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Noise-induced distortion of the mean limit cycle of nonlinear oscillators
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We study the change in the size and shape of the mean limit cycle of a stochastically driven nonlinear oscillator
as a function of noise amplitude. Such dynamics occur in a variety of nonequilibrium systems, including the
spontaneous oscillations of hair cells of the inner ear. The noise-induced distortion of the limit cycle generically
leads to its rounding through the elimination of sharp (high-curvature) features through a process we call
corner cutting. We provide a criterion that may be used to identify limit cycle regions most susceptible to such
noise-induced distortions. By using this criterion, one may obtain more meaningful parametric fits of nonlinear
dynamical models from noisy experimental data, such as those coming from spontaneously oscillating hair cells.
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I. INTRODUCTION

Nonlinear dynamical models are used to investigate the
complex dynamics of many living systems that manifest
self-sustained limit cycle oscillations driven by an internal
energy-consuming process. Examples include chemical net-
works underlying the circadian rhythm, patterns of activity
in neuronal networks, and cardiac dynamics [1–6]. Another
example of such an active nonlinear system is provided by
the inner ear. The auditory system parses pressure waves,
ranging over several orders of magnitude in frequency, and
detects even Angstrom-scale displacements of the mechani-
cally sensitive hair cells [7]. While the mechanisms behind
this extraordinary sensitivity are not entirely known, previous
work suggests that an internal active mechanism amplifies the
incoming signal [8,9]. The active process is also believed to
underlie the exceptional sensitivity and frequency selectivity
of the auditory system.

Detection of sound in the inner ear is performed by
mechano-electrical transducers—bundles of stereocilia—that
protrude from the hair cells [10]. The stereocilia contain
mechanically gated ion channels that open and close as the
bundles are deflected by sound waves [11]. The channels are
also connected to an internal active motor complex, primar-
ily comprising of Myosin 1c, whose movement along actin
filaments regulates the tension in the tip links connecting
the stereocilia [12]. This interplay of ion-channel gating and
myosin motor activity can lead to spontaneous limit cycle
oscillations, which have been observed in vitro [13,14].

The dynamics of individual hair cells, as well as the overall
mechanical response of the inner ear, have been modeled with
various systems of nonlinear differential equations of multi-
ple levels of complexity [15–18]. A simple two-dimensional
mathematical system exhibiting the supercritical Hopf bifur-
cation, known as the normal form equation, has been shown to
reproduce the main aspects of the auditory response [19–21].
A benefit of simple analytic models is that they account for a

number of complex phenomena, such as amplification, com-
pressive nonlinearity, etc., with sparse a priori assumptions
and few free parameters.

For studies that seek a more direct mapping between
variables of the model and underlying physiological pro-
cesses, more complex models are warranted and have been
explored in the literature [22–25]. These models allow for
direct comparisons between the numerical predictions and
experimentally accessible observables. However, they nec-
essarily include a larger number of fitting parameters and
generally have more complex and higher dimensional limit
cycles, as they account for more dynamical variables. For ex-
ample, even a relatively sparse three-dimensional model that
explicitly incorporates stereociliary position, myosin motor
activity, and the somatic membrane potential [26] includes
many more biologically relevant parameters than the simple
two-dimensional models based on the Hopf bifurcation. Given
that the experimental records are necessarily stochastic, and
typically limited to only a fraction of the total set of dynamical
variables in these complex models, the presence of many
free parameters in a model raises questions regarding how
to appropriately fit the data. There is an inherent tradeoff be-
tween constructing biologically realistic models and limiting
the number of free parameters.

Stochasticity is an inherent feature of hair cell oscillators in
particular and biological systems in general [27]. Hair bundle
motion is affected by thermal Brownian motion from the sur-
rounding fluid; the internal myosin motor complexes are sub-
ject to nonequilibrium noise stemming from their attachment
and detachment from actin filaments. The membrane potential
is affected by ion channel clatter and shot noise in ionic
transport [23,28,29]. Hence, even if the macroscopic variables
of the system, such as the position of the hair bundle and the
somatic membrane potential, obey a low-dimensional dynam-
ical model, these noise sources preclude experimental access
to the deterministic limit cycle. Instead, one may observe a
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FIG. 1. Stochastic trajectories of the hair bundle model. A rep-
resentative stochastic trajectory (green) superimposed upon the de-
terministic (red) and mean (dashed black) limit cycles. The noise
amplitude is by room temperature and the fluctuation-dissipation
theorem 2kBTλ, with viscosity λ. This figure as reproduced from
Ref. [26] exemplifies the effect of noise that we study here.

number of stochastic but cyclic trajectories and determine a
mean limit cycle by averaging over many such trajectories. We
previously observed the discrepancy between the determinis-
tic and mean limit cycles, using a three-dimensional model
with Gaussian noise. Introduction of stochastic fluctuations
not only caused the trajectories to vary from cycle to cycle,
but also changed the shape and size of the mean limit cycle.
Figure 1 illustrates differences between the deterministic limit
cycle (red) and the average (dashed black) of the hair bundle’s
stochastic trajectory (green), modeled using noise values cor-
responding to equilibrium fluctuations at room temperature, as
determined by the fluctuation-dissipation theorem [26]. This
plot is a mapping of the three-dimensional limit cycle onto
the experimentally accessible manifold defined by the bundle
deflection and membrane potential measurements [30].

There has been a growing interest in studying how noise
affects the dynamics of limit cycle oscillators [31]. In this
paper we explore how the mean limit cycle of the stochastic
system differs from the deterministic or zero-temperature
limit cycle of the underlying dynamical system. By doing so,
we are able to determine whether noise leads to significant dis-
crepancies between the experimentally accessible dynamics
and deterministic theoretical models. Specifically we explore
the causes for the rounding of the zero-temperature limit
cycle that makes unavailable to experimentalists the sharper
features of the deterministic system. To explore this question
quantitatively, we focus on a generalization of the simple
two-dimensional Hopf oscillator, to which we introduce terms
that add finer structure to the shape of the deterministic limit
cycle. We then are able to observe how these finer details of
the shape of the limit cycle are deformed by stochastic forces.

We argue that the generic effect of noise on the limit
cycles of dynamical systems is to smooth out the sharper
(high-curvature) parts of the trajectory. This effect will impose

an upper bound on the useful level of complexity of numerical
models, as detailed features, resulting in complex limit cycles
in phase space, will be shown to be experimentally inacces-
sible. Our analysis furthermore allows one to determine from
the model precisely which features of the limit cycle are most
susceptible to noise. By using that information, one should
be able to more meaningfully decide on suitability of vari-
ous nonlinear models of biological dynamics for interpreting
one’s data.

The remainder of this article is organized as follows. In
Sec. II we detail a two-dimensional regular Hopf oscillator in
the stably oscillating regime. In Sec. III we analyze the gen-
eralized version and illustrate the effects of stochasticity and
of the internal active drive. Finally, we conclude in Sec. IV,
where we review the differences between the experimentally
accessible trajectory and the theoretical model.

II. REGULAR HOPF OSCILLATOR

The supercritical Hopf oscillator is the lowest dimensional
system (d = 2) that admits limit cycle oscillations. The nor-
mal form of this dynamical system can be described in terms
of the generalized position variable, Z (t ) = X (t ) + iY (t ),
obeying the differential equation

Ż = Z (μ − iω) + bZ|Z|2 + ηZ . (1)

The dynamics of the deterministic system depend on the
model parameters {μ,ω, b}. For μ > 0, the stable solution is
given by the limit cycle of radius R0 = √

μ/b and oscillation
frequency ω. To fully specify the model, we introduce the
stochastic force term ηα , where α = X,Y are the Carte-
sian coordinates. The complex noise amplitude discussed in
Eq. (1) is related to these two noise terms by ηZ = ηX + iηY .
Here and throughout this study, we assume that this noise is
uncorrelated, Gaussian white noise with a vanishing mean and
the second moment given by

〈ηα (t )ηβ (0)〉 = 2T δαβδ(t ), (2)

where α = X,Y . We introduce T as the amplitude of the
white noise. We note, however, that in many systems, and
in hair cells in particular, the noise may be nonthermal. This
does not affect our results as long as those nonthermal noise
sources are not strongly correlated in time. Even in that
case, we expect that our qualitative results are not strongly
dependent on the assumption of such frequency-independent
noise amplitudes. However, our results do depend critically on
the assumption that the noise amplitude not be too anisotropic.
Strongly anisotropic noise could result in a new pattern of
noise-induced deformations of the limit cycle distinct from
those discussed here. Similarly, cross correlations between the
noise in the x and y channels may result in unique stochastic
behavior not accounted for here.

We remind the reader that the trajectories of these non-
linear dynamical systems may be thought of as the classical
motion of an overdamped particle in d dimensions, moving
in response to a force field. For a two-dimensional system,
the force field may be decomposed into the gradient of a
scalar potential, which may be interpreted as the potential
energy landscape for the system, and the curl of a vector
potential. It is this latter nonconservative force that provides
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FIG. 2. Hopf scalar potential. The deterministic limit cycle (red
curve) lies in the minimum potential region of the Goldstone som-
brero potential described by Eq. (5). The color map runs from dark
blue (low potential) to light yellow (high potential). The vector
potential (not shown) is a constant azimuthal vector field which
drives the limit cycle dynamics in a counterclockwise circular limit
cycle of radius R0. See text for details.

the drive allowing stable limit cycles to exist. The parameters
{μ,ω, b} may be used to define the scalar (φs) and vector
( �φv ) potentials of the system from which one may derive
the conservative and nonconservative forces. Shortly we will
introduce new features into the Hopf oscillator model by
changing the landscape of effective potential.

The system of dynamical equations given by Eq. (1) may
be expressed in terms of a two-dimensional vector X(t ) =
X (t )x̂ + Y (t )ŷ obeying overdamped motion in a force field
f (X):

Ẋ = f (X), (3)

where the force field is given by

f (X) = ∇φs(X) + ∇ × �φv (X). (4)

The existence of such a decomposition of the generic
vector field f is ensured by Helmholtz’s theorem. For the
specific case of the Hopf system introduced in Eq. (1), the
scalar and vector potentials may be simply computed:

φs = −μ(X 2 + Y 2)

2
+ b(X 2 + Y 2)2

4
, (5)

�φv = −ω(X 2 + Y 2)

2
ẑ. (6)

The scalar potential has one of two forms depending on
the sign of μ. For negative values, the potential has a sin-
gle minimum at the origin, and the deterministic dynamical
system has a single fixed point. For positive μ, the origin
is a local maximum of the scalar potential, and a new set
of local minima appear on the circle of radius R0 = √

μ/b
about that center. This form of the potential is the well-known
“Goldstone sombrero potential” shown in Fig. 2. For finite
values of the drive ω > 0, we observe that the curl of the
vector potential fv = ∇ × �φv is tangent to the circular ring.
It drives the X variable anticlockwise along the limit cycle,
defined by the circular ring of minima. The transition between
the stable fixed point and the stable limit cycle of angular
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FIG. 3. Numerical simulation of the stochastic Hopf oscilla-
tor. Calculations were performed using Eq. (1). (a) The finite-
temperature (light blue) trajectories and the mean (red) limit cycle.
(b) A typical time series (black) of the stochastic dynamics of X (t )
and Y (t ).

velocity ω occurs at μ = 0 and is known as the supercritical
Hopf bifurcation.

Turning to the motion of the stochastically driven system,
we observe that, across a range of noise amplitudes, the
trajectories remain constrained to the trough of the scalar
potential at R0 = √

μ/b that stabilized the deterministic limit
cycle. Because the scalar potential is locally symmetric for
positive and negative radial displacements from the limit
cycle and since the vector potential has no radial component,
the mean limit cycle of the stochastic system is identical
to the deterministic one. Figure 3 illustrates these stochastic
dynamics.

In Fig. 3(a) we show a representative trajectory (light
blue) superposed upon the mean limit cycle (red). We plot in
Fig. 3(b) typical X (t ),Y (t ) traces, as might be obtained from
hair cell data. Herein,μ = 80, b = 1, ω = 200, and the details
of the simulation are described in Appendix A. The mean
limit cycle for the finite-temperature system is computed by
binning the phase space {−π, π} into 200 bins and averaging
over multiple trajectories. For this simple model of a Hopf
oscillator, the average cycle is similar to the deterministic
limit cycle, due to the high symmetry of the system. When
the potential landscape of the system is more complex (i.e.
exhibits lower symmetry), this correspondence between the
mean and deterministic limit cycles no longer holds. We study
the lower-symmetry, generalized Hopf system in the next
section.

III. GENERALIZED HOPF OSCILLATOR

A. Model and dynamical phase diagram

To explore the effects of noise on the mean limit cycle,
we add symmetry-breaking terms to the Hopf oscillator by
changing the scalar potential φs:

φs = −μ(X 2 + Y 2)

2
+ b(X 2 + Y 2)2

4

+α cos(nθ )e−(
√
X 2+Y 2−

√
μ

b )
2
, (7)

�φv = −ω(X 2 + Y 2)

2
ẑ. (8)
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FIG. 4. Scalar potential map for generalized Hopf. Three-
dimensional plot of the scalar potential in Eq. (7), for n = 4 with the
valleys seen in dark blue and hills in between them. The color map
spans across dark blue (low potential) to light green (high potential).
The deterministic limit cycle (yellow) for small vector potential skirts
around the hills and pinches at the valleys.

The modulation introduces n local maxima (and an equal
number of local minima) to the scalar potential that remove
the azimuthal symmetry present in Eq. (5). By tuning the
radial position of those extrema to the center of the circular
trough of the Hopf potential, we force trajectories near the pre-
vious limit cycle to deform and can control that deformation
by the strength of the perturbation α. Here we consider the
case of a fourfold potential landscape, n = 4, but we believe
that none of the results shown below depend critically on that
choice.

Figure 4 shows the modified scalar potential for n = 4,
along with the deterministic limit cycle shown in yellow. It
should be noted that there are pairs of degenerate paths about
each of the local maxima. These minima also introduce new
fixed points that remain stable for sufficiently small values of
the vector potential. To find stable limit cycles we require that
strength of the vector potential exceed

ω� = nb
α

μ
. (9)

Beyond this point, stable limit cycles exist, but their shape
continues to change with increasing vector potential strength
ω. We study these dynamics for various values of ω/ω�.

Introduction of the local minima renders the dynamical
phase diagram more complex. In Fig. 5 we show this phase
diagram under varying noise amplitude T and drive frequency
ω. The top row of the phase diagram shows the full limit
cycle, while the lower rows zoom in on one of the four
equivalent local quadrants of the system. The ω = 0 column
shows the expected behavior of an equilibrium system with
increasing levels of noise. For sufficiently small T , stochastic
trajectories are confined to one of the four local minima (we
show one such case in the figure). The trajectories deviate
further from the minimum of the potential with increasing T ,
as one expects in the vicinity of a fixed point. Over sufficiently
long times, one observes thermally activated hopping between
these minima, so that the system diffuses around the ring

ω = 0 ω = 101 ω = 200

T = 0

T = 80

T = 320

T = 600

A B C

D E F

G H I

J K L

FIG. 5. Stochastic trajectories with variation in temperature and
ω. Quarter lobes of the trajectories obtained by solving Eq. (7) using
ω values of {0, 101, 200} and 〈η2

z 〉 values of {0, 80, 320, 600}.

set by the underlying circularly symmetric potential. Alterna-
tively, the same behavior can be observed by increasing T at
fixed length of the trajectories. The sequence (J, G, D, and A)
in Fig. 5 demonstrates these effects.

In the case of small but finite ω, the drive biases the hops
between local minima to favor those in the anticlockwise
direction, along the force generated by the vector potential.
However, if one chooses ω < ω�, the drive is not sufficient
alone to drive transitions between local minima, and the
deterministic system remains trapped within one of these
wells of the scalar potential. In this study, we are primarily
interested in the case where the deterministic system has a
stable limit cycle, so we begin our studies where the vector
potential is just strong enough to destabilize the local minima.
A sequence of such minimally stable deterministic trajectories
with increasing noise amplitude can be seen in (K, H, E, B) of
Fig. 5. We note that even small values of the noise amplitude
are capable of allowing the dynamical system to explore both
trajectories about the local potential maxima.

Finally, with a sufficiently strong vector potential (here
ω = 200), the deterministic system (and the system with suf-
ficiently small noise amplitude) approaches the circular limit
cycle of the standard Hopf oscillator with the circularly sym-
metric driving force overwhelming the symmetry-breaking
scalar potential. This is shown in panel L of Fig. 5. Upon
increasing the noise amplitude, as shown in the sequence (L,
I, F, C) of Fig. 5, we observe both paths around the local
maximum appearing once again. Since the limit of very large
drive restores the circular symmetry, and since we aim to study
the noise-induced loss of fine detail in more complex limit
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FIG. 6. Examples of corner cutting. (a) The deterministic oscil-
lator tracks the local minimum potential regions. (b) One lobe of
the potential landscape. (c) Oscillator at 〈η2〉 = 10. (d) Oscillator
at 〈η2〉 = 30. A (black) arrow points to an example of a corner
cutting trajectory. These have been simulated using parameter values
μ = 80, b = 1, α = 2000, n = 4, resulting in ω� = 100 [see Eq. (9)]
and ω = 101.

cycles, the large ω limit will not be considered further. In pan-
els H and I, one observes a dispersion of trajectories around
the point where the inner path about the local maximum
reconnects with the outer path. This localized broadening is an
example of noise-activated corner cutting in the generalized
Hopf model that is the focus of this paper.

B. Noise-induced corner cutting

We now explore in detail the noise-induced corner cutting
at intermediate values of both noise amplitude and drive,
consistent with panel H in the phase diagram. As expected,
the deterministic oscillator occupies the low potential regions
at nearly all phases of the oscillation [see Figs. 6(a) and 6(b)].
However, upon increasing the noise amplitude in the system,
as shown in Figs. 6(c) and 6(d), the trajectories deviate
from the T = 0 curve by cutting across the sharper (higher-
curvature) features of the deterministic path.

The net effect of these deviations is that the mean shape of
the limit cycle increasingly deforms with noise amplitude. In
particular, the higher-curvature features of the deterministic
limit cycle, apparent where the inner path (smaller radius)
around the local maximum converges with the outer path,
are lost with increasing noise amplitude. We refer to this
phenomenon as corner cutting, since the sharper corners of
the deterministic limit cycle are smoothed out.

The corner cutting observed in the generalized Hopf model
resembles that observed in the hair cell oscillator model. One
observes in Fig. 1 the noise-induced rounding of the high-
curvature corner in the upper right quadrant of the determin-
istic limit cycle. Comparing Figs. 6(c) and 6(d), we see that
increasing noise amplitude increases both the frequency at
which paths deviate from one that follows the local potential
minimum and the degree of their deviations, indicating that
this effect is indeed driven by stochastic processes.

A

B

FIG. 7. Direction of fv . One of the lobes of the mean limit cycle
(gray) of the 〈η2〉 = 30 stochastic system, with the (blue) regions (A,
B) corresponding to arc lengths amid which the corner-cutting tra-
jectories deviate from the particle’s average behavior. The direction
of fV is illustrated by (orange) arrows. This lobe corresponds to the
marked lobe in the (upper right) inset.

The degree of corner cutting at different points along
the deterministic trajectory, which exhibit the same scalar
potential, are not equivalent. For example, we do not observe
as much corner cutting at the point where the limit cycle
diverges when approaching the local maxima as where these
paths converge on the other side. This shows that phenomenon
is not simply a feature of the local scalar potential, which is
the same at both of these points.

In Fig. 7 we plot the drive force associated with the vector
potential fV along the mean limit cycle. The mean limit cycle
is calculated in a similar manner as the regular Hopf oscillator,
with an additional calculation at each phase to check for the
presence of one or two maxima in the trajectory density. The
peaks are considered distinct if they are radially separated
from R0 = √

μ/b = √
80 by a distance of 0.2 or more. We

identify the corner-cutting paths as events that lie at a potential
energy greater than 3T compared to the potential energy of the
mean curve.

One immediately observes the distinction between the
entry and exit points of the loop around the local potential
maximum. Near the entry point, the vector potential force is
tangent to the path of the limit cycle. Near the point where
the inner path merges with the outer one, however, the drive
force has a significant component normal to the mean path.
The drive force plays a role in enhancing the thermally excited
deviations from the mean limit cycle. Moreover, asymmet-
ric deviations from the deterministic limit cycle resulting in
deformation of the mean limit cycle are strongest in regions
where two conditions are met. First, there must be a significant
component of the drive force normal to the deterministic limit
cycle, and, second, the confining potential about that limit
cycle must be weak.

In the lower panel of Fig. 8, we plot the potential energy
versus distance, measured along the local normal to the mean
limit cycle. Plots are obtained at various points (labeled A,
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FIG. 8. Confining potential. (A–D) Energy landscapes in the n̂
direction to the zero-temperature limit cycle, corresponding to the
A–B arc length in Fig. 7. The (red) cross is indicative of the noiseless
particle position, with negative values pointing towards (0,0). These
positions correspond to the (black) cuts along the (yellow) limit cycle
atop.

B, C, D) along that limit cycle, indicated in the upper panel
of the same figure. The potential in the normal cross section
at A shows two minima, consistent with the two paths of
the deterministic limit cycle at that point. Upon approaching
the junction of those two paths at B and C, one sees these
two local minima merge into a single broader minimum. This
minimum then deepens, and the confining potential sharpens,
as one moves away from the local maximum (shown at D).
It is clear that the combination of the weak (small-curvature)
confining potential and large normal component of the drive
force at points near B make this area most susceptible to
noise-induced trajectories escaping from the mean path. The
asymmetry of those escapes, i.e., their preference for moving
to smaller radii, leads to an enhancement of the noise-induced
distortion of the mean limit cycle near B.

Based on the above analysis, we expect that the effect
of noise on the mean limit cycle of the oscillator depends
strongly on the arc length. In other words, different regions
along the deterministic limit cycle deform differently with
increasing noise amplitude so that the shape of the limit cycle

FIG. 9. Nonuniform distortion of the limit cycle. The distance of
the mean limit cycle at 〈η2〉 = 2000 from the underlying noiseless
curve shown as a color map. These values are normalized to the
average value of the zero-temperature cycle,

√
μ/b.

itself changes with noise amplitude. To investigate this effect,
we measure the normal distance between the deterministic
limit cycle and the one measured at “high temperature,”
where 〈η2〉 = 2000. In Fig. 9 we color the deterministic
limit cycle using a heat map to represent this noise-induced
deformation. In this figure, the cooler (yellower) colors depict
smaller noise-induced distortions. The deformation is clearly
nonuniform along the limit cycle (although still symmetric
under rotations of the figure by π/4 due to the underlying
symmetry of the n = 4 perturbation). The greatest deviations
occur at the region corresponding to (A–D) of Fig. 8, showing
that the principal cause of these distortion “hot spots” are the
corner cutting trajectories that occur where the limit cycle arcs
converge at the end of the local potential maxima.

C. Predicting regions of noise-induced limit cycle distortion

To better understand the extent of distortion hotspots (i.e.,
their length along the mean limit cycle), we analytically
estimate the typical time interval for a stochastic trajectory
to return to the mean limit cycle, assuming that it has already
significantly deviated from it. Assuming a relatively constant
angular velocity about the limit cycle, one can then estimate
the limit cycle arc length required for the particle to return
to the mean limit cycle after such a noise-induced deviation.
In this way, we obtain a rough measure of the size of the
regions of the limit cycle where one can expect significant
noise-induced distortions. Identifying points on the limit cycle
where trajectories are likely to diverge from the mean limit
cycle and estimating the typical extent of distortion hotspots
allows one to predict from the underlying deterministic equa-
tions which parts of the limit cycle are inherently more
susceptible to noise.

To address this question, we consider a trajectory that starts
at some fixed distance from the mean limit cycle. We choose
this distance using the criterion that the system’s deviation
has increased its potential energy to 3T above the minimum
(which occurs at or near the mean limit cycle in the limit
of a weak drive). We treat the stochastic dynamics of the
system in the plane perpendicular to the limit cycle, which
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FIG. 10. Curvature of the confining potential. The plot depicts
κ values along the zero-temperature limit cycle. We depict the
inner curve, since the asymmetry of the problem renders it more
susceptible to corner cutting. Additional plots exhibiting Eq. (10)
illustrate the time of decay for the total number of trajectories that
have escaped the mean path of a system with noise variance 〈η2〉 =
30. This points to a theoretical method of determining regions in the
oscillatory system that are prone to distortion in the presence of noise
and hence less reliable when fitting parameters to experimental data.

we assume here to be one-dimensional (higher-dimensional
generalizations are possible). For the analytic estimate, we
consider the confining potential to be locally quadratic, an
approximation warranted by the measured confining potential
plotted along the local normal to the limit cycle in Fig. 8. We
do not include a local nonzero normal component of the drive
force, but the calculation can be readily generalized to include
a roughly constant force term.

Using these simplifications, we compute the mean first-
passage time distribution for the system to return to the po-
tential minimum. The details of the calculation are presented
in Appendix B. κ denotes the curvature of the confining
potential, and its variation around the limit cycle is illustrated
in Fig. 10. As explained in Appendix B, we compute the
integrated survival probability N (t ) of trajectories starting at a
fixed normal distance from the mean limit cycle and vanishing
upon their return to it. The negative time derivative of this
quantity is the probability distribution of the first return time.
We plot the integral N (t ) because it is less susceptible to
noise in the numerical data. Given a starting position x0 in
a harmonic potential with curvature κ , we find the integrated
survival probability to be

N (t ) = erf

{[
κ

2kBT (1 − e−2tκB)

]1/2

x0e
−tκB

}
. (10)
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FIG. 11. Return time distribution. The histogram represents the
distribution of the stochastic trajectories that lie 3T above the min-
imum potential. We consider trajectories that leave the mean limit
cycle in a region of small potential curvature (κ = 0.6) as shown in
Fig. 8 B. The overlaying plot is the theoretical prediction of Eq. (10).

Here B is the mobility of the overdamped system (which is set
to 1 in our simulations, without loss of generality) and kBT is
a measure of the amplitude of the Gaussian white noise. In our
simulations, kB is normalized to 1.

We plot κ , the curvature of the confining potential in the
direction normal to the limit cycle, of our generalized Hopf
model as a color map superposed on the limit cycle in Fig 10.
As expected, corner cutting occurs where that potential is
smaller than average. More significantly, we plot the decay
of N (t ) predicted solely from that local curvature, for two
representative parts of the limit cycle: (1) a region of small κ

(upper left), where the distribution of the return times is broad,
indicating that many trajectories deviate from the mean path
over significant portions of the limit cycle, and (2) a region of
high curvature (lower left), where trajectories that do deviate
rapidly return to the mean path.

To test this analytic prediction for the return time distri-
bution, we use stochastic numerical simulations to compute
the distribution of return times for trajectories that start off the
mean path, using the criterion discussed above. The histogram
of those return times is plotted (yellow bars) in Fig. 11. The
numerical data are taken from a region where the confining
potential is weak so that such large excursions from the mean
are relatively common, allowing us to obtain a larger data
set of deviant trajectories. Superimposed on this plot is the
integrated survival probability N (t ) computed from Eq. (10).
There are no free fitting parameters.

We observe reasonably good agreement between the sim-
ple model and the numerical data. The largest discrepancies
appear to be that the simple model overestimates the rapid
return times and underestimates the return times that are of
the order of ∼1/ω. We believe that this error results from
our neglect of the vector potential force, which changes rather
rapidly in this portion of the limit cycle. As shown in Fig 7,
trajectories leaving the limit cycle at this point experience
initially the normal component of the driving force, and this
normal component of the force decays rapidly as the system
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traverses the limit cycle. The result is that rapid returns are
suppressed by the vector potential force, but this suppression
of returns vanishes quickly as the particle continues on its
trajectory. While the details are not captured by this simple
quantitative estimate provided by Eq. (10), it has qualitative
value in predicting regions of the limit cycle where large
noise-induced deformations are likely to occur. We note (data
not shown) that in regions of large κ , we observe few large
excursions from the limit cycle and rapid returns when such
excursions do occur.

IV. SUMMARY

We have shown that the fluctuations of a stochastic non-
linear oscillator can affect the size and distort the shape of
its average limit cycle, as a function of noise amplitude.
This effect appears to be dominated by particular parts of
the limit cycle that combine two special features. First, the
confining potential that stabilizes the deterministic limit cycle
is broad, and, second, the nonconservative driving force has
a significant component normal to the local tangent of the
limit cycle. These two criteria provide a way to determine
quantitatively how susceptible the deterministic limit cycle is
to noise-induced distortions. Since the criteria for large defor-
mation occur near high-curvature parts of the deterministic
limit cycle, we refer to these distortions as corner-cutting
events. We also provide a simple estimate of the duration of
large, noise-induced excursions from the typical path of the
nonlinear system and thereby provide a measure for the size
of the noise-deformed regions of the limit cycle.

Using that estimate, one is able to predict which features of
the limit cycle of a periodic, nonlinear, dynamical system are
susceptible to noise and which are not. This leads to two ob-
servations. First, we believe that, in using noisy experimental
data to fit parameters of complex nonlinear models, one must
first determine which parts of the limit cycle of the dynamical
system are least susceptible to that noise and weight the fits of
the various model parameters accordingly. This is particularly
true in systems where the details of the noise sources are
poorly understood and, as a consequence, the expected noise
amplitude is unknown. Second, we predict that more noisy
dynamical systems will generically have fewer high-curvature
features in their limit cycles due to corner cutting. This trend
has not yet been confirmed to our knowledge.

Applying these findings to models of biological systems in
general, and hair cells in particular, we suggest that increasing
the complexity of dynamical models provides diminishing
returns: more sophisticated models typically introduce new
and finer features to their limit cycles, which we show will be
smoothed by averaging over stochastic trajectories. For active
systems exhibiting a limit cycle, increasing the amount of
averaging brings one arbitrarily closer to the mean limit cycle,
not to the deterministic one. As mentioned earlier, Fig. 1
illustrates this averaging and the resulting disparity between
the mean and noiseless limit cycles of a three-dimensional
hair bundle model. The effect is analogous to that of the
thermal expansion of crystals where a combination of thermal
noise and a nonsymmetric potential lead to temperature-
induced changes to the mean atomic spacing. Hence, if the
presence of realistic noise amplitudes in the model leads to a

significant distortion of the mean limit cycle, any finer features
of the deterministic model will be inherently inaccessible to
experiment.

Since we expect noisy limit cycle oscillators to not typ-
ically exhibit sharp features in their limit cycles regardless
of the complexity of their underlying dynamical models, one
may wish to investigate them more closely in noisy biological
systems. Their presence should be atypical at least, and such
features imply tight dynamical control through very large
curvatures of the effective confining potential. That tight
control may point to selection pressure on the relevant dy-
namical features of the biological limit cycle, although other
interpretations would remain possible.

There are a number of extensions to this analysis that can
be considered. First, one may examine the role of colored
(frequency-dependent) noise in the system. Here we expect
that increasing the noise amplitude at low frequencies will
produce larger-scale distortions than those at high frequencies.
The quantitative details of this effect have not been pursued
yet. Further, one may consider more complex issues, such
as stochastic variations in the model parameters themselves.
These will generally introduce multiplicative noise in the
system and render the problem significantly more complex.
We expect, however, that basic features explored here will still
provide a rough set of guidelines for determining what parts
of the limit cycle are susceptible to internal stochastic forces.
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APPENDIX A: SIMULATION DETAILS

The stochastic simulations of Eq. (1) were carried out
using the fourth-order Runge-Kutta method for a duration of
60 s, which corresponds to approximately 6500 limit cycles.
The time steps used in the simulation were in the range of
10−4 ↔ 2 × 10−3 s. The time steps for the simulations of
Eqs. (7) and (8) were 6 × 10−7 ↔ 3 × 10−6 s. We did not
observe any numerical instabilities of the solution during these
runs.

We explored a large range in the amplitude of the noise
variance 〈η2

Z〉, covering the range of 10−7 ↔ 0.4 where
the amplitude of the limit cycle oscillator was held to be
O(1). The stochastic terms driving the dynamical variables
{X (t ),Y (t )} were always assumed to be uncorrelated.

APPENDIX B: FIRST-PASSAGE TIME DISTRIBUTION
FOR A QUADRATIC CONFINING POTENTIAL

To estimate the distribution of return times over which
corner-cutting trajectories come back to the mean limit cycle,
we consider a simple Smoluchowski equation giving the
time evolution of the probability distribution of the normal
distance of a trajectory from the mean limit cycle. We make
a number of simplifying assumptions. First, we assume that
the effective potential for this one-dimensional problem is
fixed in time. In the actual system, this potential is time
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varying as the particle traverses it trajectory, but as long as the
excursions from the mean limit cycle are sufficiently brief,
this approximation should provide a reasonable estimate of
the return probabilities. Second, we assume that the force
associated with the vector potential may be ignored. We
find that this nonpotential force is typically subdominant;
in principle, a time-independent approximation to this force
could be included in the analysis explored below by adding a
constant force, corresponding to a simple tilt of the potential
landscape. Finally, the landscape of that confining potential is
assumed to be locally quadratic, as illustrated by curves (C)
and (D) in Fig. 8.

Given these approximations, we may write the Smolu-
chowski equation as

∂P(x, t )

∂t
= D

∂2P(x, t )

∂x2
+ κB

∂xP(x, t )

∂x
, (B1)

where D = BkBT is the effective diffusion constant and B
the mobility. κ is curvature of the confining potential, which
may be computed directly from the equations of motion and
the curve associated with the mean limit cycle. Using this
equation we will compute the probability that a trajectory,
starting at a particular normal distance from the mean limit
cycle, returns to that mean limit cycle for the first time after
a time interval t . This is the well-known first-passage time
distribution.

We note that Eq. (B1) has a simple time-independent
solution corresponding to the equilibrium position distribution
of a harmonic oscillator with spring constant κ:

Pst (x, t ) =
√

κ

2πkBT
e− κx2

2kBT . (B2)

Writing the time-dependent probability distribution that
evolves towards Pst (x) according to Eq. (B1) as a product,
P(x, t ) = Pst (x, t )1/2g(x, t ), we obtain a new evolution equa-
tion for g(x, t ):

∂g(x, t )

∂t
− BkBT

∂2g(x, t )

∂x2
+ Bκ

2

(
κ

2kBT
x2 − 1

)
g(x, t ) = 0.

(B3)
We note that the g −→ 1 at long times in order to be consistent
with Eq. (B2).

Using separation of variables, g(x, t ) = f (t )h(x) and sim-
ple redefinition of the curvature κ

2kBT
= β, we find that f and

h obey the ordinary differential equations:

df

dt
+ f

τ
= 0, (B4)

d2h

dx2
− β2x2h +

(
β + 1

τD

)
h = 0. (B5)

From Eq. (B4) we see that g(x, t ) decays exponentially in time
with decay rates τ−1 set by solutions of the Eq. (B5). That
equation may be reduced to Hermite’s differential equation
via a rescaling of both the independent y = √

βx and depen-

dent h(y) = u(y)e− y2

2 variables:

d2u

dy2
− 2y

du

dy
+ u

βτD
= 0. (B6)

The eigenfunctions Hn(y) of the differential operator

Hn(y) = (−)ney
2 ∂ne−y2

∂yn
(B7)

allow us to determine the discrete set of decay rates

τ−1
n = 2nβD. (B8)

Combining Eqs. (B2), (B4), (B5), and (B7), we write the
solution to Eq. (B1) (in terms of the scaled spatial variable y)
as

P(y, t ) = e−y2
∑
n

cnHn(y)e
− t

τn , (B9)

where the undetermined coefficients cn are given by the initial
condition: P(y, t = 0). We take that initial condition to be
a delta function δ(x − x0), where x measures the normal
displacement from the the mean limit cycle and x0 is set
by choosing the point where the potential energy of the
system is 3kBT above that of the mean limit cycle. From the
orthogonality of the Hermite polynomials,∫ ∞

−∞
dye−y2Hn(y)Hm(y) = δmn2

mm!
√

π, (B10)

we obtain the undetermined constants in terms of y0 = √
βx0:

cn = Hn(y0)

2nn!
√

π
. (B11)

From these we have the conditional probability

P(y, t |y0, t0) =
√

κ

2πkBT
e−y2

∑
n

Hn(y)Hn(y0)

n!

(
e−tκB

2

)n

(B12)

that a trajectory starting at y0 at time zero reaches y at time
t . Returning to the unscaled independent variable and using
Mehler’s approximation we write

P(x, t |x0, t0) =
[

κ

2πkBT (1 − e−2κBt )

]1/2

e
− κ (x−x0e

−tκB )2

2kBT (1−e−2κBt ) .

(B13)

In order to ensure we compute the first-passage time to
the origin, we must eliminate trajectories that pass through
x = 0 on their way to (x, t ). We do so in the usual way by
introducing an absorbing boundary condition at the origin.
This is simply accomplished by subtracting the above result
from an imagined solution:

P̃(x, t ) = P(x, t ) − P(−x, t ). (B14)

Using this result, we compute the total probability remaining
at time t :

N (t ) =
∫ ∞

0
P̃(x, t ) dx. (B15)
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The resulting integral can be written as

N (t ) =
[

κ

2πkBT (1 − e−2κBt )

]1/2 ∫ ∞

0
dx

⎧⎨
⎩e

− κ(x−x0e
−tκB)2

2kBT (1−e−2κBt ) − e
− κ(x+x0e

−tκB)2
2kBT (1−e−2κBt )

⎫⎬
⎭. (B16)

The remaining integral is easily performed to yield a solution written in terms of the error function:

N (t ) = 2√
π

∫ y0

0
e−(y−y0 )2dy (B17)

= erf

{[
κ

2kBT (1 − e−2κBt )

]1/2

x0e
−tκB

}
. (B18)

This result appears in Eq. (10).
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