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Abstract
We consider a four-parameter family of non-Volterra operators defined on the two-
dimensional simplex and show that, with one exception, each such operator has a
unique fixed point. Depending on the parameters, we establish the type of this fixed
point. We study the set of ω-limiting points for each trajectory and show that this set
can be a single point or can contain a 2-periodic trajectory.

Keywords Quadratic stochastic operator · Simplex · Trajectory · Volterra and
non-Volterra operators
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1 Introduction

Quadratic stochastic operators (QSOs) frequently arise in many models of mathe-
matical genetics, namely, in the theory of heredity (see e.g. [5,8] for motivations and
results related to QSOs). Here we shall investigate a family of QSOs defined on the
two-dimensional simplex. Let us give some definitions first. The (m−1)-dimensional
simplex is defined by

Sm−1 =
{
x = (x1, x2, . . . , xm) ∈ Rm : for any i xi ≥ 0, and

m∑
i=1

xi = 1

}
.

(1.1)
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A QSO is the mapping V : Sm−1 → Sm−1 with

(V x)k =
m∑

i, j=1

Pi j,k xi x j (1.2)

where

Pi j,k ≥ 0, Pi j,k = Pji,k,

m∑
k=1

Pi j,k = 1 for all i, j, k. (1.3)

For a given x (0) ∈ Sm−1 the trajectory x (n) of x (0) under the action of the QSO
(1.2) is defined by x (n+1) = V (x (n)), where n = 0, 1, 2, . . ..

One of the main problems in mathematical biology consists in the study of the
asymptotic behavior of these trajectories.

Denote by ω(x0) the set of ω-limiting points of trajectory x (n). Since Sm−1 is a
compact set and {x (n)} ⊂ Sm−1 it follows that ω(x0) �= ∅. It is clear that if ω(x0)
consists of a single point, then the trajectory converges and ω(x0) is a fixed point of
(1.2). The limit behavior of the trajectories of any QSO on one-dimensional space
was fully studied by Lyubich [9]. However, the problem is still open even in the
two-dimensional simplex.

Definition 1 [11] A quadratic stochastic operator is called Volterra if

Pi j,k = 0, for k /∈ {i, j}, i, j, k = 1, . . . ,m, (1.4)

and it is called strictly non-Volterra if

Pi j,k = 0, for k ∈ {i, j}, i, j, k = 1, . . . ,m (1.5)

In [4,12] a Volterra operator of a bisexual population was investigated. However, in
the non-Volterra case, many questions remain open and there seems to be no general
theory available [1,6,10,11,13,14]. In [11] the conceptionof strictly non-VolterraQSOs
was introduced, and it was proved that an arbitrary strictly non-Volterra quadratic
stochastic operator on the two-dimensional simplex has a unique fixed point, which
is not attracting.

Remark 1 A strictly non-Volterra operator exists only ifm ≥ 3. In [11] the casem = 3
was studied. In the present paper we will study the dynamics of the case m = 3 for a
non-Volterra QSO which has a strictly non-Volterra x ′

1 and x ′
2.

In this paper we consider a non-Volterra QSO (which we call quasi-strictly non-
Volterra) defined on the two-dimensional simplex which has the form

V :

⎧⎪⎪⎨
⎪⎪⎩
x ′
1 = αx22 + cx23 + 2x2x3,

x ′
2 = ax21 + dx23 + 2x1x3,

x ′
3 = bx21 + βx22 + ex23 + 2x1x2,

(1.6)
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where α, β, a, b, c, d, e ≥ 0 and

a + b = 1, α + β = 1, c + d + e = 1. (1.7)

The paper is organized as follows. In Sect. 2 we study fixed points of (1.6), where
we show that for e �= 1, the QSO (1.6) has a unique fixed point. In the case e = 1, we
show that the operator has two fixed points. In Sect. 3 we find conditions on parameters
under which a fixed point is a repelling, attracting, or saddle point. In the last section
we describe the ω-limit set of this non-Volterra QSO on S2.

2 Fixed Point of Operator

Definition 2 A point x ∈ Sm−1 is called a fixed point of a QSO V if V (x) = x .

In our case the fixed point is a solution of the following system

⎧⎪⎪⎨
⎪⎪⎩
x1 = αx22 + cx23 + 2x2x3,

x2 = ax21 + dx23 + 2x1x3,

x3 = bx21 + βx22 + ex23 + 2x1x2.

(2.1)

Theorem 1 The non-Volterra QSO (1.6) has a unique fixed point x∗ = (x∗
1 , x

∗
2 , x

∗
3 ) ∈

S2 in all cases, except when e = 1. In the case e = 1, there are two fixed points of the
system, one of which is (0, 0, 1).

Proof We shall consider all possible cases on a and α.
(1) Let α �= 0, a �= 0. Substituting x1 = 1− x2 − x3 into the first equation of (2.1)

gives

x2 =
−2x3 − 1 +

√
4(1 − αc)x23 + 4(1 − α)x3 + 1 + 4α

2α
≥ 0, (2.2)

where x3 ∈ [0,
√
1+4c−1
2c ] if c �= 0 and x3 ∈ [0, 1] if c = 0. Similarly, the second

equation in (2.1) gives

x1 =
−2x3 − 1 +

√
4(1 − ad)x23 + 4(1 − a)x3 + 1 + 4a

2a
≥ 0, (2.3)

where x3 ∈ [0,
√
1+4d−1
2d ] if d �= 0 and x3 ∈ [0, 1] if d = 0.

Now we may substitute (2.2) and (2.3) into 1 = x1 + x2 + x3, allowing x = x3 and
f (x) = x . This gives the function

f (x) =α
√
4(1 − ad)x2 + 4(1 − a)x + 1 + 4a

2(α + a − αa)
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+ a
√
4(1 − αc)x2 + 4(1 − α)x + 1 + 4α − α − a − 2αa

2(α + a − αa)
.

Now we define

g(x) = 4(1 − ad)x2 + 4(1 − a)x + 1 + 4a > 0,
h(x) = 4(1 − αc)x2 + 4(1 − α)x + 1 + 4α > 0.

Thus, we have

g′(x) = 8(1 − ad)x + 4(1 − a) ≥ 0, h′(x) = 8(1 − αc)x + 4(1 − α) ≥ 0,
g′′(x) = 8(1 − ad) ≥ 0, h′′(x) = 8(1 − αc)x ≥ 0.

Then,

f (x) = α
√
g(x)

2(α + a − αa)
+ a

√
h(x) − α − a − 2αa

2(α + a − αa)
.

Differentiating f (x) gives

f ′(x) = αg′(x)
4(α + a − αa)

√
g(x)

+ ah′(x)
4(α + a − αa)

√
h(x)

≥ 0,

f ′′(x) = α

4(α + a − αa)

g(x)g′′(x) − 1
2g

′(x)2√
g(x)3

+ a

4(α + a − αa)

h(x)h′′(x) − 1
2h

′(x)2√
h(x)3

≥ 0.

These inequalities follow from (1.7) as well as the fact that α + a − αa > 0.
Additionally, substituting the values for g(x), h(x), and their derivatives into the
inequalities

g(x)g′′(x) − 1
2g

′(x)2 ≥ 0, h(x)h′′(x) − 1
2h

′(x)2 ≥ 0,

gives

(4(1 − ad)x2 + 4(1 − a)x + 1 + 4a)(1 − ad) − (2(1 − ad)x + (1 − a))2 ≥ 0,
(4(1 − αc)x2 + 4(1 − α)x + 1 + 4α)(1 − αc) − (2(1 − αc)x + (1 − α))2 ≥ 0.

This can be reduced to

α(−6 + a + d + 4ad) ≤ 0, a(−6 + α + c + 4αc) ≤ 0.

Thus the inequalities g(x)g′′(x) − 1
2g

′(x)2 ≥ 0 and h(x)h′′(x) − 1
2h

′(x)2 ≥ 0 can be
demonstrated to be true.
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Additionally,

f (0) = α(
√
1 + 4a − 1 − a) + a(

√
1 + 4α − 1 − α)

2(α + a − αa)
> 0,

f (1) = α
√
9 − ad + a

√
9 − αc − α − a − 2αa

2(α + a − αa)
≤ 1,

which follows from the above inequalities in addition to the fact that

√
9 − ad ≤ 3,

√
9 − αc ≤ 3.

Additionally, both
√
9 − ad and

√
9 − αc can only be simultaneously equal to 3 when

c = d = 0 (and thuswhen e = 1). Thismeans that f (1) = 1when e = 1 and f (1) < 1
otherwise.

Thus the function is increasing and convex in [0, 1]. Therefore, for e ∈ [0, 1) the
system has a unique fixed point, since f (x) will only intersect the line x at one point
in the domain [0, 1]. When e = 1 the system has a fixed point (0, 0, 1). It can also
be directly shown that when e = 1, f ( 9

10 ) < 9
10 . This demonstrates that the function

f (x)must cross the line x prior to reaching the value f (1) = 1. This proves that there
are two fixed points when e = 1.

(2) Let α �= 0, a = 0 can be handled similarly. Substituting x1 = 1 − x2 − x3 into
the first equation of (2.1) gives

x2 =
−2x3 − 1 +

√
4(1 − αc)x23 + 4(1 − α)x3 + 1 + 4α

2α
≥ 0, (2.4)

where x3 ∈ [0,
√
1+4c−1
2c ] if c �= 0 and x3 ∈ [0, 1] if c = 0. The second equation in

(2.1) gives

x1 = 1 − x3 − dx23
2x3 + 1

≥ 0, (2.5)

where x3 ∈ [0,
√
1+4d−1
2d ] if d �= 0 and x3 ∈ [0, 1] if d = 0. This restriction ensures

that x1 is positive (Figs. 1, 2).
Directly substituting (2.4) and (2.5) into 1 = x1 + x2 + x3, allowing x = x3, gives

1 = x + 1 − x − dx2

2x + 1
+ −2x − 1 + √

4(1 − αc)x2 + 4(1 − α)x + 1 + 4α

2α
.

Solving for the xs present in the first two terms of the above equation [but not any of
the xs in the (2.4) term], and allowing F±(x) = x , gives the functions

F±(x) = 1 + 2α + 2x − √
h(x) ± √

q(x)

2α(2 − d)
,
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Fig. 1 α = .0001, e = 1

Fig. 2 α = .0001, e = 0.18

where

h(x) = 4(1 − αc)x2 + 4(1 − α)x + 1 + 4α ≥ 0,
q(x) = 2α(2 − d)(1 − √

h(x) + 2x) + (1 − √
h(x) + 2x + 2α)2.

Two examples of the function F± graphed against the line x are given below. �

Lemma 1 F±(x) = x at a unique point when e ∈ [0, 1) and at two points—one of
which is F+(1) = 1—when e = 1.

Proof We note that when q(x) = 0,

xq = 1

2c

[
−5 + d +

√
12 − 8d + d2

+ (37 + 2d2 − 10
√
12 − 8d + d2 + 2d(−9 +

√
12 − 8d + d2)
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− 2c(2 − d −
√
12 − 8d + d2 + α(14 + d2 − 4

√
12 − 8d + d2

+ d(−8 +
√
12 − 8d + d2))))

1
2

]
.

The curve F± is imaginary when x < xq . When x = xq , F+(x) = F−(x), and
when x > xq , F+(x) > F−(x).

Additionally, at x = 1 we have

F+(1) = 3 + 2α − √
h(1) + √

q(1)

2α(2 − d)
≥ 1,

where

h(1) = 9 − 4αc ≥ 0,
q(1) = 2α(2 − d)(3 − √

h(1)) + (3 − √
h(1) + 2α)2.

It can be readily shown that in the case that e = 1, F+(1) = 1. When e ∈ [0, 1), we
would like to show that F+(1) > 1. This can be reduced to showing that

√
q(1) +

2αd + 3 >
√
h(1)+ 2α. It can be easily shown that

√
q(1) > 2α. Additionally, when

d = 0, 3 >
√
h(1). When d �= 0, 3 ≥ √

h(1), but 2αd > 0. The culmination of the
above facts proves the inequality

√
q(1) + 2αd + 3 >

√
h(1) + 2α to be always true.

Thus, F+(1) > 1 when e < 1. It can be similarly shown that F−(1) < 1. Analysis
of the derivations of F± shows that the following inequalities are true.

F ′+(x) = 1

2α(2 − d)

(
2 − h′(x)

2
√
h(x)

+ q ′(x)
2
√
q(x)

)
≥ 0,

F ′−(x) = 1

2α(2 − d)

(
2 − h′(x)

2
√
h(x)

− q ′(x)
2
√
q(x)

)
≤ 0,

F ′′+(x) = 1

2α(2 − d)

(
−h(x)h′′(x) − 1

2 (h
′(x))2√

(h(x))3
+ q(x)q ′′(x) − 1

2 (q
′(x))2√

(q(x))3

)
≤ 0,

for all x > xq .
The above demonstrates that F±(x) must intersect the line x at least once on [0, 1).

Because F+(x) is increasing and concave, and F−(x) is decreasing, F±(x) and x will
only intersect once on [0, 1). Additionally, F+(1) = 1 only when e = 1. Thus the
lemma is proven. �


Therefore, a direct extension of the above lemma shows that when e = 1, the system
(1.6) has two fixed points—one of which is (0, 0, 1). And when e < 1, it has a unique
fixed point.

(3) The case α = 0, a �= 0 can be handled analogously to the previous case.
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(4) Let α = a = 0. The system is therefore

⎧⎪⎪⎨
⎪⎪⎩
x1 = cx23 + 2x2x3

x2 = dx23 + 2x1x3

x3 = (x1 + x2)2 + ex23 = (1 − x3)2 + ex23

(2.6)

The proof of the fourth case will follow directly from the following lemma.

Lemma 2 If e ∈ [0, 1), the system has a unique fixed point, (x∗
1 , x

∗
2 , x

∗
3 ), where

x∗
1 = 7 + 24d − 2e − 19de − 5e2 + 2e2d + (3 − 11d + 4de + 3d2)

√
5 − 4e

2(1 + e)(−13 + 6
√
5 − 4e + 6e + e2)

,

x∗
2 = 1 − 7 + 24d − 2e − 19de − 5e2 + 2e2d + (3 − 11d + 4de + 3d2)

√
5 − 4e

2(1 + e)(−13 + 6
√
5 − 4e + 6e + e2)

− 3 − √
5 − 4e

2(1 + e)
,

x∗
3 = 3 − √

5 − 4e

2(1 + e)
.

However, when e = 1 the system has two fixed points: (0, 0, 1) and ( 14 ,
1
4 ,

1
2 ).

Proof Examine each possible case.

• Let e ∈ [0, 1). Solving the third equation of (2.6) for x3 gives x∗
3 = 3±√

T
2(1+e) > 0

where T = 5 − 4e > 0.
Assume for the purpose of contradiction that 3+√

T
2(1+e) ≤ 1. This can be reduced to√

T ≤ 2e−1. If e ≤ 1
2 , then 2e−1 ≤ 0 and

√
T ≥ 0, so 3+√

T
2(1+e) � 1. Additionally,

if e > 1
2 then 0 <

√
T ≤ 2e − 1 which can be reduced to 1 ≤ e which is not

true for e ∈ [0, 1). Thus 3+√
T

2(1+e) � 1 for any e ∈ [0, 1) and is not a fixed point of

x ′
3 = (1 − x3)2 + ex23 .

It can be proved that 3−√
T

2(1+e) ≤ 1 because it can be reduced to
√
T ≥ 1 − 2e. As

it was shown previously that ,
√
T ≤ 1 − 2e is false for all e ∈ [0, 1), it must be

that
√
T > 1 − 2e.Therefore,

x∗
3 = 3 − √

5 − 4e

2(1 + e)
,

is a unique fixed point of the system.
Substituting x∗

3 into the first two equations of (2.6) gives x1 = cx∗
3
2 + 2x2x∗

3 and
x2 = dx∗

3
2 + 2x1x∗

3 . Substituting this value of x2 into x1 and reducing gives

x∗
1 = (3x∗

3 − 1)(c + 2dx∗
3 )

5 + e − 12x∗
3

,
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which can be written as

x∗
1 = 7 + 25d − 2e − 19de − 5e2 + 2e2d + (3 − 11d + 4de + 3d2)

√
5 − 4e

2(1 + e)(−13 + 6
√
5 − 4e + 6e + e2)

.

Additionally, we know that x∗
2 = 1 − x∗

1 − x∗
3 which yields

x∗
2 = 1 − 7 + 25d − 2e−19de − 5e2 + 2e2d+(3 − 11d + 4de + 3d2)

√
5 − 4e

2(1 + e)(−13 + 6
√
5 − 4e + 6e + e2)

−3 − √
5 − 4e

2(1 + e)
.

Thus, (x∗
1 , x

∗
2 , x

∗
3 ) is a unique fixed point of the system.

• Let e = 1. The system is therefore

⎧⎨
⎩
x1 = 2x2x3,
x2 = 2x1x3,
x3 = (1 − x3)2 + x23 .

(2.7)

Additionally, we know that x∗
3 = 3±√

(5−4e)
2(1+e) ; therefore, x∗

3 = 1
2 or 1. When

x∗
3 = 1

2 , it follows from (2.7) that x1 = x2, and it follows from x1 + x2 + x3 = 1
that x1 + x2 = 1

2 . Thus, x
∗
1 = x∗

2 = 1
4 and the point ( 14 ,

1
4 ,

1
2 ) ∈ S2 is a fixed point

of the system. When x∗
3 = 1, it follows from x1 + x2 + x3 = 1 that x∗

1 = x∗
2 = 0.

Thus, the point (0, 0, 1) ∈ S2 is a second fixed point of the system. �

By the above cases, all possible values for the systemare considered and the theorem

is proved.

3 The Type of the Fixed Point

Definition 3 [2] A fixed point x∗ of the operator V is called hyperbolic if its Jacobian
J at x∗ has no eigenvalues on the unit circle.

Definition 4 [2] A hyperbolic fixed point x∗ is called:

(i) attracting if all the eigenvalues of the Jacobian J (x∗) are < 1 in absolute value;
(ii) repelling if all the eigenvalues of the Jacobian J (x∗) are > 1 in absolute value;
(iii) a saddle otherwise.

To find the type of a fixed point we use x3 = 1 − x1 − x2 to rewrite QSO (1.6) as
follows:

V :
{
x ′
1 = c − 2cx1 + cx21 + 2(c − 1)x1x2 + 2(1 − c)x2 + (α + c − 2)x22 ,

x ′
2 = d − 2dx2 + dx22 + 2(d − 1)x1x2 + 2(1 − d)x1 + (a + d − 2)x21 ,
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where (x1, x2) ∈ {(x, y) : x, y ≥ 0, 0 ≤ x + y ≤ 1} and x1, x2, are the first two
coordinates of a point lying in the two-dimensional simplex.

The Jacobian, J (x∗), has the representation

(−2c(1 − x∗
1 − x∗

2 ) − 2x∗
2 2(α − 1)x∗

2 + 2(1 − c)(1 − x∗
1 − x∗

2 )

2(a − 1)x∗
1 + 2(1 − d)(1 − x∗

1 − x∗
2 ) −2d(1 − x∗

1 − x∗
2 ) − 2x∗

1

)
.

(3.1)

The Jacobian (3.1) has the eigenvalues λ1,2 = ex∗
3 − 1 ± √

D(a, α, c, e), where

D ≡ D(a, α, c, e) = (ex∗
3 − 1)2 + 4ex∗

3
2

+ 4[(bβ − 1)x∗
1 x

∗
2 + (a(1 − c) − 1)x∗

1 x
∗
3 + (α(1 − d) − 1)x∗

2 x
∗
3 ]. (3.2)

The classification of these eigenvalues is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

If D < −1 + (1 − ex∗
3 )

2, the fixed point is repelling;

If D = −1 + (1 − ex∗
3 )

2, the fixed point is nonhyperbolic;

If − 1 + (1 − ex∗
3 )

2 < D < 0, the fixed point is attracting;

If D = 0 and ex∗
3 = 0, the fixed point is nonhyperbolic;

If D = 0 and ex∗
3 > 0, the fixed point is attracting;

If 0 < D < e2x∗2
3, the fixed point is attracting;

If D = e2x∗2
3, the fixed point is nonhyperbolic;

If e2x∗2
3 < D < (2 − ex∗

3 )
2, the fixed point is a saddle point;

If D = (2 − ex∗
3 )

2, the fixed point is nonhyperbolic;

If (2 − ex∗
3 )

2 < D, the fixed point is repelling.

(3.3)

In [11] it was proven that strictly non-VolterraQSOswithm = 3 have a unique fixed
point and that the type of the hyperbolic fixed point can never be attracting. However,
in the system (1.6), the introduction of the parameter e has caused an attracting fixed
point to become possible, as evidenced by the following example.

Example When c = β = 5
8 , d = b = 0, α = e = 3

8 , and a = 1 the system (1.6) can
be written

V :

⎧⎪⎪⎨
⎪⎪⎩
x ′
1 = 3

8 x
2
2 + 5

8 x
2
3 + 2x2x3,

x ′
2 = x21 + 2x1x3,

x ′
3 = 5

8 x
2
2 + 3

8 x
2
3 + 2x1x2.

(3.4)
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Fig. 3 Effect of e on eigenvalues

Thefixedpoint of this system is ( 13 ,
1
3 ,

1
3 ). Substituting these values into the eigenvalues

of the Jacobian gives λ1,2 = − 7
8 ± 1

8

√
13
3 i . Therefore, |λ1,2| =

√
5
6 < 1, and ( 13 ,

1
3 ,

1
3 )

is attracting.

In the case where α = a = 0 (i.e. system (2.6)), the eigenvalues of the Jacobian
can be written

λ1,2 = ex∗
3 − 1 ±

√
1 + 2(e − 2)x∗

3 + (4 + e2)x∗
3
2,

where x∗
3 = 3−√

5−4e
2(1+3) . It can be proven that |λ1| < 1 and |λ2| > 1 for all e. The

inequality |λ1| < 1 can be proven from the facts that

0 ≤ 1 + 2(e − 2)x∗
3 + (4 + e2)x∗

3
2
,

0 < ex∗
3 +

√
1 + 2(e − 2)x∗

3 + (4 + e2)x∗
3
2,

x∗
3
2 + ex∗

3 <
3

4
+ x∗

3 .

The last inequality, x∗
3
2 + ex∗

3 < 3
4 + x∗

3 , follows from the fact that x∗
3
2 ≤ x∗

3 and
from substituting the value of x∗

3 into the inequality ex∗
3 < 3

4 , which gives 3e <

3 + 2e
√
5 − 4e. Additionally, |λ2| > 1 can be proven from the fact that ex∗

3 − 1 −√
1 + 2(e − 2)x∗

3 + (4 + e2)x∗
3
2 < −1. This can be reduced to the quadratic 1+(2e−

4)x∗
3 + 4x∗

3
2, which is always positive. This means that the fixed point x∗

3 is a saddle
point for all e ∈ [0, 1). This can be seen clearly in the graph (Fig. 3).

In the case that a = α = 0 and e = 1, the fixed point ( 14 ,
1
4 ,

1
2 ) is a saddle point

and (0, 0, 1) is a repeller.
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Additionally, for all cases where e = 1 and (0, 0, 1) is a second fixed point of the
system, it can be seen that λ1,2 = ±2. Thus the second fixed point that occurs when
e = 1 is always a repeller.

Remark 2 A non-Volterra QSO with m = 3 (1.6) also has a unique fixed point in all
cases except e = 1 for which there are two fixed points, one of which-(0,0,1)-is always
a repeller. Additionally, the fixed point of a non-Volterra QSO may be attracting.

4 The!-Limit Set

In this section we shall describe the ω-limit set of trajectories under certain param-
eter restrictions. Let x0 = (x01 , x

0
2 , x

0
3 ) ∈ S2 be the initial point and let {x (n), n =

0, 1, 2, . . .} be the trajectory of x0 under the action of the operator (1.6); that is,

x (n) = (x (n)
1 , x (n)

2 , x (n)
3 ) = V (x (n−1)), n = 1, 2, . . . x (0) = x0.

For simplicitywe shall examine the case inwhich a = α = 0; therefore the operator
can be written as (2.6), i.e., ⎧⎪⎪⎨

⎪⎪⎩
x ′
1 = cx23 + 2x2x3,

x ′
2 = dx23 + 2x1x3,

x ′
3 = (1 − x3)2 + ex23 ,

(4.1)

which demonstrates that the trajectory of the third coordinate {x (n)
3 } is defined by the

dynamical system of

ϕ(x) = (1 − x)2 + ex2.

4.1 Case e = 1

In this case operator has the form (denoted by V1)

V1 :

⎧⎪⎪⎨
⎪⎪⎩
x ′
1 = 2x2x3,

x ′
2 = 2x1x3,

x ′
3 = (1 − x3)2 + x23 .

(4.2)

This operator has been studied in [7]: It is easy to see that

Fix(V1) = {(1/4, 1/4, 1/2), (0, 0, 1)}.

For any (x, y, 1/2) with x + y = 1/2, we have

V 2
1 (x, y, 1/2) = V1(y, x, 1/2) = (x, y, 1/2).
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In fact the set of all 2-periodic points is

Per2(V1) = {(x, y, 1/2) ∈ S2 : x + y = 1/2}.

Moreover it is easy to see that V1(x, y, 0) = (0, 0, 1), for any (x, y, 0) ∈ S2.
For θ ∈ [0,∞), denote

Mθ =
{ {(x, y, z) ∈ S2 : xy = 0}, if θ = 0,

{(x, y, z) ∈ S2 : x = θ y or x = 1
θ
y}, if θ ∈ (0,∞).

Theorem 2 [7] If e = 1, then

1. For any initial point (x01 , x
0
2 , x

0
3 ), with x03 = 0 or x03 = 1 we have

lim
n→∞ V n

1 (x01 , x
0
2 , x

0
3 ) = (0, 0, 1).

2. For any initial point x0 = (x01 , x
0
2 , x

0
3 ), with x03 �= 0 and x03 �= 1, there exists

θ ∈ [0,+∞), such that x0 ∈ Mθ . Moreover,

lim
n→∞ V n

1 (x01 , x
0
2 , x

0
3 ) =

⎧⎨
⎩

(
θ

2(θ+1) ,
1

2(θ+1) ,
1
2

)
, n = 2k, k = 1, 2, 3, . . .(

1
2(θ+1) ,

θ
2(θ+1) ,

1
2

)
, n = 2k + 1, k = 1, 2, 3, . . .

4.2 Case e ∈ [0, 1)

Now we consider the operator (4.1) for all e �= 1. By the above given results we know
that this operator has a unique fixed point:

Fix(V ) = {x∗ = (x∗
1 , x

∗
2 , x

∗
3 )},

which is never attractive.
Let us describe periodic points of the operator. By (4.1) the sequence x (n+1) =

V n(x0) has the form

⎧⎪⎪⎨
⎪⎪⎩
x (n+1)
1 = c(x (n)

3 )2 + 2x (n)
2 x (n)

3 ,

x (n+1)
2 = d(x (n)

3 )2 + 2x (n)
1 x (n)

3 ,

x (n+1)
3 = ϕ(x (n)

3 ).

(4.3)

Lemma 3 If 1/4 ≤ e < 1 then the operator (4.1) does not have any n-periodic point,
n ≥ 2, different from the fixed point x∗.

Proof First we give analysis of the equation ϕ(ϕ(x)) = x , (for existence of 2-periodic

points) which has solutions x∗
3 , x3 = 1+√

1−4e
2(1+e) , and x3 = 1−√

1−4e
2(1+e) , where ϕ(x3) = x3

and vice-versa. These numbers exist if and only iff e < 1/4, and when e = 1/4 the
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three numbers coincide. Thus for 1/4 ≤ e < 1 there are no 2-periodic points of ϕ. By
Sharkovskii’s theorem [2] we have that ϕn(x) = x does not have solution x �= x∗

3 for

all n ≥ 2. Thus, x (n)
3 = x3 has unique solution x3 = x∗

3 for any n ≥ 1. Using this fact
we reduce the equation V n(x) = x (with x = (x1, x2, x3)) of n-periodic points to the
equation Ln(x̂) = x̂ (with x̂ = (x1, x2)), where L is the linear operator given by

L :
{
x ′ = c(x∗

3 )
2 + 2x∗

3 y,
y′ = d(x∗

3 )
2 + 2x∗

3 x .

It is then easy to see that this linear operator has a unique fixed point (x∗
1 , x

∗
2 ) (the first

two coordinates of the fixed point x∗). This fixed point is attractive and therefore by
the known theorem of liner dynamical systems (see Chapter 3 of [3]), we see that all
trajectories of the linear operator tend to the fixed point. Therefore this linear operator
has no periodic points except x∗. �

Lemma 4 If 0 ≤ e < 1/4, then the operator (4.1) has 2-periodic points, (x1, x3, x3)
and (x1, x2, x3)—different from the fixed point x∗—which are described explicitly
below. Moreover the operator does not have any n-periodic point for all n ≥ 3.

The following proof will rely on the concept of topological conjugacy.

Definition 5 Let f : A → A and g : B → B be two maps. f and g are called
topologically conjugate if there exists a homeomorphism h : A → B such that,
h ◦ f = g ◦ h.

Additionally, it is known (as shown in [2]) that mappings which are topologically
conjugate are completely equivalent in terms of their dynamics. In particular, h gives
a one-to-one correspondence between periodic points of f and g.

Proof It can be seen from |ϕ ′
(x∗

3 )| = |1 − √
5 − 4e| that if e ∈ [0, 1

4 ), then x∗
3 is a

repelling fixed point ofϕ(x). Asmentioned in the proof of the previous lemma, if e < 1
4

then the function ϕ(ϕ(x)) has fixed points x∗
3 , x3 = 1+√

1−4e
2(1+e) , and x3 = 1−√

1−4e
2(1+e) , i.e.,

ϕ2(x3) = x3, and ϕ2(x3) = x3. By substituting x3 = x3, x3 in the first and second
equations of the system V 2(x) = x and solving it with respect to x1 and x2, we get

x1 = 2de + (1 − e − 2e2)c + (2de − c(1 + e))
√
1 − 4e

2(e − 1)2(e + 1)
,

x1 = 2d + (1 − e − 2e2)c + (−2d + c(e + 1))
√
1 − 4e

2(e − 1)2(e + 1)
,

x2 = 2ce + (1 − e − 2e2)d + (2ce − d(1 + e))
√
1 − 4e

2(e − 1)2(e + 1)
,

x2 = 2c + (1 − e − 2e2)d + (−2c + d(e + 1))
√
1 − 4e

2(e − 1)2(e + 1)
.

(4.4)

Now we show that the operator has no n-periodic point if n ≥ 3. It is easy to see that
for each solution x = x̃3 of ϕn(x) = x , one gets a unique (x̃1, x̃2) from V n(x) = x .
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Therefore the number of periodic points of V is equal to the number of periodic points
of ϕ. Now we show that ϕ does not have n-periodic points for any n ≥ 3. Taking
h(x) = ax + b one can see that our function ϕ is topologically conjugate to the
logistic map ξ(x) = μx(1 − x) with μ = 1 + √

5 − 4e. For e ∈ [0, 1
4 ) we have

μ ∈ (3, 1 + √
5]. For the logistic map the following is known (see [15]).

If μ between 3 and 1 + √
5 ≈ 3.236, then ξ has one 2-periodic orbit and all

trajectories (except when started at the fixed point) will approach this 2-periodic orbit.
From this fact, by the conjugacy argument, it follows that ϕ, and thus V , do not

have n-periodic point for any n ≥ 3. �

Remark 3 The conjugacy argument mentioned in the proof of Lemma 4 can be also
used to give an alternative proof ofLemma3. In this caseμ = 1+√

5 − 4e ∈ (2, 3] and
(see [15]) the function ξ has no periodic points (except fixed points). All trajectories
will converge to the non-zero fixed point.

Theorem 3 Let e ∈ [0, 1).
1. If e < 1

4 then there exists an open set U ⊂ S2 such that x, x ∈ U and for any
x0 = (x01 , x

0
2 , x

0
3 ) ∈ U we have

lim
n→∞ V n(x0) =

⎧⎨
⎩
x, if x03 �= x∗

3 and n = 2k,
x∗, if x03 = x∗

3 ,

x, if x03 �= x∗
3 and n = 2k + 1,

(4.5)

where x∗ = (x∗
1 , x

∗
2 , x

∗
3 ) is fixed point and x = (x1, x3, x3), x = (x1, x2, x3) are

periodic points described above.
2. If e ≥ 1

4 then there exists an open set U ⊂ S2 such that x∗ ∈ U and for any
x0 = (x01 , x

0
2 , x

0
3 ) ∈ U we have

lim
n→∞ V n(x01 , x

0
2 , x

0
3 ) = (x∗

1 , x
∗
2 , x

∗
3 ).

Proof (1) For e ∈ [0, 1
4 ), it can be seen from |ϕ′(x∗

3 )| = |1 − √
5 − 4e| that x∗

3 is
a repelling fixed point of ϕ(x). Additionally, when e < 1

4 the fixed points x3 and
x3 of function g(x) = ϕ(ϕ(x)) are attracting, which follow from |g′(x3)| < 1 and
|g′(x3)| < 1. Define the operator W : [0, 1]2 → [0, 1]2 by the first and the last
coordinate of the operator V :

W :
{
x ′
1 = cx23 + 2x3(1 − x1 − x3),
x ′
3 = ϕ(x3).

(4.6)

Now using the Jacobian of the operatorW (W (x)) one can see that the 2-periodic orbit
{x, x} is a unique attracting orbit, and the fixed point x∗ is a saddle point of V . The
operator V has the following invariant sets:

γ = {(x1, x2, x3) ∈ S2 : x3 = x∗
3 },
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 = {(x1, x2, x3) ∈ S2 : x3 = x3 or x3}.

Note that if x0 ∈ γ then limn→∞ x (n)
3 = x∗

3 . If x
0 ∈ 
 then limn→∞ x (n)

3 = x3 when

n is even and limn→∞ x (n)
3 = x3 when n is odd, in these cases the trajectory for x1

can be written as

x (n+2)
1 = cx

2
2 + 2(dx23 + 2x (n)

1 x3)x3 for even n,

and

x (n+2)
1 = cx22 + 2(dx

2
3 + 2x (n)

1 x3)x3 for odd n.

The existence of the limit (4.5) follows from general theory of dynamical systems (see
[2]) and the uniqueness of the attracting 2-periodic points.

(2)Nextwe shall considerwhen e = 1
4 . It can be seen from |ϕ′(x∗

3 )| = |1−√
5 − 4e|

that when e = 1
4 , x

∗
3 is nonhyperbolic. It can be shown that the quadratic function

ϕ(x)− 2
5 has roots at

2
5 and

6
5 . Additionally, ϕ(x)− 2

5 is concave for all x . Therefore,

{
ϕ(x) − 2

5 > 0 ⇒ ϕ(x) > 2
5 , x < 2

5 ,

ϕ(x) − 2
5 < 0 ⇒ ϕ(x) < 2

5 , x > 2
5 .

which demonstrates that x (n)
3 oscillates between [0, 2

5 ) and ( 25 , 1]. Moreover, it can be
demonstrated that

{
x < ϕ(ϕ(x)), x < 2

5 ,

x > ϕ(ϕ(x)), x > 2
5 .

Thus, lim x (n)
3 = 2

5 .

It can be seen from |ϕ ′
(x∗

3 )| = |1 − √
5 − 4e| that when e ∈ ( 14 , 1), x

∗
3 is an

attracting fixed point of ϕ(x).
Therefore, x (n)

3 will converge to x∗
3 when e ≥ 1

4 . On the invariant line γ a trajectory
of this operator is as follows:

x (n) = (x (n)
1 , 1 − x (n)

1 − x∗
3 , x

∗
3 ),

where x (n)
1 satisfies the equality

x (n+1)
1 = x∗

3 (2 − (2 − c)x∗
3 − 2x (n)

1 ). (4.7)

It follows from (4.7) that limn→∞ x (n)
1 = x∗

1 . Therefore, when limn→∞ x (n)
3 = x∗

3 ,
then limn→∞ V (x0) = (x∗

1 , x
∗
2 , x

∗
3 ). �
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5 Conclusion

As was discussed in the introduction, there does not exist a general theory for
non-Volterra quadratic stochastic operators. This paper represents an additional step
towards a more comprehensive understanding of this family of operators. A com-
plete understanding of non-Volterra QSOs would not only be a significant advance in
the field of mathematical genetics and dynamical systems, but it would also answer
questions about the modeling of populations that have complex genetic structures for
certain traits. Further research in this area could include a more complete description
of the ω-limit set of the operator studied here, as well as an investigation into a more
general theory for non-Volterra QSOs.
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