is below the mandate threshold. If both peers
are doing worse than the threshold and have a score that is
significantly lower than our team, we aggressively decrease the
number of channels in proportion to the difference between
our score and the highest score of the other teams. If one
team is above the threshold but the other team is significantly
below the threshold, then we maintain our current number
of channels but avoid the channels of the peer whose score
is below the threshold. If one or more peers are below the

threshold but all peers are close to the threshold, then we will
increase the maximum number of channels by one. If all peers
are above the threshold, we consider two subcases. If no peer
is reporting a score higher than ours, then we will increase
the number of channels used by one. If a peer is reporting a
higher score than ours, then we will aggressively increase the
number of channels we are using in proportion to the score
difference between our score and the highest score of any peer.

Once we choose a target number of channels, we add
channels to C in the following order:

1) uncontested channels, which are channels used by our
network and not by another peer,

2) unused channels, which are not being used by any other
peer,

3) channels from peers that are scoring above the threshold
and/or have a higher score than our team,

4) channels used by peers that are scoring above the
threshold but that may also be used by peers that are
scoring below the threshold , and

5) channels used by other peers.

IV. MACHINE LEARNING APPROACH TO CHANNEL
SELECTION

A. Motivation

The ES approach has been shown to offer good performance
across a wide variety of teams and scenarios. However, it has
several limitations:

• It is not able to take into account differences in how
different teams respond to interference.

• It is not able to infer peers’ true scores from their reported
scores and bandwidths, so it is operating in an open
loop fashion when all teams are reporting the mandate
threshold.

• It is not tuned to different scenarios.
• It is essentially a controller that takes time for the number

of channels used to settle after a new set of mandates
comes in, and the target number of channels may oscillate
in some scenarios.

All of the deficiencies identified may reduce the potential
score for our team, and so we developed a channel selection
algorithm that uses machine learning (ML) to overcome some
of these deficiencies. The machine learning algorithm lever-
ages our ability to identify teams that we have played before
to determine appropriate channel usage versus those teams.
We have developed a SARSA trained agent that is used in a
generalized policy iteration framework, using discounting in a
continuing task based on the data streams of states, actions,
and rewards the agent experiences in the SC2 scenarios.
Furthermore, a standard neural network with a single hidden
layer is used as a function approximator to fill in missing gaps
of knowledge in the Q-value arrays which are absent from the
agents history of experience. This agent is a sample-based
learner that does not require transition probabilities, which
are often tedious or error prone in calculation, and are not
guaranteed to be time-invariant for this problem of finding an

2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

optimal spectrum usage policy. This is the case because of the
changing environment due to competitor networks.

B. State-Space-Model, Rewards, and Actions

We now define the state-space (input space, action space,
reward) used by our algorithm. Ideally, the input space would
contain all of the inputs to the decision engine described in
Section II-C, and the action space would consist of a list of
supported flows and a complete pocket schedule indicating
which channels are used and which source sends to which
destination(s) in each pocket. The reward is simply the match
score achieved using that action as calculated as described in
Section II. However, this would result in an exceptionally large
state space compared to the amount of training data and the
available space to store an input-space/action matrix for use
by our GW. For instance, our radio can use up to 40 channels,
with 10 pockets in each channel. When our network consists
of 10 radios, there are 90 source-destination pairs, thus there
are on the order of 90400 possible pocket schedules.

In order to come up with a feasible state-space formulation,
we use machine learning to perform only the channel selection
step (Step 1) of the DE. The remaining steps of the DE
are carried out using the same optimization algorithms as
described in Section II-C. However, even after restricting to
the channel selection problem, the size of the state space
that fully describes the problem is still too big for practical
implementation. As a result, leveraging the capability of
identifying peer networks, we solve the channel selection
problem by setting up a SARSA trained agent to find an
approximately optimal policy to determine our appropriate
action on each peer network individually. Channel selection
is then accomplished by combining the actions of the agents,
each of which works on an individual peer network that
participates in a match.

To describe the state space employed by each agent, number
our own network as network 0, and identify agent i as the
agent to work on peer network i, where i > 0. Let t denote
the time step for the agent. Let c0,t, ci,t, and c̄t denote the
estimated value of the score achieved by our own network, the
score reported by peer network i, and the scoring threshold at
time t. Also let bi,t denote the amount of bandwidth in units
of MHz used by peer network i, and b0,t denote the amount
of bandwidth out of bi,t that is also used by our network.
Then the input state St for agent i at time t is the 5-tuple
St = (s1,t, s2,t, s3,t, s4,t, s5,t), where

s1,t = log2

c0,t
c̄t

s2,t = log2

ci,t
c̄t

s3,t = 1

(
ci,t = min

j
cj,t

)
s4,t = bi,t

s5,t = b0,t.

To limit the size of the state space, the state components s1,t,
s2,t, s4,t, and s5,t are quantized to 10, 10, 20, and 20 values,

respectively. For s3,t, the minimum is taken over the scores of
all teams that participate in the match and the function 1(A)
is the indicator function of event A. The first two components
s1,t and s2,t in the state vector are to capture the scoring
performance of both our network and the peer network in
relation to the scoring threshold. The use of the logarithmic
transform in the two scoring ratios is to put more emphasis on
scores that are near the scoring threshold. The third component
s3,t indicates if peer network i’s score is the critical factor that
decides the score of the match (see Section II). The last two
state components s4,t and s5,t capture the impact of the peer’s
spectrum usage and how much our network is overlapping with
the peer in spectrum in the state-space model.

The action Ai,t taken by agent i is to determine how much
bandwidth from the part of spectrum used by peer network i
that our network should use. In other words, agent i’s action
is to determine a new value for b0,t. The action space is again
quantized to contain 20 possible values as above. The match
score is taken as the reward.

C. Agent policy training

We employ the SARSA algorithm [4, Ch. 4] to estimate the
Q-value array for agent i:

Q(St, At)

← Q(St, At) + α(Rt+1 + γQ(St+1, At+1)−Q(St, At))

where γ is the discount rate and α is the update step size.
Missing gaps of knowledge in the Q-value array are further
filled in by the use of a standard neural network with a single
hidden layer, which serves as a function approximator. Train-
ing is performed offline using data obtained from matches.
The policy

π(s) = arg max
a

Q(s, a)

is applied to obtain the number of channels from peer network
i’s set of channels that we should use. Aggregating the actions
from all agents, we obtain the total number of channels from
all peer networks to be used by us. Then the set of channels
C determined in Step 1) of the DE is obtained following the
same procedure described in Section III.

V. RESULTS

To assess the relative performances of the ES and ML
channel selection algorithms proposed in Section III and
Section IV, we conducted a series of “freeplay” matches using
DARPA’s Colosseum, a system consisting of 128 standard
radio nodes (SRNs), each with 2 transmit and 2 receive chains,
and a 256 × 256 channel emulator. The freeplay designation
indicates that each match was run at our request using ran-
domly selected radio images that other teams in the DARPA
Spectrum Collaboration Challenge (SC2) had submitted for
the purpose of testing their radio algorithms. Because each
algorithm’s channel choices depend on past choices by the
algorithm, each match that we present results for only used
either the Expert System or the ML algorithm. To provide
reasonable comparisons of algorithm performance, we found

2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

matches for each algorithm that had the same set of peer teams.
We had data on a total of 14 matches with our ML algorithm,
but because of the stochastic nature of the freeplay process,
we only found 10 matches with the same set of teams in the
same scenario for the ES algorithm. Consequently, this paper
presents the data for only these 10 matches with the same
set of teams. After each set of 10 matches were selected, we
paired matches (one ES, one ML) with the same sets of teams.
To make some of the figures easier to interpret, we assigned
these matches normalized match numbers from 1 to 10, such
that the overall match scores for the ML algorithm are in
decreasing order. The particular identities of the peer teams
in each match are not known, but we are able to discriminate
among the teams using their CIL characteristics. In Table I,
we show which teams were involved in each match, where the
different teams are coded using a letter A–H .

Normalized Match Number(s) Peer Team 1 Peer Team 2
1,2 A B
3 A C
4 A D
5 D E
6 E F
7 D G

8,9 G H
10 F G

TABLE I
TEAMS PARTICIPATING IN EACH MATCH. ALTHOUGH EACH TEAM IS

UNIQUELY IDENTIFIED, WE DO NOT HAVE THE MAPPING TO THE TEAM’S
TRUE IDENTITY.

The scenario for each run is the 7013 “Alleys of Austin”
scenario, which DARPA describes as follows: “A platoon from
the Texas Army National Guard at Camp Mabry is practicing
urban maneuvers and communications in Austin. The platoon
is split into five squads consisting of 9 squad members and one
UAV. The squads move through the Heritage neighborhood in
the following three stages...” The allowed channel bandwidth is
20 MHz, and the scenario contains three stages, each of which
is 300 s long. Traffic loads increase at each stage change, and
the amount of spatial reuse possible varies across the stages. In
the first stage, the traffic is primarily Voice over IP (VOIP) and
Blue Force Tracking (BFT) data, which require low throughput
(< 40 kbps). Stage 2 and 3 add file and video flows, which
require much higher throughput. Note that although the teams
are the same for matches with the same “Normalized Match
Number”, the teams may be in different positions, and this
might cause the inter-team interference to be very different.

The results in Fig. 2 show the cumulative end of game/end
of stage 3 match scores achieved for the ES and ML algorithms
for each of the 10 matches. Although not shown, the cumu-
lative scores at the ends of stages 1 and 2 are very similar
in terms of the relative performances of the algorithms in
different matches. The results show that for matches 1, 2, 3,
4, and 10, the performance of the ES and ML algorithms are
approximately equal. These correspond to matches in which

Fig. 2. Cumulative match scores for 10 matches with both expert system
(ES) and machine learning (ML) algorithms.

Fig. 3. Target total number of channels for expert systems and ML algorithms
as a function of time for match 5.

the scores are very high or very low. For the other matches, the
ES algorithm achieves the highest overall score in 4 matches,
and the ML algorithm achieves the highest overall score in 1
match.

To provide a bit more insight into the choices made by
these algorithms, we investigate the target and actual total
number of channels used in several matches. For match 5,
the target and actual total number of channels are shown in
Fig. 3 and Fig. 4. The channel use is mostly constrained by the
offered loads in stages 1 and 2. The ML algorithm outscores

Fig. 4. Actual total number of channels for expert systems and ML algorithms
as a function of time for match 5.

2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

Fig. 5. Actual total number of channels for expert systems and ML algorithms
as a function of time for match 7.

the ES algorithm significantly in stages 1 and 3. However,
we observe that the difference in stage 1 is achieved with
a similar number of channels. Thus, either the ML algorithm
does a better job of choosing the particular channels to use, or
the interference topology is more favorable in the ML match.
In both matches, all 3 teams are in adjacent positions, which
have the worse SINRs, but in the ES match, our team is in
between the other two teams; in the ML match, our team is
one of the teams on the ends. In stage 3, the ML algorithm is
much more aggressive in using channels and achieves a higher
overall score.

For match 7, the actual total number of channels are shown
in Fig. 5. The target number of channels is not shown but is
similar in trend to the result for match 5. Again, the channel
use is constrained by the offered load in stage 1. The ES
algorithm significantly outperforms the ML algorithm in all
stages, even while using much fewer channels in Stage 3. The
fact that the ES algorithm does better than the ML algorithm
in Stage 1, when both teams use the same number of channels
for most of the stage suggests that the difference could be due
to other factors, such as the interference topology. However,
the topology is similar in both matches, with all three teams in
adjacent positions and our team on one end. The effect may be
because the particular order of the other teams and differences
in their sensitivity to interference. If this is the case, then the
ES strategy of reducing channels and avoiding the channels of
low scoring teams may explain the better performance.

Finally, Fig. 6 shows the target maximum number of chan-
nels for match 10. This result is interesting because, unlike
the matches investigated above, the ML algorithm consistently
targets a smaller number of channels than the ES algorithm.
However, both algorithms achieve a terrible performance.
These observations may be attributed to two factors. First,
both peer teams reported high scores while actually achieving
low scores, causing the ES algorithm to drive the target
number of channels up. However, the ML algorithm apparently
“understands” that the reported scores for these teams cannot
be trusted and chooses a small number of channels. Ultimately,
neither strategy can improve the score because at this stage

Fig. 6. Target total number of channels for expert systems and ML algorithms
as a function of time for match 10.

of the SC2 competition, we did not observe these two teams
achieving scores above the mandate threshold in any of the
games we played with them.

VI. CONCLUSION

We presented two approaches for determining how many
and which channels to use in a competitive/cooperative spec-
trum sharing system. The expert system (ES) approach is
based on using a set of rules, thresholds, and functions for
adapting channel use in response to the team scores at a
given time in a match. It depends on hand-tuning by an
experienced communications engineer. The machine learning
(ML) algorithm uses reinforcement learning and a neural
network for matrix completion. It depends on careful selection
of a reduced state space that is small enough that we can
apply SARSA to learn the input-action matrices and be able
to store those matrices on our radio. The results show that in
many cases, the ML algorithm achieves similar performance
to the ES algorithm; however, we found that the ML algorithm
may do worse in certain situations because it uses too many
channels. One explanation for this is that the algorithm actually
is applied across a variety of interference configurations, and
many points can be scored by aggressive channel use when the
topology provides spatial reuse. The algorithm may find that
aggressive channel use is the overall best strategy to maximize
the average score, even if the score for many individual
matches may be lower if there is less spatial reuse. Thus,
metrics that better capture the spatial reuse may be important
to include in the state space in future implementations.

REFERENCES

[1] M. Bkassiny, Y. Li, and S. K. Jayaweera, “A survey on machine-
learning techniques in cognitive radios,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 3, pp. 1136–1159, 2012.

[2] J. Lunden, V. Koivunen, and H. V. Poor, “Spectrum exploration and ex-
ploitation for cognitive radio: Recent advances,” IEEE Signal Processing
Magazine, vol. 32, no. 3, pp. 123–140, 2015.

[3] Y. Wang, Z. Ye, P. Wan, and J. Zhao, “A survey of dynamic spectrum
allocation based on reinforcement learning algorithms in cognitive radio
networks,” Artificial Intelligence Review, vol. 51, no. 3, pp. 493–506,
2019.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2018.

2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

