
 

Experimental Observation of PT Symmetry Breaking near Divergent Exceptional Points
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Standard exceptional points (EPs) are non-Hermitian degeneracies that occur in open systems. At an EP,
the Taylor series expansion becomes singular and fails to converge—a feature that was exploited for several
applications. Here, we theoretically introduce and experimentally demonstrate a new class of parity-time
symmetric systems [implemented using radio frequency (rf) circuits] that combine EPs with another type
of mathematical singularity associated with the poles of complex functions. These nearly divergent
exceptional points can exhibit an unprecedentedly large eigenvalue bifurcation beyond those obtained by
standard EPs. Our results pave the way for building a new generation of telemetering and sensing devices
with superior performance.
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Spectral points that possess special features have been a
subject of intense study recently. Awell-known example of
such points that are pertinent to periodic systems is the van
Hove singularity, at which the optical density of state does
not vary smoothly as a function of frequency. First
investigated in the context of lattice vibrations [1], and
later in photonic crystals [2], identifying these points has
been proven useful in spectroscopy applications [3].
Another important class of spectral points are those
associated with the eigenvalue degeneracy of Hermitian
Hamiltonians [widely known as diabolic points (DPs)],
which play an important role in the studies of molecular
vibrations within the so called Born-Oppenheimer approxi-
mation. In the theory of band structures, a DP associated
with a dispersionless band is also known as a Dirac point
[4,5] (since it also arises from the relativistic Dirac
equation). While Dirac points are not associated with
any topological protection, a close cousin, known as a
Weyl point, further offers topological features [6–8].
Despite the fact that these mathematical constructions have
been known for several decades, it was not until recently
that physicists were able to experimentally probe them in
the laboratory, especially in optical platforms where many-
body interactions can be controlled at will.
The aforementioned work focused mainly on Hermitian

systems. Relaxing this condition to deal with effective non-
Hermitian systems can result in even more exotic spectral
features. More specifically, the non-Hermiticity of an
effective Hamiltonian implies that its eigenstates do not
need to be orthogonal. As a result, special degeneracies
where both the eigenvalues and eigenfunctions become
the same can occur at the so called exceptional points (EPs)
[9–14]. The interest in the peculiar behavior associated with

EPs has exploded in the past years following the discovery
of parity-time (PT) symmetric Hamiltonians that exhibit
real spectra [15], and the introduction of this concept to
classical wave dynamics for the first time [16–19], which
opened the door for a host of experimental studies in optics
[20–22] and electronics [23–31] as well as other platforms.
Currently, several research groups are exploring the utility
of non-Hermitian optics near EP to build miniaturized
optical isolators [32,33], better lasers [20–22,34–41], more
responsive sensors [42–47], and nonlinear optical devices
[48,49] to mention just a few examples. For recent reviews,
see [50,51]. Additionally, enhanced wireless sensing with
EPs has also attracted attention recently [25–31].
Despite this progress, all these activities focused only on

one type of EP having the form
ffi

̈
n
p

These represent branch
point singularities at which the tailor series expansion of
the associated function fails to exist. However, apart from
the discontinuity across the branch cut (with its intriguing
implications for the encircling of EPs [52–54]), the eigen-
values themselves (or equivalently, the associated multi-
valued function) remain bounded.
In this Letter, we consider a rather unusual scenario

where an EP coincides with (or occurs in the vicinity of) a
divergent singularity. We show that, even though in practice
physical systems cannot diverge, they can be locked near
a divergent EP (DEP). Particularly, we show theoretically
and demonstrate experimentally that the effect of a DEP
on a nearby nondivergent EP can leave a clear fingerprint
featured by giant enhancement of the eigenvalue splitting
across the latter.
To this end, and before we describe our experimental

results, let us consider a function of the form fðxÞ ¼
ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

Þ. The function f is real valued for x < 1 and
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imaginary for x > 1 with an EP located at x ¼ 1, which is
also the same point where the function diverges, i.e.,
fð1Þ ¼ ∞. As a result, in contrast to standard EPs where
the splitting of the real part scales smoothly (for example,
as a square root function for second-order EPs), here, it
diverges abruptly. If one could implement this system
experimentally, it would be the ultimate sensor with infinite
responsivity to any infinitesimal perturbation. Unfortunately,
in practice, this is not possible.Many realistic physical effects
(such as the existence of a source at very high frequencies,
stabilities, and nonlinearities) will come into play to prevent
such a response. Thus, itmay seem that this concept is of little
practical use. However, before we give up, let us consider
a related function that has an additional degree of freedom:

Fðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α
2

1
− y2

p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α
2

2
− x2

p

. Assuming α1 ≠ α2, the
function Fðx; yÞ will have a standard exceptional line at
y ¼ α1 and a divergent singularity at x ¼ α2. If one can
design a system that operates close enough to x ¼ α2, the
divergent point will be avoided, while at the same time its
impact will be imprinted on the eigenvalue splitting across
the exceptional line y ¼ α1: the closer we get to x ¼ α2,
the larger the eigenvalue bifurcation. In this case, we call the
EP y ¼ α1 nearly divergent or NDEP (in the above example,
it is actually a line rather than a point, but this is irrelevant
to the subsequent discussion).
Having introduced the notion of DEPs and NDEPs

theoretically, it is natural to inquire about the possibility
of building a physical system that exhibits these spectral
features. Indeed, this is a challenging task given that optical
systems (the most widely used platform for investigating
non-Hermitian physics) do not naturally exhibit these
spectral divergences, due to a lack of lumped elements

(in which the current does not vary, i.e., phase change or
transition time is negligible). In this regard, radio frequency
(rf) quasistatic resonators made of RLC circuits [consisting
of a resistor (R), an inductor (L), and a capacitor (C)]
provide an advantage: in coupled PT electronic systems
(composed of two coupled−RLC and RLC resonators), the
solution of the second-order differential equations arising
from Kirchhoff current and voltage laws exhibit such a
singularity [23,26]. However, it occurs only for a perfect
mutual coupling between the inductors, a condition that is
impossible to achieve in practice. To complicate things
further, it is not even easy to design a system that operates
near this point. In practice, a nearly perfect inductive
coupling requires a high permeability magnetic core and
shielding plates, and any material or Eddy-current loss
could decrease the coupling coefficient significantly [55].
In order to proceed, let us consider a coupled electronic

circuit that consists of three stages representing gain, neutral,
or loss resonators, as shown in Fig. 1(a). We will denote
this circuit with C3 (as opposed to the standard two-element
PT circuit which we will denote C2). One may think that
adding a neutral element may lead to a standard higher
order EP similar to the counterpart optical systems [56–58].
However, this is not the case. By applying Kirchhoff laws
to the proposed circuit topology shown in Fig. 1(a). we can
write an effectivePT-symmetricHamiltonian for the system,
Heff , with the following eigenfrequencies [see the
Supplemental Material (SM) [59] for more details]

ωn ¼ �1;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γ2 − 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4γ2 þ 8γ4κ2
p

2γ2ð1 − 2κ2Þ

s

; ð1Þ

FIG. 1. (a) A schematic of the three-element PT-symmetric electronic circuit proposed for implementing nearly divergent EPs. It
consists of a −RLC gain tank (top red), an RLC loss tank (bottom blue) and a neutral element LC (center gray). The normalized
coupling between the coils is κ and the non-Hermitian parameter is γ (see text for definition). (b) The phase diagram of this circuit in the
κ–γ plane. As discussed in the text, four different phases are identified: PT symmetry, underdamped broken PT symmetry (UB PT),
overdamped broken PT symmetry (OB PT) and a mixed phase that contains eigenstates in the PT phase and others in the broken phase.
The black solid and dashed lines, denoted by EP�, are exceptional lines that separate different phases. The solid red line consists of
divergent EPs and separates the mixed phase from the rest of the domains. The white dashed line indicates the parameters used for the

experiment as discussed later. (c) Bifurcation of real parts of the eigenvalues associated with (b). Note that as κ → κD ¼ 1=
ffiffiffi

2
p

, the
splitting between the eigenfrequency becomes larger (theoretically diverges when κ ¼ κD).

PHYSICAL REVIEW LETTERS 123, 193901 (2019)

193901-2



where γ ¼ R−1
ffiffiffiffiffiffiffiffiffi

L=C
p

is the non-Hermitian parameter and
κ ¼ M=L < 1 is the normalized mutual coupling (here, M
and L are mutual and self inductances of the coils). By
inspecting Eq. (1), it is clear that κ ¼ κD ≡ 1=

ffiffiffi

2
p

are the
DEPs. For κ < κD, we can identify three different phases,
separated by two exceptional lines described by the equations

γEP� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2κ2
pp

=ð2κÞ, as shown as black solid or
dashed lines in Fig. 1(b). In the PT phase given by
γ ∈ ½γEPþ;þ∞�, all the eigenstates respect PT symmetry
with real eigenvalues. In the range γ ∈ ½γEP−; γEPþ�, the
system exhibits an underdamped broken PT (UB PT) phase
where the eigenvalues are complex conjugate. In the over-
damped broken PT (OB PT) phase with γ ∈ ½0; γEP−�, the
eigenvalues are purely imaginary. Mathematically, the last
two regimes are separated by an exceptional line. This feature
arises due to charge conjugation symmetry of the
Hamiltonian: H ¼ −H� (see the SM [59] for details).
However, we note that, physically, the solutions related by
this symmetry correspond to the same state. For κ > κD, the
eigenspectrum exhibits a mix between PT states and broken
PT states. The boundary separating this mixed phase from
the rest of the phase diagram is marked by a divergent
exceptional line: a line made of DEPs, i.e., EPs that also
coincide with pole singularities. Note that the three excep-
tional lines (black solid, black dashed, and red lines) meet at
one point given by ðγ; κÞ ¼ ð1=

ffiffiffi

2
p

; 1=
ffiffiffi

2
p

Þ. It is important
to emphasize that, before the system approaches this
divergent regime, nonlinear effects dominated by the non-
linearity of the active circuit element (which is used to
implement the negative resistance as discussed in the SM
[59]) will come into play to regulate the circuit behavior.
Thus, the important question is, can one at least engineer the
system to operate close enough to these DEPs such that they
have significant impact on the spectral features? Figure 1(c)
plots the linear spectrum associated with Eq. (1). It shows
that close to the DEPs, the eigenvalue’s bifurcation (which
corresponds to frequency splitting between two resonant
frequencies, not to their amplitudes) becomes dramatic—a
feature that can be utilized to build next generation ultra-
responsive PT sensors beyond the current state of the art. In
theory, similar behavior can also be traced in the conven-
tional two-element PT symmetric systems studied in [23].
In practice, the divergent exceptional line in the latter occurs
for κ ¼ 1—a condition that is impossible to achieve in
experiment as it implies perfect mutual coupling between
the inductors, i.e., equal values for the mutual and self
inductances. Thus, the main merit of the three-element
circuit presented here is to bring these singularities to an
experimentally accessible domain. Importantly, we note that
the above results do not have analogs in optical systems. In
fact, an optical PT trimer that consists of a neutral element
sandwiched between gain and loss sites will demonstrate a
very different behavior by possessing a third order excep-
tional point [45,56–58].

In order to demonstrate the advantage of the proposed
circuit topology [Fig. 1(a)] in providing indirect access to the
DEPswith potential telemetric sensing applications,we have
built a prototype using onboard circuit technology (see the
SM [59] for details). The circuit consists of a tunable RLC
tank that mimics a wireless capacitive sensor [26]. This
pseudosensor consists of a variable capacitor, connected
in series to a planar spiral inductor and a resistor (which
accounts for the effective resistance of the sensor), such that
its equivalent circuit is identical to that of a realistic wireless
sensor. The information provided by the sensor is then read
by a −RLC tank connected to the vector network analyzer
for measuring the reflection spectrum. Unlike standard
PT-symmetric telemetric systems where the sensor and
reader tanks are directly coupled [26], the current system
is constructed by inserting a neutral LC tank between the
−RLC andRLC oscillators as shown in Fig. 1(a). In both the
−RLC and RLC resonators, the inductance of microstrip
coils is L ¼ 330nH and the absolute value of resistance
j − Rj ¼ R ¼ 50 Ω. In order to emulate behaviors of a
wireless capacitive sensor, the capacitance C of tank circuits
is tuned from 30 to 220 pF (SMA CER� 0.05 pF). This, in
turn, varies the non-Hermitian parameter of the system,
γ ∝ 1=

ffiffiffiffi

C
p

which is the relevant parameter for real-life
wireless capacitive sensing applications [26]. A schematic
diagramand a picture of the implemented circuit are shown in
Figs. 2(a) and 2(b), respectively. For comparison, we have

FIG. 2. Circuit schematic (a) and picture of the on-board circuit
implementation (b) of the proposed three-elements rf network. (c)
and (d) plot the real and imaginary eigenfrequencies as extracted
from the rf reflection measurements (see the SM [59] for details).
From (c), it is clear that the frequency splitting in the proposed
system (red lines and dots) is larger than that of the corresponding
standard PT system having a coupling κ ¼ 0.3 (blue lines and
dots), as well as that associated with a conventional telemetry
system based on non-PT inductive coupling geometry (see Fig.
S.2 in the SM [59] for more details) which is shown in green lines
and dots [26].
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also fabricated a standard (two-element) PT circuit. In both
structures, the normalized coupling coefficient was engi-
neered to be κ ¼ 0.3. While this value is relatively weak, it
still favors the three-element circuit in terms of operationnear
the DEP (corresponding to κ ≈ 0.7) as compared to the
standard two-element circuit having DEP at κ ¼ 1.
Figures 2(c) and 2(d) plot the theoretical (solid lines) and

experimental (dots) values of complex eigenfrequencies
as a function of the non-Hermitian parameter γ for the
proposed three-element circuit. The experimental results
here span the range indicated by the white dashed line in
Fig. 1(b); i.e., they trace the transition from the UB PT
phase to the PT phase across the EP marked by the green
point in the figure. For comparison, we also present the
results for the standard two-element PT circuit on the same
figure. First, we find a good agreement between theoretical
predictions and experimental data. Second, it is clear that the
three-element system demonstrates giant frequency splitting
(red data points) compared with the standard one (blue dots).
Finally, we also note that the location of the EP in the
proposed three-element system is down shifted compared
with the standard circuit, which is in agreement with theory.
Encouraged by these results, we have also explored the

related system shown in Fig. 3(a). Here, the neutral
oscillator has the same resonant frequency as before but
with its inductor and capacitor scaled according to 2L and a

C=2. Furthermore, we consider the coupling topology
shown in Fig. 3(a). By following a similar analysis to that
shown in the SM [59], one can show that the new frequency
splitting will be enhanced because κ in Eq. (1) is replaced

by
ffiffiffi

2
p

κ. In this case, the divergent exceptional line is
located at κD ¼ 0.5. In other words, this modified circuit
requires reduced normalized coupling to bring the system
closer to the DEP, which in turn, leads to enhanced
eigenvalue bifurcation. Figure 3(b) depicts the fabricated
circuit with the modified neutral circuit. The theoretical and
experimental data for the spectral bifurcation are plotted in
Figs. 3(c) and 3(d). Again for comparison, we also plot the
data for the standard two-element PT circuit. As evidenced
by the plots, we observe a gigantic enhancement of the
frequency bifurcations, almost 5 times more than in the
previous case.
To further facilitate the comparison between the pro-

posed circuits with respect to each other as well as to the
standard PT circuit, we also plot the frequency splitting
extracted from Figs. 2 and 3 as a function of Δγ ¼ γ − γEP.
As can be observed from Figs. 4(a) and 4(b), the scaled PT
circuit, being closer to the DEP, offers a clear advantage as
measured by larger splitting.
In conclusion, we have introduced the notion of diver-

gent exceptional points and showed how they can be
indirectly accessed by using three-element PT-symmetric
electronic circuits made of gain-neutral-loss resonators.
We have tested our predictions experimentally and dem-
onstrated that, indeed, the eigenfrequency bifurcation close
to divergent exceptional points can be boosted as a result of
the interplay between the square root splitting of second
order EPs and the giant multiplication factor associated
with DEPs. We envision that such new non-Hermitian
electronic systems, when applied to wireless probing and
telemetering, will enable a superior sensing capability. This
work can also be extended to other microwave, millimeter-
wave and terahertz wireless systems.
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FIG. 3. Schematic of the scaled three-element circuit (a) and
picture of its on-board circuit implementation (b). (c), and (d) plot
the real and imaginary eigenfrequencies, varying a function
of non-Hermitian parameter γ, for the dual-links three-stages
PT-symmetric telemetric system in (a) with κ ¼ 0.495 (red
circles), the standard PT-symmetric telemetric system with
κ ¼ 0.7 (blue squares), and the conventional one using a microcoil
reader with κ ¼ 0.7 (green diamonds). A fivefold enhancement
in the bifurcation compared to a standard PT circuit is observed.
For comparison, we also present the results for conventional a
telemetry system (green line and dots) [26]. For completeness,
we also plot the constant eigenfrequency (horizontal red line)
associated with the solution in Eq. (1).

FIG. 4. Plots of the frequency splitting as a function of Δγ ¼
γ − γEP for both experimental setups shown in Figs. 2 and 3. Note
that the scaled PT circuit offers a clear advantage as measured by
larger splitting.
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