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The structure of metabolism carries a memory of its evolution-
ary history that may date back to before the onset of an RNA-
based genetic system1–6. Decoding this ancient evolutionary 

record could provide important insights into the early stages of life 
on our planet2,5–8, but it constitutes a challenging problem. This 
challenge is due to the difficulty of interrogating complex bio-
chemical networks under different environmental conditions and 
also to the uncertainty about these conditions on prebiotic Earth. 
Estimates of plausible Archaean environments that led to the emer-
gence and evolution of living systems vary dramatically9,10, ranging 
from alkaline hydrothermal vents driven by chemical gradients11–13 
to acidic ocean seawater driven by photochemistry3,4. Although 
geochemical data support the availability of mid-potential electron 
donors (H2)14,15, sulfur (for example, hydrogen sulfide, H2S)3,4,16–18 
and potentially fixed carbon19–22 in ancient environments, several 
key molecules used in living systems may have been severely limit-
ing, including a source of fixed nitrogen23,24 (for example, ammo-
nia, NH3), low-potential electron donors25,26 and phosphate27–29. 
Using network-based algorithms we found evidence that thioesters, 
rather than phosphate, may have supplied ancient metabolism with 
key energetic and biosynthetic capacity30. This raises the question 
about whether other molecules and physico-chemical conditions 
may not be as crucial as previously thought for the emergence of a 
proto-metabolism31.

A computational method that can help address these questions 
is the network expansion algorithm, which simulates the growth of 
a biochemical network by iteratively adding to an initial set of com-
pounds the products of reactions enabled by available substrates, 
until no additional reactions or metabolites can be added32,33. This 
algorithm, in its application to the study of ancient life30,34, relies 
on three key assumptions. The first assumption is that classes of 
biochemical reactions essential for the rise of living systems were 

gradually built on, but were rarely lost throughout early evolution. 
This would imply that the memory encoded in metabolism about 
its history is sufficiently complete to allow for inferences of ancient 
states and their evolutionary expansion.

Although this assumption is currently a conjecture, it is sup-
ported by the broader evolutionary argument that essential mol-
ecules and biological structures tend to be conserved and built on 
by subsequent molecules and structures. This layered architecture 
has been extensively studied and observed in ferredoxins1, the ribo-
some35 and also metabolism2,5,36–40. This concept is also consistent 
with recent evidence that early core biochemical pathways, similar 
to those we see today, may have arisen readily19,41,42 and become 
prevalent in the biosphere without further global optimization43,44. 
Further support to this conjecture comes from the observation that 
early innovations in biochemical functions would spread broadly 
across the biosphere45–47, suggesting that the complete loss of fun-
damental enzymatic capabilities would be very unlikely, even on 
organismal extinction. It is also implausible that whole categories 
of reactions would have become extinct in the presence of dras-
tic global changes, such as the great oxygenation event, due to the 
opportunities seized through fast adaptations in specific environ-
mental niches34. The importance of this conjecture for the cur-
rent work and possible follow up studies is further examined in  
the Discussion.

This view of metabolism as a biosphere-level phenomenon is 
an inherent aspect of the network expansion algorithm and could 
be viewed as its second key assumption. This assumption allows 
questions to be asked about the rise of metabolism across organ-
ismal boundaries. Over long time-scales, horizontal gene-transfers 
produced abundant shuffling of biochemical reactions across dif-
ferent organisms45–47, which supports the idea that a global eco-
system-level approach to metabolism may be particularly suitable 
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for describing ancient biochemistry. The third assumption is that 
inorganic or small molecular catalysts could catalyze, in a weaker 
and less specific manner relative to modern enzymes, many meta-
bolic reactions, as confirmed by an increasing body of experimental  
evidence19,41,42,48,49.

In this paper we systematically explore a combinatorial set of 
molecules and parameters associated with possible early Earth 
environments, and use an enhanced network expansion algorithm 
to determine which proto-metabolic networks are thermodynami-
cally reachable under each of these initial conditions. We also use 
constraint-based flux balance modelling to demonstrate the capac-
ity of some of these networks to sustain flux in a way that resembles 
homeostatic growth of present-day cells. Our results suggest that a 
thioester-driven organic network may have robustly arisen without 
phosphate, fixed nitrogen or low-potential electron donors. By sup-
porting the biosynthesis of keto acids and fatty acids, this network 
may have prompted the rise of complex self-sustaining biochemical 
pathways, marking a key transition towards the origin of life.

Results
Thermodynamically constrained metabolic network expansion. 
We wanted to systematically characterize the effect of various geo-
chemical scenarios on the possible structure of ancient metabolism. 
Building on prior work30,34 we constructed a model of ancient bio-
sphere-level metabolism based on the KEGG (Kyoto Encyclopedia 
of Genes and Genomes) database50. We first modified the network 
(as described in Methods) to account for previously proposed prim-
itive thioester-coupling and redox reactions30. These modifications 
included the introduction of reactions whose redox cofactors were 
substituted by unspecified molecules defined only by their redox 
potential. Many of the reactions in our set represented whole classes 
of reactions, with a multitude of possible specific instances. For each 
possible set of environmental parameters (including temperature, 
pH and redox potential) we calcualted the thermodynamic feasi-
bility of each reaction and removed infeasible reactions (Methods). 
This allowed us to implement a thermodynamically constrained 
network expansion algorithm30, which iteratively adds metabo-
lites and thermodynamically feasible reactions to a network until 
no additional reactions and metabolites can be added to the net-
work30,32–34. This method ensures that reactions added to the net-
work are locally (rather than globally) thermodynamically feasible 
(Fig. 1a and Methods).

We performed thermodynamically constrained network 
expansion (Methods and Fig. 1a) for n = 672 different geochemi-
cal scenarios, where we systematically varied pH, temperature, 
redox potential of primitive redox systems (analogous to extant 
nicotinamide adenine dinucleotide (NAD)/nicotinamide adenine 
dinucleotide phosphate (NADP) and flavin adenine dinucleotide 
(FAD)-coupled reactions) and the availability of key biomolecules 
including thiols (that subsequently form thioesters), fixed carbon 
(formate/acetate), fixed nitrogen (ammonia) and various electron 
donors and acceptors (Methods, Fig. 1 and Supplementary Data 1). 
Initial seed sets were chosen to be representative of hypothesized 
prebiotically available sources of carbon, sulfur, oxygen, hydrogen 
and nitrogen-containing biomolecules, spanning a range of relevant 
redox states11, as discussed in detail previously30.

A systematic analysis of how environmental conditions affect 
proto-metabolism. Of the 672 different simulated geochemical 
scenarios, we found that 288 (43%) expanded to networks con-
taining over 100 metabolites (Fig. 1b). A logistic regression classi-
fier that uses geochemical parameters as predictors (Methods and  
Fig. 1c) allowed us to quantify the importance of each environmen-
tal parameter when determining whether the expanded network 
would reach such a large size. Surprisingly, removing the variable 
associated with the presence/absence of ammonia did not affect 

the predictive power of the classifier, suggesting that a source of 
fixed nitrogen is not an important determinant of the expansion. 
Consistent with the relevance of this result to ancient metabolism, 
we found that the enzymes that catalyze reactions in the expanded 
networks before the addition of ammonia were depleted in nitro-
gen-containing coenzymes (one-tailed Wilcoxon signed-rank test: 
P  < 10−24; Extended Data Fig. 1c,d) and were depleted in active site 
amino acids with nitrogenous side-chains (one-tailed Wilcoxon 
signed-rank test: P  <  10−24; Extended Data Figs. 1e,f and 2) relative 
to enzymes added after the addition of ammonia (Supplementary 
Text). These results suggest that ammonia may have not been essen-
tial for the initial expansion of metabolism and indicate a thioester-
coupled organo-sulfur metabolic network (Fig. 1) as a core network 
that deserves further attention.

Beyond the dispensability of nitrogen, the simulations described 
above revealed a number of relationships between plausible geo-
chemical scenarios and the structure and size of our simulated 
proto-metabolic networks. First, expansion beyond 100 metabo-
lites was feasible in the absence of a source of fixed carbon, but 
only when thiols were provided in the seed set, highlighting the 
importance of thioester-coupling for ancient carbon fixation path-
ways2,4,22,25,26,30. The presence of thiols enabled the production of key 
biomolecules, including fatty acids and branched-chain keto acids 
(Extended Data Fig. 3). Second, we explored the effect of the primi-
tive redox system by systematically varying the reduction poten-
tial of the electron donor in the seed set (Methods and Fig. 2a). 
Unexpectedly, we found that as we increased the fixed potential of 
the electron donor, expansion to a large network was feasible over 
a broad range of reduction potentials (between −150 and 50 mV). 
Only when 50 mV was reached did the expanded network collapse 
to a much smaller solution, suggesting that the generation of low-
potential electron donors from H2 may not have been a necessary 
condition for the early expansion of a proto-metabolism (Fig. 3a). 
We also explored conditions with combinations of generic oxidants 
and reductants (Extended Data Fig. 4), as well as with the addition 
of fixed carbon to the seed sets (Extended Data Figs. 4 and 5), but 
did not find any conditions where expansion was selectively depen-
dent on low-potential electron donors. Less stringent constraints, 
for example the presence of mid-potential redox couples and thioes-
ter-forming thiols, could therefore have enabled the emergence of 
a proto-metabolic network capable of producing key biomolecules.

Autotrophic expansion with thioesters was found to be infeasible 
at pH 5 and T = 50 °C (Fig. 2b) due to a blockage in the production 
of oxalyl-thioesters (Fig. 2c). In our simulations of expansion from 
autotrophic seed sets, oxalyl-thioester was a critical intermediate 
in the production of glyoxylate, which was recently proposed to be 
a key starting material for the production of proto-metabolic net-
works42. This observation prompted us to explore more thoroughly 
the consequences of removing reactions from the set of feasible 
reactions used during network expansion. To address this, we sys-
tematically removed 236 classes of reactions, grouped by Enzyme 
Commission (EC) numbers, and performed network expansion 
using an autotrophic seed set and a mid-potential redox system 
(−220 mV). Interestingly, we found that three classes of reactions 
were critical for expansion, including reactions carried out by NAD/
NADP-dependent oxidoreductases operating on aldehydes and 
ketones (1.2.1.X), thioester hydrolases (3.1.2.X) and carboxy-lyases 
(4.1.1.X). The most perturbed networks were generated by remov-
ing reactions catalyzed by enzyme classes involved in fatty acid bio-
synthesis in (for example, 3.1.2.X and 5.3.3.X) as well as fatty acid 
degradation (1.1.1.X, 4.2.1.X and 2.3.1.X).

Convergence of geochemical scenarios onto a core organo-sulfur 
metabolism. Analysis of the expanded networks without nitrogen 
revealed that a large number of different initial conditions converged 
to similar expanded organo-sulfur proto-metabolic networks,  

Nature Ecology & Evolution | www.nature.com/natecolevol

http://www.nature.com/natecolevol


ArticlesNAturE EcOlOgy & EvOlutIOn

spanning variants of key pathways in central carbon metabolism 
(Fig. 3b). For the majority of simulations, variants of modern het-
erotrophic carbon assimilation pathways, including the glyoxylate 
cycle and TCA cycle, were well represented in the network (Fig. 3b). 
Several carbon fixation pathways were also included in the simu-
lated networks. In more than half of the networks expanded beyond 
100 metabolites, we found 92% (12/13) of the compounds (or gen-
eralized derivatives) that participate in the reductive tricarboxylic 
acid (rTCA) cycle, with the exception of phosphoenolpyruvate. We 
also found that under several geochemical conditions, all interme-
diates were able to be produced for three carbon fixation pathways, 
including the 3-hydroxypropionate bi-cycle, the hydroxypropio-
nate–hydroxybutylate cycle and the dicarboxylate–hydroxybutyr-
ate cycle (Fig. 3a). Only three of the nine metabolites used in the 
Wood–Ljungdahl (WL) pathway were observed due to the lack of 
nitrogen-containing pterins in the network. This does not necessar-
ily rule out the primordial importance of the WL-pathway because 
its early variants could have been radically different from today’s 
WL-pathway, relying on native metals to facilitate reduction of CO2 
to acetate19,26. In addition to observing a large number of metabo-
lites used in carbon fixation pathways, we found that a large fraction 
of the β-oxidation pathway was represented in our networks, which 
may have supported the production of fatty acids in ancient living 
systems by operating in the reverse direction. Interestingly, recent 
metabolic engineering efforts have demonstrated the feasibility of 
fatty acid synthesis via a reversible β-oxidation pathway51. We also 
observed that the majority of intermediates involved in the produc-
tion of branched-chain amino acids were also able to be produced 
in the expanded networks. To explore the variability of networks  

generated by the expansion, we provide an interactive visualization 
as a supplementary data file (Supplementary Software 1) and web-
site (https://prelude.bu.edu/pmne/).

A more detailed analysis of the convergent organo-sulfur 
proto-metabolic network reveals new possible ancestral meta-
bolic pathways that involve previously unexplored combinations 
of reactions and metabolites. Figure 3b shows a variant of the (r)
TCA cycle that is a component of these expanded networks and 
may have been the core organo-sulfur network fuelling ancient 
living systems. Rather than using ATP-dependent reactions found 
in extant species (for example, succinyl–coenzyme A (CoA) syn-
thetase and ATP citrate lyase), these reactions are substituted 
with non-ATP-dependent reaction mechanisms. For instance, the 
production of a succinyl–thioester in the extant rTCA cycle relies 
on succinyl–CoA synthetase, performing the following reaction: 
ATP + succinate + CoA → succinyl–CoA + ADP + Pi. However, 
in the network presented in Fig. 3b, malyl-thioester, produced 
through alternative reactions, donates a thiol to succinate and 
subsequently forms a succinyl-thioester. This (r)TCA cycle ana-
logue is able to produce eight keto acids normally serving as key 
intermediates and precursors to common amino acids in central 
carbon metabolism (glyoxylate, pyruvate, oxaloacetate, 2-oxo-
glutarate and hydroxypyruvate), as well as a few branched-chain 
keto acids. Long-chain fatty acids such as palmitate can also be 
produced in this network, driven by thioester and redox-coupling 
rather than ATP, as in extant fatty acid biosynthesis. Despite the 
simplicity of seed compounds, several small molecular weight 
keto acids and fatty acids may have been produced in an organo-
sulfur proto-metabolism.
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Fig. 1 | Nitrogen is not essential for the initial expansion of metabolism. a, A network expansion algorithm was used to simulate the early expansion 
of metabolism under 672 scenarios, systematically varying the availability of reductants in the environment, pH, carbon sources, the presence of thiols 
(RSH), temperature, reduction potential (Eh), and the availability of nitrogen. This process is subject to local thermodynamic feasibility constraints, that 
is it allows new reactions to occur only if they are individually thermodynamically feasible (Methods). b, We implemented detailed stoichiometric model 
simulations using FBA for a subset of networks obtained from network expansion. Global thermodynamic feasibility constraints were applied (Methods 
and Fig. 4). c, A histogram of network sizes (x axis, number of metabolites) revealed a bimodal distribution, where expansion occurred beyond 100 
metabolites in 43% (288/672) of scenarios. Inset: a logistic regression classifier was constructed to predict whether a geochemical scenario resulted in 
a network that exceeded 100 metabolites and a receiver operating curve was plotted. The trained classifier resulted in an area under the curve (AUC) of 
0.97 and a leave-one-out cross-validation accuracy of 0.89. d, Models were trained without information on specific geochemical variables (y axis, ranked 
by predictor importance) and the ensuing AUC was plotted as a bar chart (x axis), revealing that knowledge of the availability of fixed nitrogen offers no 
information on whether networks expanded.
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Constraint-based flux modelling of proto-metabolism. So far, 
we have focused only on the topology and local thermodynamic 
feasibility of putative ancient metabolic networks. Inspired by 
recent studies on the molecular budget of present-day cells31,52,53, 
we decided to further explore whether proto-metabolic networks 
could support thermodynamically feasible steady-state fluxes and 
fuel primitive protocells with internal energy sources (for example, 
thioesters), redox gradients and primitive biopolymers that are 
capable of catalysis and compartmentalization. Flux balance analy-
sis (FBA), originally developed for the study of microbial metabo-
lism, enables the prediction of systems-level properties of metabolic 
networks at steady-state52. Fundamentally, FBA computes possible 
reaction rates in a network constrained by mass and energy bal-
ance, usually under the assumption that a specific composition of 
biomolecules is efficiently produced during a homeostatic growth 
process. In microbial metabolism, FBA is used to simulate the pro-
duction of cellular biomass (for example, protein, lipids and nucleic 
acids) at fixed proportions, which are derived from a known com-
position of extant cells. The same approach could help test the sus-
tainability of a proto-metabolic biochemical system, provided that 
we could develop a plausible hypothesis for the ‘biomass composi-
tion’ of ancient protocells. As a starting point, we recalled de Duve’s 
suggestion that the thioester-driven polymerization of monomers 
produced from ancient proto-metabolism may have led to ‘catalytic 

multimers,’ which could have served as catalysts for ancient bio-
chemical reactions4. Under nitrogen-limited conditions, keto acids 
produced from proto-metabolism (Fig. 3b) could have been reduced 
to α-hydroxy acids and polymerized into polyesters using thioesters 
as a condensing agent (Extended Data Fig. 6). Recent work has sug-
gested that polymers of α-hydroxy acids may have been produced 
in geochemical environments54 and that these molecules could have 
served as primitive catalysts55. These results all point to the intrigu-
ing possibility that the thioester-driven polymerization of α-hydroxy 
acids (produced from keto acid precursors of common amino acids) 
generated the first metabolically sustainable cache of ancient cata-
lysts, leading to a collectively autocatalytic protocellular system. 
We employed a variant of FBA to specifically test the feasibility of 
such a system. Using an expanded metabolic network as a scaffold 
for network reconstruction (Fig. 3b) we constructed a constraint-
based model of an ancient protocell using a biomass composition 
consisting of fatty acids (for protocellular membranes), ‘catalytic 
multimers’ derived from eight keto acids (Fig. 4a), and redox and 
thioester-based free energy sources (Methods, Fig. 4a). We used 
thermodynamic metabolic flux analysis (TMFA), a variant of FBA 
that explicitly includes thermodynamic constraints53 (Methods), to 
determine whether homeostatic growth of the whole system was 
achievable (Methods). We found that to obtain feasible production 
of each keto acid and fatty acid precursor, the model required an 
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internal redox system with a fixed potential of between –500 and 
–200 mV, where very low reduction potentials led to an inability to 
produce 2-oxoisocaprioate (Fig. 4b). We fixed the potential of the 
internal redox system to –220 mV and determined whether steady-
state growth was achievable with a variety of electron donors, elec-
tron acceptors and carbon sources (Fig. 4c,d). We found that growth 
of the protocell metabolic model is feasible under a wide variety of 
assumptions in relation to macromolecular compositions, carbon 
sources, electron donors and acceptors (Fig. 4c,d). Notably, growth 
is achievable in simple chemoautotrophic conditions with either H2 
or glutathione (or a free thiol) as electron donors (Fig. 4c), which is 
consistent with recent work suggesting the last universal common 
ancestor was a thermophilic H2-consuming chemoautotroph13. In 
this model, thiols and thioesters are not supplied as food sources, 
but rather are recycled during steady-state growth of the protocell. 
This reflects the possibility that thiols could have been initially sup-
plied abiotically, followed by the rapid takeover of biotic production 
of mercaptopyruvate, a keto acid that could have been incorporated 
into primitive multimers.

Discussion
Although most efforts to reconstruct ancient biochemistry have 
traditionally relied on building qualitative models of small path-
ways2,4,5,7,21, we found that quantitative modelling of larger net-
works can provide substantial new insight into the origin of life.  

By computationally mapping geochemical scenarios to plausible 
ancient proto-metabolic structures we estimated which portions of 
extant biochemistry may have been very sensitive or very robust to 
initial geochemical conditions. Our approach reveals that, contrary 
to expectations8,11,25,26, environmental sources of fixed nitrogen and 
low-potential electron donors may have not been necessary for early 
biochemical evolution and a substantial degree of complexity may 
have emerged prior to incorporation of nitrogen into the biosphere3. 
The key catalytic role played by nitrogen in the active sites of mod-
ern enzymes may have been preceded by positively charged surfaces 
or metal ions19,21,41,56, which could have been replaced by amino/keto 
acids with nitrogen side-chains once nitrogen became incorporated 
into proto-metabolism. Our simulations also cast doubts on the 
essential role of a low-potential electron donor in early life8,11,25,26, 
consistent with the proposal that low-potential electron donors may 
not be necessary for acetogenesis57, and with the possibility that 
energy conservation via electron bifurcation might not have been 
necessary in primordial metabolism58. The independence of our 
inferred ancestral networks of low-potential electron donors and 
ATP, both key substrates for nitrogen fixation59, suggests that nitro-
gen fixation may have evolved later throughout the history of life13,60. 
A striking feature of our analysis is the convergence of multiple geo-
chemical scenarios towards a core organo-sulfur proto-metabolic 
network capable of producing various keto acids and fatty acids 
(Fig. 3b), and potentially providing a metabolic flow of molecular 
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Fig. 3 | Systematic exploration of prebiotic scenarios reveals a core organo-sulfur network. a, A thermodynamically constrained network expansion 
algorithm was used to simulate the early expansion of proto-metabolism under various scenarios, including the availability of reductants in the  
environment, pH, temperature and the availability of fixed carbon sources and thiols (represented in the five colour-coded heatmap columns of  
geochemical parameters). For a selected set of KEGG modules involved in core carbon metabolism (x axis), the proportion of molecules within each 
pathway is plotted as a greyscale heatmap to the right of the geochemical parameters. b, A representation of the core network produced from a  
prebiotically plausible seed set without nitrogen or phosphate (bottom left box). Acetyl-thioesters are first produced, potentially from a primitive WL 
pathway8,19 from acetate and thiols provided as seed molecules (green). Acetyl-thioesters enable the production of all intermediates in the rTCA cycle, 
with the exception of phosphoenolpyruvate. ATP-dependent reactions in the rTCA cycle may have been substituted with a primitive malate synthase and 
transthioesterification of succinate, as well as the recently discovered reversible citrate synthase73,74. The keto acid precursors for eight common amino 
acids (A, D, E, G, I, L, S, V) are in purple, and routes to thioester-mediated polymerization of fatty acids and polyketides are in pink.
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substrates for catalysis and self-aggregation61. In particular, this fea-
ture provides a window into how thioester-driven polymerization 
of α-hydroxy acid monomers (derived from producible keto acids) 

could have added primitive macromolecular organic catalysts4 to 
initial inorganic minerals or metal ion catalysts19,41,42. Further tests of 
this hypothesis could be pursued by measuring the capacity of these 
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Fig. 4 | Constraint-based modelling of plausible ancient protocells. a, We constructed a metabolic model of a plausible ancient protocell and used  
TMFA53 to simulate the feasibility of steady-state growth under a variety of environmental conditions. The metabolic model was constructed using 
internally generated reductants (Ri), oxidants (Oi) and thioesters that fuelled biomass formation, as well as externally supplied carbon sources, external 
reductants (Re) or external oxidants (Oe). The biomass composition was specified as variable fractions of fatty acids and polymerized hydroxy acids from 
keto acid precursors (Methods). In this model, the internal redox coenzyme was assumed to be at a single fixed standard reduction potential, and the 
production of biomass was fuelled by the hydrolysis of acetyl-thioesters. We described the biomass composition parameter using a two-parameter model 
(f(ΦL, n) Methods), with the mass fraction of lipids in the protocell set to ϕL = 0.1, and the average size of a catalytic multimer, n = 10. b, We computed  
fluxes (vc) from CO2 to each biomass precursor c (y axis) using a variety of internally generated reductants at various reduction potentials (x axis). This 
shows the conditions that led to feasible (dark purple) and infeasible (light purple) flux. Note that some cases did not converge to a solution within the 
allocated maximal CPU (central processing unit) time, probably due to numerical issues, and were thus classified as ‘unknown’ (grey). The production  
of all biomass precursors was feasible if the redox system was between –500 and –200 mV. c, Next we simulated growth on a variety of simple carbon 
sources (y axis) and external electron donors (x axis). Environments supporting non-zero growth are dark blue and those supporting no growth are light 
blue. Interestingly, H2 and glutathione were the only reductants capable of supporting fully autotrophic growth on CO2. Furthermore, CO and methane  
could not support growth in this model, while the other one-carbon sources, such as methanol, formate and formaldehyde, could support biomass growth. 
d, We then simulated autotrophic growth using both an external oxidant (y axis) and an external reductant (x axis). Environments supporting non-zero 
growth are shown in dark blue while those displaying no growth are shown in light blue. Feasible growth was entirely dependent on the reductant, rather 
than the oxidant, except for when methane was the electron donor and oxygen was the electron acceptor. For models in c and d, the internal redox 
coenzyme was assumed to be disulfide/dithiol at a standard reduction potential of −220 mV.
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polymers to catalyze key reactions in the network and by exploring 
whether these organic compounds are produced in living systems 
today via mechanisms similar to polyketide or non-ribosomal pep-
tide synthesis. Additionally, the fact that the network expansion is 
significantly affected by the removal of reactions involved in fatty 
acid metabolism (Fig. 2d) suggests that future experimental efforts 
could be directed towards identifying non-enzymatic mechanisms 
for fatty acid synthesis. Finally, our constraint-based models of 
this core organo-sulfur proto-metabolism provide an example of 
how network expansion-based predictions can be translated into 
dynamical models, whose capacity to estimate sustainable collective 
growth may drive the search for specific self-reproducing chemical 
networks and metabolically driven artificial protocells.

Future models of early metabolic systems could be used to 
estimate the outcome of evolutionary competitions amongst dif-
ferent networks, similar to what has been done for stoichiometric 
models of bacterial metabolism (where the biomass production is 
used as a proxy for fitness62,63). In order to enable similar simula-
tions, however, it would be necessary to obtain realistic estimates 
of the kinetics of nutrient inflow, equivalent to uptake rates in 
present-day cells. Moreover, to perform simulations that are based 
on thermodynamically feasible metabolic states, one would have 
to address some of the current challenges we faced with TMFA 
calculations of proto-metabolic networks due to computational 
complexity of mixed-integer optimization problems for large net-
works (Methods). Once these challenges have been addressed, 
future stoichiometrically based eco-evolutionary models of proto-
metabolism could help generate specific testable hypotheses about 
the ancient biosphere.

Future research could also cover both specific physico-chemical 
hypotheses presented in this study, as well as fundamental conjec-
tures implicit in our modelling approach. Our approach assumes 
that the history of metabolic evolution can be reconstructed by 
the extant biosphere-level metabolic network, which is primar-
ily catalyzed by genome-encoded enzymes. Future studies could 
refine this assumption by adding potentially ‘extinct’ reactions to 
the model reconstructed using alternative computational meth-
ods64,65 or removing kinetically limited reactions using experimen-
tal data. Although the removal of reactions could dramatically limit 
the composition of expanded networks (Fig. 2d), the addition of 
reactions to the model would not change the principal conclusion 
that biomolecules previously assumed to be critical for the emer-
gence of living systems (for example, phosphate, fixed nitrogen 
and low-potential electron donors) may not have been essential for 
the onset of proto-metabolic systems. However, we would expect 
the stoichiometric modelling results to be sensitive to additions of 
new reactions because these could turn currently infeasible states 
into feasible ones. Overall, the striking concordance between the 
theory presented in this study and recent experimental models of 
proto-metabolism42 suggests that extant metabolism might serve as 
an approximation of abiotic chemical networks, thus providing a 
window into the earliest phases of biochemical evolution prior to a 
genetic coding system.

Methods
Reconstruction of biosphere-level metabolic network. Biosphere-level 
metabolism was reconstructed from the KEGG database50 according to a protocol 
described previously30. We modified the network in several ways to model 
primitive thioester-based metabolic networks without nitrogen or phosphate. First, 
to simulate the availability of thiols capable of forming thioesters, we included 
coenzyme A, acyl-carrier protein and glutathione into the seed set. However, to 
enforce the constraint that these metabolites could only be used in reactions as 
coenzymes (and not products or substrates), we prevented the degradation by 
removing KEGG reactions R10747, R02973 and R02972.

We then assigned standard molar free energies to reactions using eQuilibriator 
at a predefined pH66. Next we substituted NAD, NADP and FAD-coupled 
reactions with an arbitrary redox couple. For example, if the redox reaction Xox + 
NADH → Xred + NAD+ was swapped with electron donor with a redox potential 

of E0
+ mV, we would use the following formula to adjust the standard molar free 

energy for the new reaction r′:

Δr0G
0 ¼ ΔrG

0 þ nFðEþ
0 � E0Þ ð1Þ

where n is the number of electrons transferred in reaction r and F = 96.485 kJ V–1. 
Note that if we assumed that the electron donor/acceptor substitute was a two-
electron donor/acceptor, we did not change the stoichiometry in the reaction 
equation. However, in the case where the electron donor/acceptor substitute was 
a single electron donor/acceptor, we changed the stoichiometric coefficients to 
scj = 2 for all reactions j, where c represents metabolites NAD(H), NADP(H) and 
FAD(H2). For this work, we systematically varied the reduction potential E0

+ and 
stoichiometry of the primitive redox coenzyme.

Thermodynamically constrained network expansion. We performed network 
expansion using thermodynamic constraints in a different way than performed 
before30. Previously, reactions above a predefined free energy threshold of 
τ = 30 kJ mol–1 were removed30. However, for this work we calculated the lowest 
reaction free energy possible using estimates for upper (ui) and lower (li) bounds 
on metabolite concentrations and removed reactions with a positive reaction free 
energy. For a given biochemical reaction at fixed temperature and pressure, ΔrG′ is 
defined as:

ΔrG
0 ¼ ΔrG

0 þ RTlnΠia
sir
i ð2Þ

where the ΔrGo′ is the free energy change of the reaction at standard molar 
conditions, R is the ideal gas constant, T is temperature, ai is the activity of 
metabolite i, and sir is the stoichiometric coefficient for metabolite i in reaction r. 
We fixed ai for each reaction according to the following rules:

sir<0 ) ai ¼ ui
sir>0 ) ai ¼ li

We then removed reactions with a ΔrG′ ≥ 0. For all simulations we assumed 
that ui = 10−1 M and li = 10−6 M. Note that because we model each reaction 
independently, metabolite concentrations could be inconsistent. For instance, if 
metabolite i is the substrate for reaction p and a product for reaction q, then ai = ui 
for reaction p and ai = li for reaction q. Additionally, a fundamental assumption 
of this algorithm is that over long time-scales, network growth is constrained 
by ‘local’ thermodynamic bottlenecks for each reaction individually, rather 
than ‘global’ thermodynamic feasibility of the entire network. We also assume 
that during the expansion the enthalpic portion of each reaction’s free energy 
is constant because the primary physico-chemical changes that could change 
the enthalpy of formations (for example, pH, ionic strength) are buffered by 
geochemical boundary conditions.

After using this procedure to systematically remove reactions that were 
considered to be thermodynamically infeasible, we performed network 
expansion32–34 as described in ref. 30.

Parameters for network expansion. We systematically studied the size and 
composition of networks under precise environmental conditions by varying (1) 
the reduction potential from the environment, (2) pH, (3) temperature, (4) the 
presence or absence thiols, (5) the inclusion of fixed carbon into the seed set and 
(6) the inclusion of fixed nitrogen into the seed set. We now discuss each of these 
parameters in more detail:

	(1)	 Reduction potential and stoichiometry. A wide range of environmental 
conditions could have provided electron donors at various potentials: high 
potential redox pairs, with strong oxidants such as Fe(III), may have been 
present in oceans at high concentrations, while strong reductants such as H2, 
disulfides, protoferredoxin or reductive carboxylation of thioesters may have 
been produced via serpentinization or geochemical analogues of primitive 
metabolic pathways25. We substituted reactions coupled to NAD, NADP and 
FAD with a generic single or double electron donor and acceptor pair at a 
fixed potential. To prevent unbalanced electron transfer, we removed the 
following transhydrogenase reactions: R10159, R01195, R00112, R09520, 
R09748, R05705, R05706, R09662 and R09750. We then created a single or 
double electron donor/acceptor pair with a fixed reduction potential, E0

+, 
ranging from –600 to 600 mV. Note that network expansion was performed 
by adding either the generic oxidant or reductant for NAD(P)/FAD -coupled 
reactions into the seed set directly, which assumes that this redox system 
could be produced abiotically.

	(2)	 pH. We modified the pH by setting reaction free energies at various pH 
(5.0–9.0) using eQuilibriator66, which relies on the component contribution 
method67.

	(3)	 Temperature. Temperatures were assumed to have been within a range of 50–
150 °C, spanning estimates of ocean seawater temperature in the Archaean68, 
up to some alkaline hydrothermal vent systems11.

	(4)	 Thiols. In our model we provided thiols that were substitutes for coenzymes 
that form thioester bonds in extant metabolic networks. We provided coen-
zyme A, acyl-carrier protein and glutathione in the seed set, but removed key 
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degradation reactions to ensure these compounds only served as coenzymes, 
rather than material sources, during network expansion30.

	(5)	 Fixed carbon. We modelled the dependence of the simulated proto-metabolic 
network on fixed carbon by supplying a set of fixed carbon sources consisting 
of formate, acetate and CO2 in the seed set. For simulations with no fixed 
carbon, we only provided CO2 as a carbon source.

	(6)	 Fixed nitrogen. To study the consequences of adding or removing a source of 
fixed nitrogen as a seed compound for network expansion, we either added or 
removed ammonia from the seed set prior to expansion.

In addition to the parameters we varied as described above, our simulations 
include two additional parameters that we kept constant in the current analysis, but 
whose effects could be studied in future work:

	(1)	 Metabolite concentrations. Metabolite concentrations were assumed to be 
within 1 μM – 100 mM. The upper bound estimate is consistent with recent 
experimental data showing that key metabolites (formate, methanol, acetate 
and pyruvate) can be produced near 100 mM19. Although we do not have 
empirical evidence to suggest a reasonable lower bound on metabolite 
concentrations in ancient metabolic networks, we assumed that 1 μM, the es-
timated lower bound in today’s cells69, was also the lower bound in our model 
of ancient metabolism.

	(2)	 Inclusion of reactions with no free energy estimate. We found that 53% of 
the biosphere-level metabolic network reactions had no free energy estimate 
(4,851 out of 9,074). For all simulations presented in this paper, we assumed 
these reactions were blocked and did not include them in the network.

Generalized linear modelling of network expansion results. To assess the effects of 
various parameters on the outcome of network expansion we used generalized linear 
models to construct logistic regression classifiers. These were used to predict whether 
or not the network expanded beyond 100 metabolites based on a combination of 
predictors, including categorical variables that encoded whether or not ammonia, 
thiols or fixed carbon was provided in the seed set, and also continuous variables that 
encoded the reduction potential, pH and temperature in each simulation. We defined 
the response variable for simulation k as yk, where yk = 1 if the simulation resulted 
in a network that expanded beyond 100 metabolites, and yk = 0 if otherwise. For the 
set of simulations performed in Fig. 1 we constructed a design matrix consisting of 
categorical variables representing the following scenarios:
•	 xN,k∈{0,1}: 1 if ammonia was included in the seed set, and 0 otherwise.
•	 xS,k∈{0,1}: 1 if thiols were included in the seed set, and 0 otherwise.
•	 xC,k∈{0,1}: 1 if fixed carbon was included in the seed set, and 0 otherwise.
•	 xH,k∈ℝ>0: A continuous variable representing the pH. Note for our simulations, 

we only explored acidic (pH 5), neutral (pH 7) and alkaline (pH 9) regimes.
•	 xE,k∈ℝ: A continuous variable representing the reduction potential at standard 

molar conditions (at the specified pH listed above). For our simulations we 
explored a wide range of standard molar reduction potentials (from −600 mV 
to +600 mV).

•	 xT,k∈ℝ>0: A continuous variable representing the temperature. For our simula-
tions, we explored two temperatures: a high temperature regime (T = 150 °C) 
and a low temperature regime (T = 50 °C).

We then constructed the following generalized linear model to determine 
whether the network expanded beyond metabolites:

logit ykð Þ ¼ β0 þ βNxNk þ βSxSk þ βCxCk þ βHxHk
þβExEk þ βTxTk

ð3Þ

where the subscripts N, S, C, H, E and T correspond to nitrogen, sulfur, carbon, pH, 
reduction potential and temperature covariates, respectively. We fit the parameters (β0, 
βN, βS, βC, βH, βE, βT) using the ‘fitglm.m’ function in MATLAB 2015a, and a receiver 
operating curve was generated using the perfcurve.m function. To generate Fig. 
1c, individual predictors were removed one by one in the generalized linear model 
presented above. To assess whether the trained logistic model served as an accurate 
classifier, we performed leave-one-out cross-validation by removing individual 
samples from the training set and testing the accuracy of the trained classifier on the 
removed sample. This procedure resulted in a cross-validation accuracy of 0.89.

Constraint-based modelling. We constructed a model of an autocatalytic network 
at steady-state using a variant of constraint-based modelling of cellular metabolism 
called TMFA53. TMFA transforms the nonlinear constraints induced by imposing 
thermodynamic consistency into mixed-integer linear constraints. In the next 
section, we describe the construction of primitive biomass composition for a model 
of an ancient protocell and also the TMFA formula used in this analysis.

Prebiotic biomass equation. We constructed a simple model for the 
macromolecular composition of primitive protocells using empirical knowledge 
of extant cellular life. Our metabolic model of proto-metabolism does not include 
macromolecular production of nucleotides (and thus a nucleic acid-based 
genetic system) and, therefore, we assume that the primary role of protocellular 
metabolism was to initially produce components for a cellular membrane and 

catalysts. Building on de Duve’s multimer hypothesis4 we propose that the biomass 
can be constructed using a simple two parameter model consisting of the mass 
fraction of lipids (ϕL) and the average length of each catalytic multimer (n).
•	 Lipid mass fraction (ΦL). The lipid content in modern cells is roughly 10% of 

the total dry mass (BioNumbers ID: 111209)70, primarily composed of the fatty 
acid palmitate. For our analysis we assume that palmitate represents the sole 
component of lipids. Future models could incorporate glycerol, which enables 
the production of glycerolipids. Although phosphate is used in cellular mem-
branes as a polar head group to produce amphiphilic molecules, primitive 
processes may have conjugated negatively charged organic acids (for example, 
oxalate) to glycerol via a thioester-mediated synthesis mechanism to create 
amphiphilic lipid molecules resembling modern phospholipids. For our initial 
model we propose that palmitate was the initial amphiphilic component of 
primitive membranes, where the negatively charged polar carboxylate ion was 
sufficient for forming a membrane, and we assume that protocells consisted of 
a lipid mass fraction of ϕL.

•	 Catalytic multimer mass fraction (Φc). We assume here that ancient catalysts 
were composed of inorganic molecules (for example, iron–sulfur clusters, 
metal ions, mineral surfaces) chelated with multimers of α-hydroxy acids 
(Fig. 4a). For our model we assume that the eight keto acid precursors 
produced from our network were the dominant monomers of ancient mul-
timeric catalysts. We assume that the total mass fraction of these catalysts is 
1� ϕL ¼ ϕC ¼ P

k ϕk
I

, where ϕk is the mass fraction of polymerized monomer 
k. For our analysis we assume that each monomer is uniformly distributed 
within the biomass, so that ϕk is constant for all k. Additionally, because each 
monomer must be reduced to α-hydroxy acids, there is a linear relationship 
between the electron demand, se, and the number of molecules of mono-
mers produced. The stoichiometric equivalents of electron donors are thus: 
se ¼ 2

P
k
ϕk
Mk

I
 where Mk is the molar mass of monomer k.

•	 Average size of catalytic multimers. The average size of multimeric catalysts 
sets the number of thioester bonds required for synthesis of catalytic multim-
ers. For each polymer of size n, there are n − 1 thioester bonds required for 
synthesis. In our model, the total number of monomers are fixed: 

P
k
ϕk
Mk

I, where Mk is the molar mass of monomer k. Thus, for a fixed monomer 
length n, we can calculate the number of polymers using the following 
formula: PðnÞ ¼ 1

n

P
k

ϕk
Mk

I

. The thioester demand is st(n) = (n − 1)P(n) or 

stðnÞ ¼ n�1
n

P
k
ϕk
Mk

I
. For our analysis we assumed a fixed polymer length of  

size n = 10 monomers.
Using these two parameters, we constructed the biomass equation for the 

protocellular model. Note that the electron source and sink were provided by an 
unspecified internal redox coenzyme system (analogous to NAD(P)/FAD).

TMFA. To simulate a thermodynamically feasible steady-state of this metabolic 
network we used a variant of TMFA53. Briefly, TMFA transforms the nonlinear 
constraints induced by imposing thermodynamic consistency into mixed-integer 
linear constraints. We first converted the model into an irreversible model by 
separating each reaction into a pair of irreversible forward and backward reactions. 
We then constructed the following mixed-integer linear programme to find a 
flux vector, v (with elements vr for each reaction r), log-transformed metabolite 
concentrations (ln(x)) and binary variables indicating whether a reaction is feasible 
(z) given a specific objective function was satisfied.

Past implementations of TMFA in microbial metabolism defined the objective 
function as maximizing biomass yield. However, for our study we determined 
whether non-zero growth was feasible and, therefore, we transformed TMFA into a 
constraint–satisfaction problem by setting a lower bound on the biomass reaction, 
vbiomass, such that vbiomass ≥ μmin and solving the following mixed-integer linear 
programme:

maximizev,ln(x),z,e 0
subject to

Sv ¼ 0 ð4Þ

0≤vr≤zrubr ; 8r 2 R ð5Þ

zrK � K þ ΔrG
0<0; 8r 2 R ð6Þ

ΔrG
o0 þ RT

X
i
sir lnðxiÞ þ σrer<0; 8r 2 R ð7Þ

lnð10�6Þ≤ lnðxiÞ≤ lnð10�1Þ; 8i 2 M ð8Þ

�σm≤σr≤σm;8r 2 R ð9Þ

vbiomass≥μmin ð10Þ
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where R and M are the sets of all reactons and metabolites, respectively. As 
discussed in detail elsewhere53, equation (4) in the constraint set ensures that 
intracellular metabolite concentrations are at steady-state and are mass balance 
constraints for each metabolite. Equation (5) sets the bound on individual reaction 
fluxes, where the maximum flux through reaction r is ubr. Note that when zr = 0, the 
flux through reaction r is constrained to 0. Equation (6) ensures that zr = 1 if and 
only if ΔrG′ < 0, and zr = 0 otherwise. Note that K is a large number K > maxr{ΔrG′} 
ensuring that this constraint is not violated with zr = 0. Equation (7) is the free 
energy of each reaction as a function of log-metabolite concentrations, where R is 
the ideal gas constant, T is temperature and sir is the stoichiometric coefficient for 
metabolite i in reaction r. Note that we also add slack variables, er, to account for 
the possible error in estimating the standard molar reaction free energies for each 
reaction (where σr is the standard error for each reaction r), which are bound by a 
global error tolerance σm = 0 (set in equation (9)). Note that if this global tolerance 
is >0, thermodynamic infeasible cycles are possible in steady-state solutions. 
Equation (8) constrains the log-metabolite concentrations to be bounded between 
1 μM and 100 mM. For each simulation we constrained the uptake reactions to be 
1 × 104 and the lower bound on biomass production to be μmin = 1.

Numerical simulations were performed using the COBRA (constraint-based 
reconstruction and analysis) toolbox71 and the Gurobi optimizer (v.7.0.1). All 
source code is provided in the following github repository: https://github.com/
segrelab/BoundaryConditionsForAncientMetabolism.

Calculation of coenzyme and sequence-level features within enzymes. To 
determine which reactions were associated with specific coenzymes (for the results 
presented in Extended Data Fig. 1) we accessed information for each EC number 
in the KEGG ENZYME database (http://www.genome.jp/kegg/annotation/enzyme.
html). We downloaded each page and parsed the ‘comment’ field for each EC and 
performed a text-based search to identify coenzymes associated with each EC 
number. We searched for text indicating that the enzyme mechanisms used one of 
the following coenzymes (biotin, haem, PLP, TPP, pterin, molybdopterin, flavin), 
cofactors (Fe, Co, Ni, Cu, Mn, W, Zn, Mo, Mg) or iron-sulfur clusters (FeS, FeFe, 
Fe2S2, Fe3S4 and Fe4S4). We also searched EC numbers indicating that the reaction 
mechanisms are non-enzymatic. Text-based searches were reduced manually to 
remove mis-annotated enzyme–coenzyme relationships.

For Extended Data Fig. 1b, we calculated the fraction of reaction EC numbers 
associated with a specific coenzyme (Fe, Co, Ni, Cu, Mn, W, Zn, Mo, Mg, FeS, 
FeFe, Fe2S2, Fe3S4 and Fe4S4) or was marked as non-enzymatic. To obtain the 
results shown in Extended Data Fig. 1d, we determined the fraction of reaction EC 
numbers associated with one of the following coenzymes: biotin, haem, PLP, TPP, 
pterin, molybdopterin and flavin.

For results in Extended Data Fig. 1e, we obtained a database of known enzyme 
active-site residues72. We first mapped the network reactions to EC numbers listed 
in KEGG, and then identified active sites corresponding to EC numbers within the 
expanded network. We calculated the fraction of active-site residues containing 
nitrogenous side chains derived from the following amino acids: arginine (R), 
lysine (K), glutamine (Q), asparagine (N), histidine (H) and tryptophan (W).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Extended Data Fig. 1 | Enzymes in thioester-driven protometabolism are depleted in nitrogenous compounds. (a) We classified reactions in KEGG as 
being plausibly pre-enzymatic (PPE) reactions if they (i) could proceed spontaneously, (ii) were associated with enzymes that contain at-least one iron–
sulfur cluster or (iii) were associated with an enzyme that relied on atleast one metal (Ni, Co, Cu, Mg, Mn, Mo, Zn, Fe, W) cofactor. (b) For all scenarios 
resulting in expansion of  more than 100 metabolites (n = 144) we computed the fraction of PPE-reactions amongst the pre-ammonia reactions (x-axis) 
and post-ammonia reactions (y-axis). The frequency of PPE-reactions in the pre-ammonia reaction set was on average higher than the frequency of PPE-
reactions in the post-ammonia reaction set (one-tailed Wilcoxon signed-rank test: P < 10-19). (c) We identified KEGG reactions that were dependent on 
at-least one of the following nitrogen-containing coenzymes: flavin, biotin, thiamine pyrophosphate (TPP) pyridoxal phosphate (PLP), haem, pterin or 
cobalamin. (d) We compute the fraction of pre- and post- ammonia reactions associated with nitrogen-containing coenzymes in the KEGG database, 
and found that a much higher proportion of post-ammonia reactions were dependent on these coenzymes relative to pre-ammonia reactions (one-tailed 
Wilcoxon signed-rank test: P < 10-24). (e) We parsed the catalytic active site database72 to find entries associated with pre and post-ammonia reactions, 
and compute the fraction of entries associated with amino acids with nitrogen-containing side-chains (Q,N,W,H,K,R). (f) For each scenario, the fraction 
of active sites with nitrogen-containing amino acids was significantly higher for post-ammonia reactions relative to pre-ammonia reactions one-tailed 
Wilcoxon signed-rank test: P < 10-24).
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Extended Data Fig. 2 | Enzymes catalyzing reactions before the addition of ammonia are not depleted in nitrogen-containing amino acids relative to 
enzymes added after ammonia. To see if the amino acid biases in active sites of enzymes catalyzing reactions added to the network without ammonia 
(see Extended Data Fig. 1e, f) is confounded due to evolutionary selection for reduced nitrogen in these enzymes, we computed the fraction of  
nitrogen side-chains in enzymes in pre-ammonia reactions (x-axis) and in enzymes in post-ammonia reactions (y-axis). We found that enzymes in  
the pre-ammonia networks did not have significantly less nitrogen usage compared to enzymes in post-ammonia reactions (one-tailed Wilcoxon  
signed-rank test: P = 1).
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Extended Data Fig. 3 | Thiols are required for autotrophic expansion and fatty acid production. (a) We grouped the n = 672 geochemical scenarios 
into whether a source of fixed carbon and thiols was provided in the seed set. We then plotted the empirical cumulative distributions for each group 
of scenarios. Notably, when thiols and fixed carbon are not supplied in the seed set, the networks are always below 100 metabolites, indicating that 
expansion is prohibited without either fixed carbon or thiols in the seed set. (b) We determined what geochemical parameters (x-axis) were essential for 
the production of important biomolecules (y-axis). For example, palmitate, a long-chain fatty acid, is producible only if thiols and reductant below 400 mV 
is provided in the seed set.
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Extended Data Fig. 4 | Network expansion with different combinations of carbon sources, thiols, generic reductants and generic oxidants. We 
performed network expansion using a seed set with both a generic reductant at a fixed potential (x-axis) and a generic oxidant at a fixed potential  
(y-axis) with (a) no thiols or fixed carbon, (b) thiols and no fixed carbon, (c) no thiols and fixed carbon, and (d) both thiols and fixed carbon. The colour 
indicates the size (number of metabolites) in the final expanded network. Interestingly, a strong driving force provided by a strong oxidant ( > 0 mV) never 
sufficiently compensated for the weak driving force provided by a weak reductant ( > 0 mV), suggesting that oxidants have little influence on enabling 
expansion beyond 20 metabolites. The only conditions that led to an expansion that was greater than 20 metabolites with a weak electron donor was 
when the oxidant was also weak (-200 to -600 mV). We hypothesized that this was due to the ability of thiols or reduced carbon species to reduce the 
oxidant, enabling the production of a strong reductant. Indeed, when we removed all thiol to disulfide reactions using the generic redox system, expansion 
was blocked (inset).
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Extended Data Fig. 5 | Reduction potential of NAD(P)/FAD substitutes influences the size of expanded networks. We plotted the size (number of 
metabolites, y-axis) of expanded networks as a function of reduction potential of NAD(P)/FAD substitutes (x-axis) for different physico-chemical 
conditions with (a) no fixed carbon or thiols, (b) fixed carbon and no thiols, (c) thiols and no fixed carbon, and (d) both fixed carbon and thiols. (e) We plot 
the range of physiologically feasible reduction potentials for classes of redox systems potentially relevant for early protometabolic systems, showing that 
dithiol/disulfide redox systems could potentially have enabled expansion under a variety of conditions.
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Extended Data Fig. 6 | Putative ancient catalysts. (a) In extant biochemistry, keto acids are converted to amino acids using transamination or reductive 
amination reaction mechanisms, which are then polymerized using a phosphate or thioester-coupled mechanism to make polypeptides. (b) If prebiotic 
environments did not have a source of fixed nitrogen, then keto acids could have been reduced to -hydroxy acids, which could then be polymerized into 
polyesters either with4 or without55 thioester bond breaking.
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