
Editable AI: Mixed Human-AI Authoring of Code
Patterns

Kartik Chugh
Department of Computer Science

University of Virginia
Charlottesville, VA, USA

kc6afx@virginia.edu

Andrea Y. Solis
Department of Computer Science

George Mason University
Fairfax, VA, USA

asolis6@gmu.edu

Thomas D. LaToza
Department of Computer Science

George Mason University
Fairfax, VA, USA

tlatoza@gmu.edu

Abstract—Developers authoring HTML documents define el-
ements following patterns which establish and reflect the visual
structure of a document, such as making all images in a footer the
same height by applying a class to each. To surface these patterns
to developers and support developers in authoring consistent
with these patterns, we propose a mixed human-AI technique
for creating code patterns. Patterns are first learned from
individual HTML documents through a decision tree, generating
a representation which developers may view and edit. Code
patterns are used to offer developers autocomplete suggestions,
list examples, and flag violations. To evaluate our technique, we
conducted a user study in which 24 participants wrote, edited,
and corrected HTML documents. We found that our technique
enabled developers to edit and correct documents more quickly
and create, edit, and correct documents more successfully.

Index Terms—Explainable AI, Autocomplete, Example-Centric
Programming, Decision Trees, Development Environments

I. INTRODUCTION

Developers authoring HTML documents define elements in

ways which reflect patterns. For example, a developer might

describe a navigation control by adding a number of button

elements as children of a <div> tag, ensuring each button

has a similar class which establishes its visual style and

enables its association with logic in code. While elements

in documents may be styled through Cascading Style Sheets

(CSS), which describe visual properties which can be applied

to elements, HTML documents exhibit patterns which reflect

their structure. For example, a div element might contain only

link elements, each with the same attribute. As developers

work with HTML documents, developers often wish to make

edits consistent with the existing structure. Developers might

be supported in this activity through autocomplete suggestions,

suggesting elements or attributes which reflect the document’s

structure, or might be informed when they write documents

inconsistent with this structure. Offering this support requires

a model of the code patterns which exist in the document.

Machine learning systems offer the possibility of identifying

patterns from data. For example, a model trained on an HTML

document might suggest that the most likely child element

for a div container with a class value of nav-bar is

an img. However, traditional machine learning systems lack

explainability, offering no ability for the user to understand

why the prediction was made. Moreover, in contexts where

the patterns to be learned from data reflect patterns that

the user themselves intended to create, the user may have

a better model of expected behavior than the data itself.

But traditional machine learning approaches lack editability,

making it impossible for the user to correct or edit learned

patterns to reflect their intent.

We envision a new form of human-computer collaboration

in which the human (a developer) works together with the

computer (the IDE) to author patterns reflecting a document’s

structure. A machine learning algorithm is first used to identify

patterns. Using the model, the computer offers the developer

code predictions, helping them complete tasks more quickly,

and flags anomalies, helping them correct potential mistakes.

When the code patterns learned from the data do not reflect

the developer’s true intent, the developer may view a repre-

sentation of the computer’s model, editing the model to reflect

their intent.

We explore this approach in the context of a developer

editing HTML documents. Patterns reflecting the structure of

HTML elements and attributes are learned from individual

HTML documents using a decision tree. As developers create

new elements in the document, autocomplete suggests tag

names and attributes based on the model. Developers may view

the underlying model, viewing individual patterns identified

(e.g., a parent tag of <head> and element tag of <meta>
implies a content attribute). Developers may then see

examples of each pattern, find code snippets which violate

the pattern, and edit the pattern to better reflect their intent.

We implemented this approach in a prototype tool called IRIS

(Interactive Relationships Interface System), an extension to

an HTML editor which enables developers to interact directly

with code patterns.

To evaluate our approach, we conducted a user study in

which 24 participants wrote, edited, and corrected HTML

documents. We found that IRIS enabled participants to edit

and correct documents more quickly and create, edit, and

correct documents more successfully. Developers used IRIS to

understand the source of autocomplete suggestions, developing

trust in the system, as well as to identify examples of code

patterns to better understand them.978-1-7281-0810-0/19/$31.00 ©2019 IEEE

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

35

Fig. 1. As developers type in the HTML editor (left side), the autocomplete menu is displayed to offer suggested code completions. In the IRIS interface
(right side), the Current Code Pattern explains to the developer the basis for the first suggested completion.

Fig. 2. Invoking the pattern inspector highlights examples of the code
pattern (in green and yellow) and violations (in red) in the HTML editor.
In this example, Alice is inspecting the pattern that figure parents contain
figcaption children. Alice can see that the figure she is creating in the
bottom 5 lines differs from the existing figure Bob created above, as hers
uses a <p> tag in place of a <figcaption> tag.

II. MOTIVATING EXAMPLE

Alice recently joined the web development team of a graph-

ics design company. She has been tasked with completing the

company’s new webpage, which has been partially developed

by her co-worker Barry. Alice loads his HTML document into

an IRIS-augmented editor and scrolls down to the live preview

panel to assess the current progress on the webpage. Observing

Fig. 3. Authoring a custom code pattern involves specifying a target feature
and the condition feature(s) that imply it. In this example, Alice creates a
code pattern that a figure with a class of large_fig should have a
figcaption child element.

its abundant white space and empty look, she decides to create

a sidebar on the left side of the page.

As Alice types code which styles the sidebar, an au-

tocomplete menu suggests several HTML attributes to ap-

ply, ordered by the system’s confidence in each sugges-

tion (see Fig. 1). Curious to understand why the first at-

tribute was recommended to her, she looks at the Current

Code Pattern panel, which describes the HTML features

(“conditions”) that guided the top attribute recommendation.

In this case, Alice learns that a <div> tag—nested un-

der a <section class="content"> parent element—

suggests that a class attribute follows. Alice clicks the

magnifying glass icon, highlighting examples of the code

pattern in the HTML editor (an activity we name “pattern

inspection” in this paper). Reading a few of these examples,

Alice realizes that Barry usually applied a class attribute

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

36

to elements like these, and sees examples of several of the

classes he applied. With this insight, Alice mimics it in her

sidebar, achieving a cohesive visual design.

After adding a client testimonial to the sidebar, Alice wants

to verify that her new code follows the same general struc-

ture as Barry’s. She selects Tag from the All Code Patterns

dropdown and browses the list for patterns concerning related

elements. For each such pattern, she uses the pattern inspection

tool to see examples as well as violations in the HTML

document. For example, in one code pattern Alice reads that

a figure element contains a figcaption child element.

The pattern inspector reveals that her figure instead uses a

p element (highlighted in red), violating Barry’s code pattern

(see Fig. 2). Alice fixes her mistake by copying one of the

figcaption pattern’s usage examples (highlighted in green)

and tweaking the caption to fit her image.

Having completed the sidebar, Alice intends to implement

a footer displaying the logos of the company’s partners. Alice

decides that the figcaption pattern is overly broad and

does not want it to apply to the logo images. To narrow

its applicability, Alice downvotes the pattern, removing it

from consideration, and clicks the Add button to write a

more specific version: <figcaption> is the child tag of

a <figure class="large_fig"> parent element (see

Fig. 3). She then adds this attribute-value pair to the captioned

<figure> elements already in the document to comply with

her new pattern. The system no longer recommends that Alice

include figcaption inside unclassed figures, and will

not flag her footer code for failing to do so. In this way, Fred,

a future developer working in the same document to continue

Alice’s work, can be made aware of Alice’s caption pattern.

Alice may also choose to share her code patterns with

Michele. Michele is working on a different document, but

wishes to use a similar look and feel. Alice can first use

the Export button to download a JSON file containing the

document’s code patterns and send these to Michele. Michele

can then click Import to import these code patterns into her

document.

III. SYSTEM

In IRIS, the computer and the human work together to create

code patterns. The computer first learns code patterns from the

HTML document by training decision trees. These decision

trees are then used to offer the developer potential completions

using an autocomplete interface, suggesting potential tags,

attributes, or values. Developers may then interact directly with

the code patterns, using a dedicated interface to view the code

pattern responsible for a specific recommended completion,

edit code patterns, and browse examples of code patterns. IRIS

is implemented as an extension to a simple web-based HTML

editor. In the following sections, we describe how IRIS learns

code patterns from HTML documents, how code patterns are

used to suggest code completions, and how developers may

interact directly with code patterns.

Fig. 4. IRIS parses HTML documents into an AST, where each node
corresponds to a tag and may be associated with zero or more attributes
and attribute values.

Fig. 5. IRIS constructs training data tables for each of the decision trees for
tags, attributes, and attribute values. The training data for attributes, shown
here, includes the enclosing tag, parent tag, and its attribute-value pairs, as
well as the resulting target attribute.

A. Learning Code Patterns

In this paper, we focus on HTML documents as individual

tokens of HTML. Tags, attributes, and attribute values, or

just values, are three important HTML tokens. Code patterns

represent a relationship between between condition features
and target features, where the former implies the latter.

To learn code patterns, IRIS first builds an abstract syn-

tax tree (AST) for the active HTML document using Hi-

malaya.js1(shown in Fig. 4). As code patterns may or may not

be document-specific, by default all code patterns are learned

from and applied to an individual document.

IRIS constructs three separate decision trees corresponding

to the three target types it may predict: an HTML tag, attribute,

or value. IRIS bases its predictions on features extracted from

the AST. In examining code patterns, we found that many

patterns are contextual, reflecting the role of an element within

the HTML document. For example, a tag contained in a div
with a class="sidebar" attribute-value pair might vary

from a tag contained in a table. Thus, the key condition

features we chose to extract are the parent element tag and

its attribute-value pairs. Additionally, for attribute and value

targets, the features considered include the tag of the element

that the developer is currently completing. When predicting

values, the preceding attribute name of the current element is

1https://github.com/andrejewski/himalaya

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

37

Fig. 6. Condition features are extracted from the current code context and
used by the decision tree to predict targets. Only one target per decision node
is shown for simplicity. The tree path taken in this example is bolded.

considered. IRIS collects the relevant features from the AST,

populating a table of training data (shown in Fig. 5) for the

target type. After gathering the training data, IRIS constructs

a decision tree for each target type. Using a JavaScript

implementation2 of the ID3 algorithm [1], a decision tree is

learned from the training data.

B. Using Code Patterns to Suggest Completions

As the developer enters each character in the HTML editor,

IRIS offers the developer autocomplete suggestions. To deter-

mine the type of target (tag, attribute, or attribute value) to be

completed, IRIS first tokenizes the characters in the current

line, from the first character to the cursor position. IRIS then

uses the two preceding tokens to determine the type of the

target. Consider the following example (| represents the cursor

position and whsp indicates whitespace):

is tokenized as:

(tag)(whsp)(attribute)(value)(whsp)

IRIS determines that a value followed by whitespace indicates

that the next token may be an additional attribute. The target

type is thus attribute.

After determining the target type, IRIS consults the decision

tree for this target type to generate potential completions.

To ensure that the decision tree reflects the current version

of the code, IRIS lazily trains the appropriate decision tree

on demand. IRIS then retrieves the information about the

context of the current cursor position. This includes the parent

tag, attributes, and attribute values as well as the current tag

and attribute, if applicable. With this data, IRIS then uses

the decision tree to generate possible completions (Fig. 6).

These completions are displayed to the developer through an

autocomplete interface (Fig. 1).

Fig. 7. The IRIS interface displays the code pattern for the current first listed
autocomplete suggestion (if applicable) and tables of all code patterns.

C. Interacting with Code Patterns

1) Viewing Code Patterns: To help developers understand

code patterns and explain code completions, developers may

directly view the set of code patterns. To offer developers

a compact and understandable representation, we chose to

present code patterns to the developer as a table of IF/THEN

rules. Each rule describes a set of conditions in which it applies

and the resulting predicted target. From each decision tree,

each path through the decision tree, representing a series of

conditions and a predicted target, is represented as a distinct

code pattern. If multiple targets exist in a decision node,

code patterns are constructed with identical conditions and the

respective target. These patterns are stored in the target order

expressed in the decision node, so as to preserve the ranking

of more prevalent targets above less prevalent ones.

Code patterns are displayed to the developer in the IRIS

interface to the right of the HTML editor (Fig. 7). When

autocomplete is active, the Current Code Pattern at the top

describes the code pattern associated with the top autocom-

plete recommendation. Below, tables for All Code Patterns

display the code patterns for the document to the developer.

The developer may toggle between viewing code patterns for

tags, attributes, and attribute value targets using the dropdown

in the upper-right of the All Code Patterns section. Each

pattern entry lists the conditions under which the code pattern

applies and the predicted target tag, attribute, or attribute value.

The current code pattern is indicated in the All Code Patterns

section with a light green background.

To enable developers to better understand the meaning and

use of each code pattern, IRIS enables developers to see

examples of each code pattern in the HTML editor. Clicking

2https://github.com/willkurt/ID3-Decision-Tree

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

38

Fig. 8. Promoting a standard pattern moves it to the list of prioritized patterns.

Fig. 9. Prioritizing patterns elevates their target features to the top of the
autocomplete menu.

the magnifying glass next to the rule invokes the pattern

inspector, highlighting examples of the code pattern. If the

example is a positive example, where the conditions and

prediction match exactly, it is highlighted in green. If the

conditions are similar but unequal, the example is highlighted

in yellow. Conditions are considered similar if they differ

only in one or more of the parent element’s attribute-value

pairs. Developers are also shown examples which violate the

rule, shown in red, indicating a potential defect in document

structure, visual style, or both.

2) Editing Code Patterns: When inspecting code patterns,

developers may identify patterns that they believe to be correct

or incorrect or wish to manually create new code patterns

expressing their intent. In these cases, the developer has insight

into code patterns which they may offer to the computer. By

taking the time to express their intent, developers may then

receive suggested completions that better reflect the patterns

they expect the document to follow.

In some cases there may be conflicting code patterns.

Conflicting code patterns occur when there are multiple code

patterns with identical conditions but which make different

predictions. This reflects a HTML document which is in-

consistent. In these cases, IRIS groups these code patterns

together. The code pattern that is most likely is listed first and

alternative code patterns are listed next and presented with a

gray background and faded font. By grouping related code

patterns, the developer may see alternatives and choose to

indicate which they believe best reflects their intent.

Developers may indicate that they believe a code pattern

to be correct by upvoting the pattern (up arrow icon) or to

Fig. 10. Demoting a standard pattern moves it to the blacklist.

Fig. 11. Blacklisting patterns hides their target features from the autocomplete
menu even if the pattern is applicable in the current context.

be incorrect by downvoting the pattern (down arrow icon).

This may be indicated from both the current code pattern and

the list of All Code Patterns. Upvoting or downvoting a code

pattern toggles it between three states: standard, prioritized,

and blacklisted. Developers may assign any priority to any

code pattern at any time.

When first learned in training a decision tree, code patterns

are initially in the standard state. Upvoting a standard pattern

transitions it into the prioritized state. Prioritized patterns

reflect insight that the developer themselves has offered into

code patterns. Once in the prioritized state, code patterns are

displayed in a separate section of the All Code Patterns panel,

enabling developers to see prioritized patterns at a glance

(shown in Fig. 8). Suggestions from prioritized patterns are

always listed first in the autocomplete list (Fig. 9).

Standard patterns may be demoted to enter the blacklisted
state. This state reflects the developers’ indication that the code

pattern does not match their intent. As such, blacklisted code

patterns are never shown to the developer as a potential code

completion. In addition, to prevent IRIS from learning other

similar patterns, any entry in the training data that matches a

blacklisted code pattern is removed. This enables the developer

to give feedback on a single code pattern and for IRIS to

incorporate this insight more broadly.

Because standard patterns are machine learned, the standard

patterns list is continually updated as changes are made to

the document. Standard code patterns may be automatically

change or removed at any time. Prioritized or blacklisted code

patterns which reflect the developers’ intent remain until their

priority is edited by the developer.

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

39

Developers may also choose to manually enter a prioritized

code pattern by clicking the Add button in the All Code

Patterns panel. The developer can first choose whether to

create a tag, attribute, or attribute value code pattern and then

create conditions and specify the target. Custom code patterns

must have a target and at least one condition to be valid.

In cases where developers have taken the time to create

prioritized or blacklisted code patterns, developers may wish

to share these code patterns for use in other HTML documents.

Developers may use these rules to capture a look and feel,

which might be shared with other developers. Developers can

click Export to download a JSON file containing prioritized

and blacklisted patterns for the current document. Developers

may then invoke Import to load code patterns into IRIS.

IV. EVALUATION

A. Method

To investigate the impact of enabling developers to interact

with code patterns, we conducted a user study. We recruited

twenty-four participants through personal contacts and social

media. All participants had prior experience in web devel-

opment (average 3.2 years). 17 were male, and 7 female.

Participants were paid $25 for 2 hours of their time.

Participants were assigned to a control or experimental

condition. Participants in the control condition were provided a

baseline HTML editor with autocomplete functionality, where

code recommendations were generated through the same pro-

cess as used in IRIS (Section III-B). However, the IRIS

panel was disabled, and developers were unable to view or

edit code patterns. Participants in the experimental condition

were provided the same HTML editor augmented with a fully

functional IRIS. Participants were each assigned to work on

two tasks out of three possible tasks.

To encompass a range of potential tasks in which developers

might benefit from IRIS, we designed three tasks: a creation,

continuation, and correction task. This was intended to sample

a range of situations in which developers might need to interact

with code patterns. In the creation task, participants were

directed to build an HTML code document from scratch in

accordance with provided specifications. The specifications

outlined document elements to create (e.g., Create a two-
column table in the center of the page) and their expected

styling (Color the header the same as the footer). In the

continuation task, participants were directed to complete an

unfinished HTML document in accordance with provided

specifications. Participants were given a 400 line HTML

document. The specifications asked participants to replicate

specific elements (e.g., Add a third link to the navigation bar)

as well as to restyle the document in specific ways (Re-style
the buttons in the second row to match those in the first). In

the correction task, participants were directed to find and fix

inconsistencies in a document. These inconsistencies included

missing or incorrect HTML features (e.g. a <p> tag on line

34 should be a <caption>) and relationships (div on line

252 should be nested under a aside parent).

TABLE I
AVERAGE TASK TIME BY TASK AND CONDITION

Mean task time
Task Control IRIS

Creation 40.3 34.4

Continuation 57.1 44.1

Correction 44.1 29.4

TABLE II
AVERAGE TASK SUCCESS BY TASK AND CONDITION

Mean success score
Task Control IRIS Max. Possible Score

Creation 11.4 14.9 17

Continuation 11.4 17.0 21

Correction 14.8 23.5 27

At the beginning of the study, participants were first asked

to complete a brief tutorial explaining the main features of

the HTML editor and, for experimental participants, IRIS.

Participants were then given up to 75 minutes to complete each

of the two main tasks. Participants were instructed to notify

the researcher when they felt they had completed a task. As

participants worked, we collected a screen recording for anal-

ysis. After completing the tasks, we interviewed participants

about their experiences.

B. Results

1) Creation Task: Participants using IRIS finished building

the outlined webpage after an average of 40.3 minutes, com-

pared to 34.4 for control participants. However, the Welch’s

one-tailed t-test revealed this difference only approached sig-

nificance (p = 0.06). To evaluate participants’ success, we

scored each HTML document created, awarding one point for

each item of the task specification they successfully completed.

Participants with IRIS successfully completed significantly

more requirements (p < 0.01), completing an average of 14.9

compared to 11.4 by control participants.

Several experimental participants opted to focus on viewing

code patterns, rather than editing code patterns. These par-

ticipants periodically browsed the All Code Patterns list to

assess their progress. As one participant explained, “I didn’t
really need to highlight samples of code I just wrote. But
just having the list there helped me keep track of what work
I’ve already done and what I have left.” Others noted that

seeing the existing patterns in their code was useful for both

evaluating task-compliance and conceiving ideas for what to

develop next.

Other experimental participants used IRIS to manually

define their own code patterns. One participant explained that

adding their own patterns ahead of time helped with “sticking
to a plan”, while another observed that it “made the auto-
completes [sic] more useful” by transferring his intent to the

system. These participants made extensive use of promoting

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

40

and demoting code patterns, enabling them to remove patterns

which overfit the data and focus on intended patterns.

2) Continuation Task: Participants with IRIS completed the

continuation task significantly faster (p = 0.03), finishing in

57.1 minutes compared to 44.1 minutes for control partici-

pants. To score participants’ success, we gave participants one

point for each specification they satisfied and one or two points

for following the specification consistently throughout their

document. This led to a maximum score of 21 points. Exper-

imental participants performed significantly better (p < 0.01),

with an average progress of 17.0 rather than 11.4.

IRIS enabled participants to more quickly identify and reap-

ply code patterns within their document. Participants with IRIS

often relied on autocomplete recommendations to develop

code immediately and later, briefly review the Current Code

Pattern and highlight usage examples to double check the

recommendations’ applicability. Compared to control partic-

ipants with suggested completions but no insight into their

source, IRIS participants developed stronger trust in the rec-

ommendations and relied on them more heavily over time. In

contrast, several control group participants appeared skeptical

of the recommendations, either ignoring them or spending

substantial time searching for examples to verify them. A few

IRIS participants used upvoting or downvoting to edit code

patterns. One participant observed that “The autocomplete
got even more accurate as I voted on the patterns”, making

document development “easier and easier”.

IRIS participants made use of the code patterns list to learn

code patterns, locating them by highlighting usage examples

and reapplying them in new code. Participants used the pat-

terns list to understand the appropriate attribute value to use

in various contexts, enabling them to reproduce appropriate

attribute-value pairs for a given element. Many participants

browsed the code patterns for its parent tag conditions, which

aided them in reproducing appropriate parent-child structures.

For example, participants first became aware of the rule to

nest self-contained img elements inside a figure parent by

seeing this code pattern in the list (as a new semantic element

introduced in HTML5, the <figure> tag and its usage may

not be widely understood). Most participants followed up by

highlighting examples of this code pattern, either recreating

or copying document snippets involving figure and img.

In contrast, control participants often incorrectly created img
elements without figure parents, and more generally, were

not as aware of the existence of patterns.

3) Correction Task: IRIS participants completed the correc-

tion task significantly faster (p < 0.01), finishing in an average

of 29.4 minutes compared to 44.1 minutes for control partici-

pants. To score participants’ success, we gave participants one

point for the addition, modification, or deletion of code to

make it consistent with the code patterns in the document.

This led to a maximum score of 27 points. IRIS participants

were significantly more successful (p < 0.01), with an average

score of 23.5 compared to 14.8 for control participants.

A key benefit IRIS offered participants was the ability to

highlight pattern examples and violations. All participants with

IRIS used the pattern inspector to scan the HTML document

for inconsistencies. Participants generally interpreted the red

highlights to indicate a defective code feature, and the yellow

highlights to suggest a missing or defective attribute-value pair.

This heuristic was often helpful for participants in identifying

inconsistent code. However, it sometimes misled a few par-

ticipants into “fixing” elements that did not need correction,

as certain defects featured predominantly in the document,

and thus, were listed by IRIS as code patterns. Despite this

occasional shortcoming, the patterns list and inspection tool

were instrumental in helping participants successfully find and

repair code defects:

“The magnifying glass [button] was very handy.
For each pattern I pressed [the button], read the
colored lines and compared them... And then figured
out which line needed fixing from there.” (IRIS

Participant)

In contrast, control participants struggled to locate incon-

sistencies, particularly those concerning HTML values.

“Sorting through all the code was really confusing
and time-consuming. I couldn’t tell what I was sup-
posed to do for the most part... Only a few blatantly
wrong tags stood out to me.” (Control Participant)

RELATED WORK

Our work builds on prior work in autocomplete tools for

developers, systems which identify and make use of patterns

in code, and work in explainable AI.

Autocomplete is one of the most widely used features in

modern development environments, with one study finding that

6.7% of all of developers’ IDE commands were code com-

pletions [2]. A number of systems have explored techniques

for offering more effective autocomplete interactions. Many of

these systems build a model of document context to offer more

accurate predictions. CSCC offers developers potential method

calls as code completions based on the context of surrounding

method calls [3]. Dompletion builds a model of an HTML

document object model, enabling suggestions of valid comple-

tions which respect element types [4]. Calcite crowdsources

the creation of virtual methods, enabling developers to use

code completion for methods that developers expect to exist

but do not [5]. Proksch et al. discuss some of the challenges in

evaluating method recommender systems [6]. Jungloid mining

enables developers to find sequences of method calls which

convert from an object in one type to an object of a different

type [7]. Work has explored using code history information

to improve code completion [8]. Other tools have explored

approaches for completing entire method bodies from prior

examples or code clones [9]. Active code completion offers

the developer palettes for creating specific complex literals

[10]. Beyond code completion, other approaches help connect

code more effectively to documentation to help developers

more effectively find methods. For example, work has explored

using documentation to augment interactions in the IDE [11].

A variety of autocomplete systems have built statistical

models of documents, using these models to power better

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

41

autocomplete. These systems largely rely on the inherent high

predictability and repetitiveness of code [12]. Systems such

as MAPO [13], GraPacc [14], and method call relationship

graphs [15] offer approaches for capturing patterns in API

method usages. Other work has explored approaches for

learning method completions from code repositories [16], [17].

Recent systems have expanded the amount of interactivity,

enabling developers to interactively enter keywords and choose

among alternatives to refine completions [18].

Building on the growing fear of AI systems creating a

”black box society” [19], work in the area of explainable

AI has explored ways in which difficult to understand ma-

chine learning models may be represented and communicated

more simply to users [20]. For example, model understanding

through space explanations enables translating an arbitrary

black-box representation of a machine learning system into

decision sets which capture the behavior of the black box in

specific circumstances [21]. In interactive machine learning,

users can view and correct classifications made by a system

[22]. Techniques such as why-oriented [23] and explanatory

debugging [24] enable users to view predictions made by a

naive Bayes model and make corrections back to the model.

Our work builds on these ideas, applying the idea of interactive

machine learning to document editing through code comple-

tion and viewing violations as well as exploring the use of

rules as a means to view and edit machine learning models.

V. LIMITATIONS AND THREATS TO VALIDITY

Our results might vary for larger HTML documents or for

documents which have been created over a longer period of

time, where the number of code patterns is larger. While the

potential value of our approach in managing more patterns

may grow, there may also be a larger potential for finding

spurious or overlapping patterns. In our study, we observed de-

velopers creating a document they began themselves, working

to stay consistent, as well as modifying an existing document

that they had not written. Our results might vary for developers

working in the same document over a period of time who have

internalized more code patterns.

VI. DISCUSSION

In this paper, we proposed an approach for editable AI,

in which the human and computer work together to create

and maintain code patterns. Code patterns are first learned by

the computer through decision trees. Code patterns are then

used to power code completions, suggesting ways in which

developers may write code which follows code patterns. To

help developers explain code patterns, developers can view

a compact representation of code patterns, comparing alter-

native predictions and viewing examples to see the source of

predictions. Developers may use patterns to identify violations,

viewing examples in the document which violate patterns. In

cases where learned code patterns overfit the document and do

not reflect developers’ true intent, developers may downvote

code patterns, which the system can then use to prune training

data to prevent similar rules from being learned. Or developers

may signal that a code pattern matches their intent by upvoting

or authoring their own code patterns.

Our results reveal that editablity and explainability matter.

Compared to developers offered autocomplete with the same

learned patterns, developers with the ability to view and edit

code patterns through IRIS were able to edit and correct

HTML documents more quickly and create, edit, and correct

HTML documents more successfully. Developers were able to

use code patterns to explain suggested completions, gathering

examples to see the source of these recommendations and

increasing their trust in the system. Developers used code

patterns to identify and correct violations. As developers

developed their own intent, developers reflected this by editing

code patterns, enabling autocomplete to offer better recom-

mendations. In this way, editability and explainability helped

developers to author more consistent and well-structured doc-

uments. This suggests the potential benefit, for creative work,

of offering the user greater control over machine learning.

Code patterns offer a way of capturing the look and feel of a

document. By representing the structure of the elements which

exist in an HTML document, developers can more directly

understand and interact with the visual look and feel. For

example, code patterns might capture that img elements in

the header should each have a particular size as expressed

by a class. Our representation of code patterns is limited

in a number of respects. In representing code patterns, we

included features such as parent tags and attributes to capture

the context-specific nature of HTML document structure. But

additional contextual features likely sometimes matter, from

the numeric order of an element to the characteristics of other

ancestor elements. More expressive representations might cap-

ture these. Code patterns are complimentary to CSS, helping

capture document structure rather than only visual styling.

Compared to CSS styles, code patterns are more flexible,

as unlike CSS styles which automatically apply to elements,

developers are free to create elements whether or not they

follow a code pattern. However, there may be cases where

code patterns and CSS styles more directly overlap, and it may

sometimes be helpful to enable code patterns to be converted

to CSS rules or vice versa.

Our approach might also be applied to other documents

where the user has intent in mind about its structure. Most

directly, our approach might be applied to code written in

a programming language. However, such patterns may be

considerably more complex, involving a much wider variety

of condition features and targets. While existing statistical

approaches to modeling code may offer hints into appropriate

representations, more work remains to understand appropriate

ways of learning these patterns and how they might be

succinctly communicated to developers.

ACKNOWLEDGMENTS

We thank our study participants for their time. This work

was conducted in part while Kartik Chugh was an intern in

the Aspiring Scientists Summer Internship Program at George

Mason University. Andrea Solis was supported in part by an

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

42

Undergraduate Research in Educational Data Mining grant,

NSF IIS-1757064.

REFERENCES

[1] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, Mar. 1986.

[2] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse ide?” IEEE Software, vol. 23, no. 4, pp.
76–83, July 2006.

[3] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and D. Hou, “Context-
sensitive code completion tool for better api usability,” in International
Conference on Software Maintenance and Evolution, 2014, pp. 621–624.

[4] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Dompletion: Dom-aware
javascript code completion,” in International Conference on Automated
Software Engineering, 2014, pp. 43–54.

[5] M. Mooty, A. Faulring, J. Stylos, and B. A. Myers, “Calcite: Completing
code completion for constructors using crowds,” in Symposium on Visual
Languages and Human-Centric Computing, 2010, pp. 15–22.

[6] S. Proksch, S. Amann, S. Nadi, and M. Mezini, “Evaluating the evalu-
ations of code recommender systems: A reality check,” in International
Conference on Automated Software Engineering, 2016, pp. 111–121.

[7] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:
Helping to navigate the api jungle,” in Conference on Programming
Language Design and Implementation, 2005, pp. 48–61.

[8] R. Robbes and M. Lanza, “How program history can improve code
completion,” in International Conference on Automated Software Engi-
neering, 2008, pp. 317–326.

[9] R. Hill and J. Rideout, “Automatic method completion,” in International
Conference on Automated Software Engineering, 2004, pp. 228–235.

[10] C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers, “Active code
completion,” in International Conference on Software Engineering,
2012, pp. 859–869.

[11] M. Goldman and R. C. Miller, “Codetrail: Connecting source code and
web resources,” in Symposium on Visual Languages and Human-Centric
Computing, 2008, pp. 65–72.

[12] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software,” Commun. ACM, vol. 59, no. 5, pp. 122–131,
Apr. 2016.

[13] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and
recommending api usage patterns,” in European Conference on Object-
Oriented Programming, 2009, pp. 318–343.

[14] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Grapacc:
A graph-based pattern-oriented, context-sensitive code completion tool,”
in International Conference on Software Engineering, 2012, pp. 1407–
1410.

[15] X. Li, Z. Wang, Q. Wang, S. Yan, T. Xie, and H. Mei, “Relationship-
aware code search for javascript frameworks,” in International Sympo-
sium on Foundations of Software Engineering, 2016, pp. 690–701.

[16] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in European Software Engineering
Conference and the Symposium on The Foundations of Software Engi-
neering, 2009, pp. 213–222.

[17] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Conference on Programming Language Design and
Implementation, 2014, pp. 419–428.

[18] X. Rong, S. Yan, S. Oney, M. Dontcheva, and E. Adar, “Codemend:
Assisting interactive programming with bimodal embedding,” in Sym-
posium on User Interface Software and Technology, 2016, pp. 247–258.

[19] F. Pasquale, The Black Box Society: The Secret Algorithms That Control
Money and Information. Cambridge, MA, USA: Harvard University
Press, 2015.

[20] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM Comput. Surv., vol. 51, no. 5, pp. 93:1–93:42, Aug. 2018.

[21] H. Lakkaraju, “Faithful and customizable explanations of black box
models,” in AAAI/ACM Conference on Artificial Intelligence, Ethics, and
Society, 2019.

[22] J. A. Fails and D. R. Olsen, Jr., “Interactive machine learning,” in
International Conference on Intelligent User Interfaces, 2003, pp. 39–
45.

[23] T. Kulesza, S. Stumpf, W.-K. Wong, M. M. Burnett, S. Perona, A. Ko,
and I. Oberst, “Why-oriented end-user debugging of naive bayes text
classification,” ACM Trans. Interact. Intell. Syst., vol. 1, no. 1, pp. 2:1–
2:31, Oct. 2011.

[24] T. Kulesza, M. Burnett, W.-K. Wong, and S. Stumpf, “Principles of
explanatory debugging to personalize interactive machine learning,” in
International Conference on Intelligent User Interfaces, 2015, pp. 126–
137.

2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

43

