Qualitative Theory of Dynamical Systems (2019) 18:1013-1029
https://doi.org/10.1007/s12346-019-00325-9

®

Check for
updates

A Quasi-strictly Non-volterra Quadratic Stochastic Operator

A. J. M. Hardin' - U. A. Rozikov?

Received: 1 August 2018 / Accepted: 15 March 2019 / Published online: 26 March 2019
© Springer Nature Switzerland AG 2019

Abstract

We consider a four-parameter family of non-Volterra operators defined on the two-
dimensional simplex and show that, with one exception, each such operator has a
unique fixed point. Depending on the parameters, we establish the type of this fixed
point. We study the set of w-limiting points for each trajectory and show that this set
can be a single point or can contain a 2-periodic trajectory.

Keywords Quadratic stochastic operator - Simplex - Trajectory - Volterra and
non-Volterra operators
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1 Introduction

Quadratic stochastic operators (QSOs) frequently arise in many models of mathe-
matical genetics, namely, in the theory of heredity (see e.g. [5,8] for motivations and
results related to QSOs). Here we shall investigate a family of QSOs defined on the
two-dimensional simplex. Let us give some definitions first. The (m — 1)-dimensional
simplex is defined by

m
"V =1x =1, x2,...,x0) € R™: forany i x; > 0, and in = 1}.
i=1

(1.1)
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A QSO is the mapping V : §”~! — §"~1 with

m
(Vx) = Z Pij kxix; (1.2)
i,j=1
where
m
Pjx=0. Pjix=Pjix.y Pjx=1 foralli,j k. (1.3)
k=1

For a given x(@ e §"~1 the trajectory x™ of x@ under the action of the QSO
(1.2) is defined by x"*D = v (x™), wheren =0, 1, 2, .. ..

One of the main problems in mathematical biology consists in the study of the
asymptotic behavior of these trajectories.

Denote by w(x”) the set of w-limiting points of trajectory x. Since §” ! is a
compact set and {x(”)} c St follows that w(x) # (. It is clear that if w(x%)
consists of a single point, then the trajectory converges and w (x?) is a fixed point of
(1.2). The limit behavior of the trajectories of any QSO on one-dimensional space
was fully studied by Lyubich [9]. However, the problem is still open even in the
two-dimensional simplex.

Definition 1 [11] A quadratic stochastic operator is called Volterra if

Pijx=0, fork¢li,j}, i,j,k=1,...,m, (1.4)
and it is called strictly non-Volterra if

Pijx=0, for keli,j}, i,j,k=1,....,m (1.5)

In [4,12] a Volterra operator of a bisexual population was investigated. However, in
the non-Volterra case, many questions remain open and there seems to be no general
theory available [1,6,10,11,13,14]. In[11] the conception of strictly non-Volterra QSOs
was introduced, and it was proved that an arbitrary strictly non-Volterra quadratic
stochastic operator on the two-dimensional simplex has a unique fixed point, which
is not attracting.

Remark 1 A strictly non-Volterra operator exists only if m > 3.In[11] the case m = 3
was studied. In the present paper we will study the dynamics of the case m = 3 for a
non-Volterra QSO which has a strictly non-Volterra x| and x}.

In this paper we consider a non-Volterra QSO (which we call quasi-strictly non-
Volterra) defined on the two-dimensional simplex which has the form
r_ 2 2
x| = axy + cx3 + 2x2x3,
Viix,= ax12 + dx% + 2x1x3, (1.6)

Xy = bxl2 + ﬂx% + ex32 + 2x1x2,
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where o, 8,a, b, c,d,e > 0 and
a+b=1, a+p=1, c+d+e=1. (L.7)

The paper is organized as follows. In Sect. 2 we study fixed points of (1.6), where
we show that for e 7~ 1, the QSO (1.6) has a unique fixed point. In the case e = 1, we
show that the operator has two fixed points. In Sect. 3 we find conditions on parameters
under which a fixed point is a repelling, attracting, or saddle point. In the last section
we describe the w-limit set of this non-Volterra QSO on S2.

2 Fixed Point of Operator

Definition2 A point x € S§m=1 s called a fixed point of a QSO V if V(x) = x.

In our case the fixed point is a solution of the following system

x| = le% + cx32 + 2x7x3,
X2 =ax12+dx§ + 2x1x3, 2.1)
X3 = bx% + ﬂx% + ex32 + 2x1x2.

Theorem 1 The non-Volterra QSO (1.6) has a unique fixed point x* = (x}, x5, x3) €

S2 in all cases, except when e = 1. In the case e = 1, there are two fixed points of the
system, one of which is (0, 0, 1).

Proof We shall consider all possible cases on a and «.
(1) Let o # 0, a # 0. Substituting x; = 1 — xo — x3 into the first equation of (2.1)
gives

ok — 1+ \/4(1 —ao)x? +4(1 — a)xs + 1 + 4o
x2 = 2 Z Os (2'2)
o

where x3 € [0, Y511 if ¢ 0 and x3 € [0, 1] if ¢ = 0. Similarly, the second
equation in (2.1) gives

~203 — 1+ /4(1 — ad)x3 +4(1 — a)xs + 1 +4a
x| = > >0, (2.3)
a

where x3 € [0, Y 5X=11if ¢ # 0 and x3 € [0, 1]if d = 0.
Now we may substitute (2.2) and (2.3) into 1 = x| + x3 + x3, allowing x = x3 and
f(x) = x. This gives the function

a4 —ad)x> +4(1 —a)x + 1+ 4a
B 2(¢ +a — aa)

fx)
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+a\/4(1 —ao)x?+4(0 —a)x+1+4a —a —a —2aa
2(¢ +a — aa) '

Now we define

gx) =41 —ad)x> +4(1 —a)x + 1 +4a > 0,
h(x) =41 —ac)x®> +4(1 —a)x + 1 +4a > 0.

Thus, we have

gx)=81—-ad)x+4(1 —a) >0, h(x)=81—ac)x +4(1 —a) >0,
g"(x) =8(1 —ad) > 0, n'(x) = 8(1 — ac)x > 0.

Then,

oA/g(x) 4 a\/h(x) —a —a —2aa

fx) = 2(a +a —aa) 2(a +a — aa)

Differentiating f (x) gives

£y = ag'(x) ah’ (x) -
N da+a—aa)/gx) Ao+a—aa)Sh(x)
) = o 2(0)g"(x) — 3¢/ (x)?
T 4(a+a—aa) /g(x)3
a h()R" (x) — h (x)?
>0

+ 4(a +a — aa) /h(x)3

These inequalities follow from (1.7) as well as the fact that « + a — aa > O.
Additionally, substituting the values for g(x), h(x), and their derivatives into the
inequalities

g(x)g"(x) = 38'()* = 0, h(x)h"(x) — Sh'(x)* = 0,

gives

41 —ad)x®> +4(1 —a)x + 1 +4a)(1 — ad) — 2(1 —ad)x + (1 —a))* > 0,
A1 —ac)x?+4(0 —a)x + 1 +40)(1 —ac) — 2 —ac)x + (1 —a))? > 0.

This can be reduced to

a(—6+a+d+4ad) <0, a(—6 + o + ¢ + 4ac) < 0.

Thus the inequalities g(x)g” (x) — 3¢’ (x)? > 0 and i (x)h" (x) — 11'(x)* > 0 can be
demonstrated to be true.
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Additionally,
aWV1+4a—-1—-a)+a(V/1+4a—1—0a)
fQ0) = > 0,
2(a +a — aa)
£y = a9 —ad +a9 —ac—o —a—2aa <1,
2(x¢ +a — aa)

which follows from the above inequalities in addition to the fact that

V9 —ad <3, /9 —ac <3.

Additionally, both /9 — ad and +/9 — ac can only be simultaneously equal to 3 when
¢ =d = 0(andthus whene = 1). Thismeans that f (1) = 1 whene = l and f(1) < 1
otherwise.

Thus the function is increasing and convex in [0, 1]. Therefore, for e € [0, 1) the
system has a unique fixed point, since f(x) will only intersect the line x at one point
in the domain [0, 1]. When e = 1 the system has a fixed point (0, 0, 1). It can also
be directly shown that whene = 1, f (%) < 1%. This demonstrates that the function
f (x) must cross the line x prior to reaching the value f (1) = 1. This proves that there
are two fixed points when e = 1.

(2) Let @ # 0, a = 0 can be handled similarly. Substituting x; = 1 — x3 — x3 into
the first equation of (2.1) gives

—2x3— 1+ \/4(1 — otc))c32 +4(1 —a)x3+ 1 +4a
X = 2 >0, 2.4
o

where x3 € [0, Y5X=L]if ¢ £ 0 and x3 € [0, 1] if ¢ = 0. The second equation in
(2.1) gives

. 1—x3—dx32

_ 25
* 233 + 1 2.5)

where x3 € [0, —Vlgy_l] if d # 0 and x3 € [0, 1] if d = 0. This restriction ensures

that x is positive (Figs. 1, 2).
Directly substituting (2.4) and (2.5) into 1 = x| + x3 + x3, allowing x = x3, gives

1—x—dx2+—2x—1+\/4(l—ac)x2+4(l—a)x+l+4a

1 =
SR 2a

Solving for the xs present in the first two terms of the above equation [but not any of
the xs in the (2.4) term], and allowing F1(x) = x, gives the functions

1420 4+ 2x — /h(x) £ /q(x)

Fx(0) = 202 —d)
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1ol
0.8
0.6F F+(x)
— F-()
0.4} -
02}
1 1 1 1 L 1 1 1 I 1
0.2 0.4
Fig.1 « =.0001,e =1
1.51
1.0
I F+(x)
* — F-(x)
05 X
I 1 L 1 1 1 1 1
0.2

Fig.2 o =.0001,e = 0.18

where

h(x) = 4(1 —ac)x®> +4(1 —a)x + 1 +4a > 0,
q(x) =222 —d)(1 — Vh(x) 4+ 2x) + (1 — VA(x) + 2x + 20)*.

Two examples of the function F graphed against the line x are given below. O

Lemma1 Fi(x) = x at a unique point when e € [0, 1) and at two points—one of
which is F4y (1) = l—when e = 1.

Proof We note that when g (x) = 0,
1
X =5 [-S+d+VI2-8d+
2c
+ (374 2d*> —10v/12 — 8d + d? + 2d(—9 + V12 — 8d + d?)
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—2c2—d—V12—8d+d?>+a(14+d> — 412 — 8d + d>
+d(—8++12 - 8d+d2))))%].

The curve Fy is imaginary when x < x;,. When x = x4, F (x) = F_(x), and
when x > x;, Fy(x) > F_(x).
Additionally, at x = 1 we have

34 2a — Vh(1) + /q(1) -

Fe() = 202 —d)

where

h(l) =9 —4ac > 0,
q(1) =202 —d)(3 — VR(D)) + 3 — VA(D) + 2a)>.

It can be readily shown that in the case thate = 1, F (1) = 1. When e € [0, 1), we
would like to show that F, (1) > 1. This can be reduced to showing that /g (1) +
20d +3 > +/h(1) + 2a. It can be easily shown that /g (1) > 2a. Additionally, when
d=0,3> h(l).Whend # 0,3 > /h(l), but 2ad > 0. The culmination of the
above facts proves the inequality /¢ (1) 4 2ad + 3 > /h(1) + 2« to be always true.

Thus, F4 (1) > 1 when e < 1. It can be similarly shown that F_(1) < 1. Analysis
of the derivations of F shows that the following inequalities are true.

Py = ] _ M) q'(x)
R = = (2~ it 2950) 2°
L W g
F“”‘%m—m(zzﬂHSZﬁmﬂfa

Fll(x) =

L (Lhoh'@ =307 g@q" () — 5@ @)%
202 —d) V() V(q()? o

for all x > xg.

The above demonstrates that F (x) must intersect the line x at least once on [0, 1).
Because F. (x) is increasing and concave, and F_ (x) is decreasing, F4(x) and x will
only intersect once on [0, 1). Additionally, F;+ (1) = 1 only when e = 1. Thus the
lemma is proven. O

Therefore, a direct extension of the above lemma shows that when e = 1, the system
(1.6) has two fixed points—one of which is (0, 0, 1). And when e < 1, it has a unique
fixed point.

(3) The case ¢ = 0, a # 0 can be handled analogously to the previous case.
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(4) Let « = a = 0. The system is therefore

x| = cx% + 2x2x3
Xy = dx% + 2x1x3 (2.6)

x3 = (x1 +xg)2 + ex32 =(1- x3)2 + ex32

The proof of the fourth case will follow directly from the following lemma.

Lemma2 Ife € [0, 1), the system has a unique fixed point, (x{, x5, x3), where

*

x3

However, when e = 1 the system has two fixed points: (0,0, 1) and (}1, le ).

_7+24d — 2e — 19de — 5¢* 4 2¢%d + (3 — 11d + 4de + 3d)\/5 — 4e
2(1 +e)(—13 + 64/5 — 4e + 6¢ + €2)
7+ 24d — 2e — 19de — 5¢* + 2e%d + (3 — 11d + 4de + 3d*)/5 — 4e

=1 2(1 + e)(—13 + 6+/5 — de + 6e + €2)
—J/5—4e
 2(14e
3—4/5—4e
T 2(+e

1
2

Proof Examine each possible case.

Let e € [0, 1). Solving the third equation of (2.6) for x3 gives x5 = 3*;/:) >0
where T =5 —4e > 0.
Assume for the purpose of contradiction that 2+~Z <1 Th1s can be reduced to

2(1+e) —

\/T < Ze—l Ife < 5 thenZe—l < Oandﬁ > (), so 2(1+8) ﬁ 1. Additionally,
ife > 5 ! then 0 < «/T < 2e — 1 which can be reduced to 1 < e which is not
true for e € [0, 1). Thus 3
x3 =(1- )C3)2 + ex3

It can be proved that N 1{) < 1 because it can be reduced to /T > 1 — 2e. As
it was shown previously that , JT < 1 — 2e s false for all e € [0, 1), it must be
that /T > 1 — 2e.Therefore,

2(1+e) f 1 for any e € [0, 1) and is not a fixed point of

3—4/5—4e
2(1+e)

*
X3 = s

is a unique fixed point of the system.
Substituting x3 into the first two equations of (2.6) gives x| = cxJ 24 2x7x3 and
Xy =dx3 L 2x1x3. Substituting this value of x; into x; and reducing gives

(3x3 — D)(c + 2dx3)
5+4+e—12x3

*
1=

3
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which can be written as

. 7+25d—2e—19de — 5¢* +2¢*d + (3 — 11d + 4de + 3d*)/5 — de
X = .
! 2(1 + €)(—13 + 64/5 — de + 6¢ + €2)

Additionally, we know that x; = 1 — x| — x3 which yields

| 7 +25d — 2e—19de — 5¢% + 2e2d+(3 — 11d + 4de + 3d?)/5 — 4e
2(1 +e)(—13 + 6+/5 — 4e 4 6e + €2)

x5 =

3—4/5—4de
2(1+e)

Thus, (x}, x3, x3) is a unique fixed point of the system.
e Let e = 1. The system is therefore

X1 = 2x2x3,
Xo = 2x1x3, 2.7
x3 = (1 —x3)% + x32.

Additionally, we know that x; = &2— V(l(i;;‘e); therefore, x; = % or 1. When

X3 = %, it follows from (2.7) that x; = x7, and it follows from x; + xp + x3 = 1
that x; +xp = % Thus, x| = x5 = JT and the point (J—P 41'17 %) € 52 is a fixed point
of the system. When xJ = 1, it follows from x| + x2 + x3 = I that x] = x7 = 0.
Thus, the point (0, 0, 1) € S? is a second fixed point of the system. O

By the above cases, all possible values for the system are considered and the theorem
is proved.

3 The Type of the Fixed Point

Definition 3 [2] A fixed point x* of the operator V is called hyperbolic if its Jacobian
J at x* has no eigenvalues on the unit circle.

Definition 4 [2] A hyperbolic fixed point x* is called:

(i) attracting if all the eigenvalues of the Jacobian J(x*) are < 1 in absolute value;
(ii) repelling if all the eigenvalues of the Jacobian J(x*) are > 1 in absolute value;
(iii) a saddle otherwise.

To find the type of a fixed point we use x3 = 1 — x| — x» to rewrite QSO (1.6) as
follows:

xi =c—2cx1 + cx12 +2(c— Dxix2+2(0 —c)xp + (¢ + ¢ — Z)xg,
V.
xb=d —2dxy +dx3 +2(d — Dxix2 +2(1 —d)x; + (a +d — 2)x3,
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where (x1,x3) € {(x,y) : x,y >0, 0 <x+y < 1} and xy, xp, are the first two
coordinates of a point lying in the two-dimensional simplex.
The Jacobian, J (x*), has the representation

—2c(l = xf —x3) — 2x3 2(a — Dxy +2(1 —o)(1 —xf — x5
2a — DxF 421 —d)(1 —xF —x3)  —2d(1 — x} — x3) — 2x} '
3.1)

The Jacobian (3.1) has the eigenvalues 112 = exg“ — 1+ +/D(a,a,c,e), where

D= D(a,a,c,e) = (ex; — 1)? +4ex§2
+4[(bB — 1)xikx; + (a(l —c¢) — l))c]k)cgk + (a(1 —d) — 1)x;x;]. (3.2)

The classification of these eigenvalues is as follows:

D <—-14(1— exg‘)z, the fixed point is repelling;
IfD=—1+(1—-ex})? the fixed point is nonhyperbolic;

If —14+0- exg‘)2 < D < 0, the fixed point is attracting;

If D=0andex; =0, the fixed point is nonhyperbolic;

If D =0andex] >0, the fixed point is attracting;

If0< D < ezx*g, the fixed point is attracting; ©-3)
ItD= e2x*%, the fixed point is nonhyperbolic;

If ezx*% <D<Q2- ex§)2, the fixed point is a saddle point;

If D= (2—ex})?, the fixed point is nonhyperbolic;

Q- exg‘)2 < D, the fixed point is repelling.

In[11]it was proven that strictly non-Volterra QSOs with m = 3 have a unique fixed
point and that the type of the hyperbolic fixed point can never be attracting. However,
in the system (1.6), the introduction of the parameter e has caused an attracting fixed
point to become possible, as evidenced by the following example.

Example Whenc = 8 = %, d=b=0,a=¢= %, and a = 1 the system (1.6) can
be written

2,52
Xy + X3 + 2x2x3,

24 2x1x3, (3.4)

=

<
=

W~ N~ =~
Il

ol = ool

3
x% + §x32 + 2x1x3.
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— A
1A2|

0.2 0.4 0.6 0.8 1.0

Fig.3 Effect of e on eigenvalues

The fixed point of this system is (% , % , %) . Substituting these values into the eigenvalues
of the Jacobian gives A1 2 = —%:I: %‘ / %3 i. Therefore, |11 2] = \/g < 1,and (_%, %, %)

is attracting.

In the case where « = a = 0 (i.e. system (2.0)), the eigenvalues of the Jacobian
can be written

Ao = ex; —1 :I:\/l +2(e — 2))6; + (4+€2)x;2,

where x3 = 3;(115;‘“. It can be proven that |A1| < 1 and |X2| > 1 for all e. The

inequality |A1] < 1 can be proven from the facts that

0 <142(e—2)x% + (4 +eHxi?,

0 < exj+ \/1 +2(e —2)xf + 4+ ez)x;‘z,

3
2 ext < Z+x§‘.

The last inequality, xgkz +ex; < % + x5, follows from the fact that x§‘2 < xj and
from substituting the value of x5 into the inequality ex] < %, which gives 3e <
3 + 2e+/5 — 4e. Additionally, [A2| > 1 can be proven from the fact that exy — 1 —

\/1 +2(e — 2)x§k + 4+ e2)x§‘2 < —1. This can be reduced to the quadratic 14 (2¢ —

Hxi + 4x§k2, which is always positive. This means that the fixed point x3 is a saddle
point for all e € [0, 1). This can be seen clearly in the graph (Fig. 3).

In the case that a = o« = 0 and e = 1, the fixed point (%, }‘, %) is a saddle point
and (0, 0, 1) is a repeller.
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Additionally, for all cases where e = 1 and (0, 0, 1) is a second fixed point of the
system, it can be seen that A1 » = =£2. Thus the second fixed point that occurs when
e = 1is always a repeller.

Remark 2 A non-Volterra QSO with m = 3 (1.6) also has a unique fixed point in all
cases except e = 1 for which there are two fixed points, one of which-(0,0,1)-is always
a repeller. Additionally, the fixed point of a non-Volterra QSO may be attracting.

4 The @-Limit Set

In this section we shall describe the w-limit set of trajectories under certain param-

eter restrictions. Let x9 = (x?, xg, xg) € 52 be the initial point and let {x(”), n =
0, 1,2, ...} be the trajectory of x9 under the action of the operator (1.6); that is,

x® = (xl(”),xén),xén)) =vE" D), n=1,2,... x©=x°

For simplicity we shall examine the case in whicha = o = 0; therefore the operator
can be written as (2.6), i.e.,

xp = cx32 + 2x2x3,
xh = dx% + 2x1x3, 4.1

xy = (1 —x3)? + ex3,

which demonstrates that the trajectory of the third coordinate {xén)} is defined by the
dynamical system of

ox)=0- )c)2 + ex?.

4.1 Casee =1
In this case operator has the form (denoted by V1)
x| = 2x2x3,
Vi xé = 2x1Xx3, “4.2)
xy = (1— x3)2 + x%.
This operator has been studied in [7]: It is easy to see that
Fix(V1) ={(1/4,1/4,1/2), (0,0, D}.

For any (x, y, 1/2) with x + y = 1/2, we have

V12(x9y’ 1/2): V](y’xvl/z) Z(Xy}” 1/2)
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In fact the set of all 2-periodic points is
Pera (V1) = {(x,y,1/2) € 8 :x +y = 1/2}.

Moreover it is easy to see that Vi (x, y,0) = (0,0, 1), for any (x, y,0) € S2.
For 6 € [0, 00), denote

[, y, e ST ixy =0}, if 6 =0,
ey €S2 ix =0y or x=1y), if 6 € (0,00).

Theorem 2 [7] Ife = 1, then

1. For any initial point (xl , xz, ) with x3 =0or x3 = 1 we have
. 0o .0 .0
nl;rr;o Vi, x5, x3) = (0,0, 1).

2. For any initial point x° = (xl,xz, ) with )c2 # 0 and x3 % 1, there exists
0 € [0, +00), such that x° € My. Moreover

0 1 1 _ _
(2(9+1)1 200+1)° 2)’ n—zk,k—1,2,3,...
1
2

lim V/'(x), x9, x{) =
n=00 ) n=2k+1.k=123, ...

4.2 Casee€[0,1)

Now we consider the operator (4.1) for all e # 1. By the above given results we know
that this operator has a unique fixed point:

Fix(V) = {x* = (x], x3, x3)},

which is never attractive.
Let us describe periodic points of the operator. By (4.1) the sequence xth —
V" (x%) has the form

x("+l) ( (’1))2+2x(n) (n)
(n+1) (n)\2 (n) _(n)
d(x3)” +2x," x5y, 4.3)

X§n+l) (p(x(”))

Lemma3 If1/4 < e < 1 then the operator (4.1) does not have any n-periodic point,
n > 2, different from the fixed point x*.

Proof First we give analysis of the equation ¢(¢(x)) = x, (for existence of 2-periodic

points) which has solutions x3, X3 = “5{1 ;)4@’ andx3 = 1;(1;)46, where ¢(X3) = x3

and vice-versa. These numbers exist if and only iff e < 1/4, and when e = 1/4 the
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three numbers coincide. Thus for 1 /4 < e < 1 there are no 2-periodic points of ¢. By
Sharkovskii’s theorem [2] we have that ¢" (x) = x does not have solution x # xé‘ for

alln > 2. Thus, xé") = x3 has unique solution x3 = x%‘ for any n > 1. Using this fact
we reduce the equation V" (x) = x (with x = (x1, x2, x3)) of n-periodic points to the
equation L"(x) = x (with X = (x|, x2)), where L is the linear operator given by

- x' = c(xg‘)2 +2x3y,
Y =d(x)? 4 2x5x.

Itis then easy to see that this linear operator has a unique fixed point (x}, x3) (the first
two coordinates of the fixed point x*). This fixed point is attractive and therefore by
the known theorem of liner dynamical systems (see Chapter 3 of [3]), we see that all
trajectories of the linear operator tend to the fixed point. Therefore this linear operator
has no periodic points except x*. O

Lemm_a 4_If0_§ e < 1/4, then the operator (4.1) has 2-periodic points, (X1, X3, X3)
and (X1, X2, X3)—different from the fixed point x*—which are described explicitly
below. Moreover the operator does not have any n-periodic point for all n > 3.

The following proof will rely on the concept of topological conjugacy.

Definition5 Let f : A — A and g : B — B be two maps. f and g are called
topologically conjugate if there exists a homeomorphism 2 : A — B such that,
hof=goh.

Additionally, it is known (as shown in [2]) that mappings which are topologically
conjugate are completely equivalent in terms of their dynamics. In particular, & gives
a one-to-one correspondence between periodic points of f and g.

Proof 1t can be seen from |<p/(x§k)| = |1 — /5 —4de| that if e € [0, 4—1‘), then x5 is a
repelling fixed point of ¢ (x). As mentioned in the proof of the previous lemma, ife < 41'1

then the function ¢ (¢(x)) has fixed points x3,x3 = lg(vlj_;;'e ,and x3 = IE(VI i_;;‘e ,ie.,

(pz()_C3) = X3, and ¢2(§3) = X3. By substituting x3 = x3, X3 in the first and second
equations of the system V2 (x) = x and solving it with respect to x; and x,, we get

2de + (1 —e —2e*)c + 2de — c(1 + e)/1 — 4e

¥1= 20— D2(e+1)
— 2d 4+ (1 —e —2e%)c + (— 2d+c(e+1))«/1—4e
X1 = —
2(e—D(e+ 1) 4.4
2ce + (1 — e —2e2)d + 2ce —d(1 + €)1 —4e
2 =

2(e — )2(e + 1)

= 2+ —e—2e2)d + (—2c +d(e + 1)/1 —4e
* 2 — 12+ 1)

Now we show that the operator has no n-periodic point if n > 3. It is easy to see that
for each solution x = x3 of ¢"(x) = x, one gets a unique (X1, x2) from V" (x) = x.
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Therefore the number of periodic points of V' is equal to the number of periodic points
of ¢. Now we show that ¢ does not have n-periodic points for any n > 3. Taking
h(x) = ax + b one can see that our function ¢ is topologically conjugate to the
logistic map &(x) = ux(1 — x) with u = 1 + /5 —4e. For e € [0, %) we have
w € (3, 1+ +/5]. For the logistic map the following is known (see [15]).

If u between 3 and 1 4+ /5 ~ 3.236, then £ has one 2-periodic orbit and all
trajectories (except when started at the fixed point) will approach this 2-periodic orbit.

From this fact, by the conjugacy argument, it follows that ¢, and thus V, do not
have n-periodic point for any n > 3. O

Remark 3 The conjugacy argument mentioned in the proof of Lemma 4 can be also
used to give an alternative proof of Lemma 3. In thiscase u = 14-+/5 — 4e € (2, 3] and
(see [15]) the function & has no periodic points (except fixed points). All trajectories
will converge to the non-zero fixed point.

Theorem 3 Lere € [0, 1).

1. Ife < JT then there exists an open set U C S such that X, X € U and for any
xY = (x?, xg, xg) € U we have

, ifxg # x3 and n = 2k,
L if A =3, 4.5)

lim V" (%) =
—00
" , ifxg;éxg‘andn=2k+l,

=[] = =

where x* = (x{, x5, x3) is fixed point and x = (X1, X3, X3), X = (X1, X2, X3) are
periodic points described above.

2. If e > 4—11 then there exists an open set U C S? such that x* € U and for any
x0 = (x?,xg,xg) € U we have

: n,,0 0 0 * k%
nlgrgov (x7, x5, x3) = (x7, x5, X3).

Proof (1) For e € [0, %), it can be seen from [¢'(x3)| = |1 — «/5 — 4e| that x7 is

a repelling fixed point of ¢(x). Additionally, when e < 71; the fixed points x3 and

X3 of function g(x) = ¢(p(x)) are attracting, which follow from |g’(x3)| < 1 and

|g’(x3)| < 1. Define the operator W : [0, 11> — [0, 1] by the first and the last

coordinate of the operator V:

W {xi =cx§+2x3(1—x1 —x3), (4.6)
X3 = @(x3).

Now using the Jacobian of the operator W (W (x)) one can see that the 2-periodic orbit
{x, x} is a unique attracting orbit, and the fixed point x* is a saddle point of V. The
operator V has the following invariant sets:

y ={(x1,x2,x3) € 8 : x3 = x3},
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' = {(x1,x2,x3) € s?: X3 = X3 Or %3}

)

Note that if x° € y then lim;,_ o x§” = x;‘. If x0 € T then lim,— o0 xé") = X3 when

n is even and lim,,_ xé") = §3 when n is odd, in these cases the trajectory for x|
can be written as

=2 - =\Z
X" = %5 4 2(d%3 + 2x"%3)T;5 for even n,

and
x;n-‘rZ) — CY% + z(dfg + 2X1(n)§3)f3 for odd n.

The existence of the limit (4.5) follows from general theory of dynamical systems (see
[2]) and the uniqueness of the attracting 2-periodic points.

(2) Next we shall consider when e = ;11. It canbe seen from |¢’(x])| = [1—+/5 — 4e|
that when e = %, x3 is nonhyperbolic. It can be shown that the quadratic function
o(x)— % has roots at % and g. Additionally, ¢ (x) — % is concave for all x. Therefore,

{(p(x)—%>0:>¢(x)>%, x<%,
2
5

go(x)—%<0:>(p(x)<%, x> £

which demonstrates that xén) oscillates between [0, %) and (%, 1]. Moreover, it can be

demonstrated that

{x <00, ¥ <%,
x> ppx)), x> 5.

Thus, lim x{" = 2.

It can be seen from |<p/(x§")| = |1 — /5 —4e| that when e € (%, 1), x3 is an
attracting fixed point of ¢(x).
Therefore, xgn) will converge to x3 when e > %. On the invariant line y a trajectory

of this operator‘is as follows:

x™ = (x{"), 1 —x%") — X3, X3),

(n)
1

where x; satisfies the equality

XD — e -2 —oxp —2x). @.7)

(n) (n)
1 3

It follows from (4.7) that lim,,_ o0 X

= x{. Therefore, when lim,,_, oc x
then lim,,, o0 V (x0) = (x}, x5, x).

— *
—X3,
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5 Conclusion

As was discussed in the introduction, there does not exist a general theory for
non-Volterra quadratic stochastic operators. This paper represents an additional step
towards a more comprehensive understanding of this family of operators. A com-
plete understanding of non-Volterra QSOs would not only be a significant advance in
the field of mathematical genetics and dynamical systems, but it would also answer
questions about the modeling of populations that have complex genetic structures for
certain traits. Further research in this area could include a more complete description
of the w-limit set of the operator studied here, as well as an investigation into a more
general theory for non-Volterra QSOs.
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