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Abstract—We show that any (1, 2)-rational function with a unique fixed point is topologically
conjugate to a (2,2)-rational function or to the function f(z) = 37 . The case (2,2) was studied
in our previous paper, here we study the dynamical systems generated by the function f on the
set of complex p-adic field C,. We show that the unique fixed point is indifferent and therefore the
convergence of the trajectories is not the typical case for the dynamical systems. We construct
the corresponding Siegel disk of these dynamical systems. We determine a sufficiently small set
containing the set of limit points. It is given all possible invariant spheres. We show that the p-adic
dynamical system reduced on each invariant sphere is not ergodic with respect to Haar measure on
the set of p-adic numbers Q,. Moreover some periodic orbits of the system are investigated.
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1. INTRODUCTION

We study p-adic dynamical systems generated by a rational function. For motivation of such
investigations see [1—8] and references therein. The paper is organized as follows: First we give some
necessary definitions and facts. Then in Section 2 show that any (1, 2)-rational function with a unique
fixed point is topologically conjugate to a (2, 2)-rational function or to the function f(z) = wg_fa. In[7]
the case of (2, 2)-rational function with a unique fixed point is studied. In this paper for f we show that
the unique fixed point is indifferent. We give a Siegel disk of the dynamical system. We give a localization
of the set of limit points. Section 3 contains a description of all invariant spheres with respect to f.
We study ergodicity properties of the dynamical system reduced on each invariant sphere with respect
to Haar measure and show that the p-adic dynamical system reduced on each invariant sphere is not
ergodic. In Section 4 we find 2-periodic orbit {¢1, t2} and show that it can only be either an attracting or
an indifferent. We shall prove that if the cycle is attracting then it attracts each trajectory which starts
from an element of an open ball of radius h = [t; — ta, centered at ¢; or at ¢y. If the 2-periodic cycle is an
indifferent one then every iteration maps either of the two aforementioned balls to another one. All other
spheres of radius > h and center t; and ¢, are invariant independently of the attractiveness of the cycle.
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78 ROZIKOV et al.
1.1. p-Adic Numbers

Let Q be the field of rational numbers. The greatest common divisor of the positive integers n and
m is denotes by (n,m). Every rational number x # 0 can be represented in the form x = p" ", where
r,n € Z, mis a positive integer, (p,n) = 1, (p,m) = 1 and p is a fixed prime number.

The p-adic norm of x is given by

p~", forx #0,
x|y =

0, forx = 0.
[t has the following properties:
1) |z|, > 0and |z|, = 0ifand only if z = 0,
2) eyl = llplylp,
3) the strong triangle inequality
|z + ylp < max{[zly, ylp},

3.1)if |z], # |ylp then |2 + y|, = max{|z[p, [y|p},

3.2)if x|, = |ylp then for p = 2 we have |z + y|, < §|a:|p (see[10]).

This norm is a non-Archimedean one.

The completion of Q with respect to p-adic norm defines the p-adic field which is denoted by Q,, (see
[3])-

The algebraic completion of Q, is denoted by C,, and it is called complex p-adic numbers. Note that
(see[3, 5,9]) C, is algebraically closed, an infinite dimensional vector space over Q,, and separable. The
value group of C,, is {p" : r € Q}. Any element of C,, can be expressed as the product of a fractional
power of p, a root of unity and an element of the unit disk around 1 in C,,.

Forany a € C, and r > 0 denote
Ula) ={z € Cp:lz—al, <r}, Vifa)={zecCp:|r—al, <r},

Sr(a) ={z € Cp: |z —al, =7}

A function f : U,(a) — C, is said to be analytic il it can be represented by

f@) =) falz—a)", fo€Cy
n=0

which converges uniformly on the ball U, (a).

1.2. Dynamical Systems inC,,
Recall some known facts concerning dynamical systems (f,U) in Cp,, where f : 2 € U — f(z) € U
is an analytic function and U = U,.(a) or C,, (see for example [4, 11]).
Now let f : U — U be an analytic function. Denote f™(z) = fo---o f(x).

n

If f(xg) = xo then xg is called a fixed point. The set of all fixed points of f is denoted by Fix(f). A
fixed point xq is called an attractor if there exists a neighborhood U (x) of x¢ such that for all points
x € U(xp) it holds li_}rn f"(x) = xo. lf zg is an attractor then its basin of attraction is

A(zg) ={x € C,: f"(x) = z9, n — oo}.

A fixed point x is called repeller if there exists a neighborhood U (z) of zg such that | f(z) — x|, >
|z — 20|, forz € U(xo), z # xo.
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p-ADIC DYNAMICAL SYSTEMS 79

Let 2 be a fixed point of a function f(z). Put A = f’(zo). The point zq is attractive if 0 < |A[, < 1,
indifferent if |A|, = 1, and repelling if |A[, > 1.

The ball U, (x0) (contained in V') is said to be a Siegel disk if each sphere S, (o), p < 7 is an invariant
sphere of f(x),i.e.ifx € S,(x¢) then all iterated points f"(x) € S,(xo) foralln =1,2.... The union of
all Siegel disks with the center at x is said to a maximum Siegel disk and is denoted by ST (x).

Let f:U—U and g:V — V be two maps. f and g are said to be topologically conjugate if
there exists a homeomorphism h : U — V such that, ho f = g o h. The homeomorphism A is called
atopological conjugacy. Mappings that are topologically conjugate are completely equivalent in terms

of their dynamics. For example, if f is topologically conjugate to g via h, and xg is a fixed point for f,
then h(zo) is fixed for g. Indeed, h(xzo) = hf(xg) = gh(xg).

2. (1,2)-RATIONAL p-ADIC DYNAMICAL SYSTEMS

In this paper we consider the dynamical system associated with the (1, 2)-rational function f : C, —
C, defined by

ar+b

flz) = 22 +cr+d’

—ctVe2—4d
9 .

a#0, a,b,c,deC, (2.1)

where z # 219 =

We can see that for (1, 2)-rational function (2.1) the equation f(x) = x for fixed points is equivalent
to the equation

2+’ +(d—a)r—b=0. (2.2)
Since C, is algebraic closed the equation (2.2) may have three solutions with one of the following:
(i) One solution having multiplicity three;
(ii) Two solutions, one of which has multiplicity two;
(iii) Three distinct solutions.

In this paper we investigate the behavior of trajectories of an arbitrary (1,2)-rational dynamical
system in complex p-adic filed C,, when there is unique fixed point for f, i.e., we consider the case (i).

The following lemma gives a criterion on parameters of the function (2.1) guaranteeing the unique-
ness of its fixed point.

Lemma 2.1. The function (2.1) has unique fixed point if and only if

—-c_ d—a_3 —c_\/d—a_g
, = \/3 = Vb or s =\ s = Vb. (2.3)

Proof. Necessariness. Assume (2.1) has a unique fixed point, say xg. Then the LHS of equation (2.2)
(which is equivalent to f(x) = x) can be written as

23+ ca® 4 (d —a)x — b= (x — x0)>.
Consequently,
3rg = —c
3 =d—a ;
z3=10b

which gives

—c d—a 3
=g \/ 3 =V
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80 ROZIKOV et al.

Sufficiency. Assume the coefficients of (2.1) satisfy (2.3). Then it can be written as

3

f@)= ar = 2 a#0, a,ceC, (2.4)
Tt+cex+ 3 +a
In this case the equation f(x) = z can be written as
(x + C)3 =0.

3
Thus f(x) has unique fixed point zg = — 3.

[t follows from this lemma that if the function (2.1) has unique fixed point then it has the form (2.4).
Thus we study the dynamical system (f, C,) with f given by (2.4).

Let homeomorphism h : C, — C,, is defined by z = h(t) = t + z¢. So h™(x) = z — x¢. Note that,
the function f is topologically conjugate to function A=! o f o h. We have
(& C2
S+ (a+ )t

h™lo foh)(t) = .
(o fo ) 24+ Sttat S

(2.5)

In (2.5), the case ¢ # 0 is studied in [7].

Thus in this paper we consider the case ¢ = 0 in (2.5). Therefore, in this paper we study dynamical
systems of the following function

axr

f(m):m2+a’ a#0, acC,. (2.6)

where x # %1, &9 = +/—a.
[t is easy to see that function (2.6) has unique fixed point ¢y = 0. For (2.6) we have

f'(zo) = f'(0) = 1,
i.e., the point z is an indifferent point for (2.6).
[t follows from (2.6) that

|f(@) —zolp = | f(2)]p = |2]p - ‘zz‘ﬂpa‘p' (2.7)

Letting A = |a/,,, we have

A

p = |$|P |x2_|_a|p'

|/ ()]

Denote:
P={xeC,:3ne NU{0}, f"(z) € {&1,22}}. (2.8)
Let the function ¢4 : [0, +00) — [0, +00) be defined by:

r, if r< VA
pa(r)=1< A* if r=+vA ,
A, if r>+vVA
r
where A* is a positive number such that A* > VA.

Lemma 2.2. /fx € S,(xq), then the following holds for the function (2.6):
[f"(@)lp = Pa(r).
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We now see that the real dynamical system compiled from ¢7 is directly related to the p-adic
dynamical system f™(x), n > 1, x € C, \ P. The following lemma gives properties to this real dynamical

system.
Lemma 2.3. The function ¢ has the following properties

1. Fix(pa) = {r:0<r <VA}U{VA:if A* =VA}.
2. Ifr >/ Athen Oh(r) = ’;‘for alln > 1.
3. Ifr =VAand A* > VA, then "\ (VA) = ;. foralln> 2.

Proof. 1) This is a simple observation of the equation @ 4(r) = r.

2) Iir > VA, then by definition of function ¢4, we have
A
(2.9)

palr) =
Moreover, r > /A, ’;‘ < V/A. By part 1 of this lemma, ‘;‘ is to be considered a fixed point for v 4 (7).

Furthermore, ¢} = ’;‘ foralln > 1.

3) The proof of part 3 follows from part 2 of this lemma.

From this lemma it follows that

( T, 0<r<+vA
VA, r=+vA A*=+A
li_>m " (r) = , (2.10)
A r=VAA > VA
’:}, r>+/A
forany r > 0.
Denote:
A (z) = |f(z)|p, if z€ S /4(0).

Applying Lemma 2.2, and 2.3, and formula (2.10) we get the following properties of the p-adic

dynamical system complied by the function (2.6).
Theorem 2.4. The p-adic dynamical system is generated by the function (2.6) has the following

properties:
1.2) PC S\/A(O).

2. Ifr>+/Aand x € S,(0), then
f"(z) € Sa(0) forall n > 1.

3. Letze S ,,(0)\ 2.
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3.1) If A*(x) = /A, then
f(@) €5,,(0).

3.2) If A*(x) > /A, then
fxz)es a (0), Vn>2.

A*(z)

Proof. 1.1 Bylemma 2.2 and part 1 of Lemma 2.3, sphere S,.(0) is invariant for f if and only if
r < v/ A. Consequently, SI(xg) = U,/4(0).

1.2 Note that |#1| = |T2] = VA, ie., {&1,22} C S./4(0). By part 1.1, and 2 of this theorem
if z€8,(0),r# VA, then f(z) ¢ S./4(0). By definition of set P, we can conclude that
PC S\/A(O)

2. The proof of part 2 easily follows from Lemma 2.2 and part 2 of Lemma 2.3.
3.1 Itz e S ,,(0)\Pand A* = VA, we have | f(z)], = VA, ie., f(z) € S./4(0).
3.2 If A* > /A, then by part 2 of this theorem we have f™(x) € SA*,? [0 foralln > 2.

3. ERGODICITY PROPERTIES OF THE DYNAMICAL SYSTEM f(z) = 37 IN Q,

z2+a
In this section we assume that /—a exists in Q,. Consider the dynamical system (2.6) in Q,,.
Define the following set:

A={r:0<r<vA.
From previous section we have
Corollary 3.1. The sphere S,.(0) is invariant for f if and only if r € A.
In this section we study ergodicity of dynamical system on each invariant sphere.
Lemma 3.2. For every closed ball V,(c) C S.(0),r € A, the following is sufficient to say
FVo(e)) = Vp(f(c)). (3.1)

Proof. By inclusion of V,(¢) C S,(0), we have |¢|, = 7.
Letz € V,(c),i.e. |x — ¢, < p, then

lalp - o — xclp

_ =z —c, - ) 2
1@ = Q= e =cly- 57 0" (32)
|z - c|, =%, since z € V,(c) C S,(0). Moreover, |a|, = A. Iir € Aie. 7 < VA, then [22|, = |z - |, =
r? < A = |al,. By the equality of (3.2), | f(z) — f(c)|p = |z — c|, < p.
Lemma3.3. /f c € S.(0), 7 € A, then |f(c) — cp =",
Proof. This follows from the following equality,
@ =ch =15 o= 1P =" becauser? < 4 (33
p = c2+ap_\cz+a|p_A’ ecause 1 . :
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By Lemma 3.3, we have that | f(c) — ¢|, relies on 7, but does not rely on ¢ € S,.(0), therefore we define
p(r) = |(c) = clpif ¢ € ,(0).

The following theorems and respective proofs can be reviewed upon in the references as they are
similar to the results of paper|[7].

Theorem 3.4. If c € S,(0),r € A then,

1. Foranyn > 1 the Jollowing equality holds | f"(c) — f(c)|, = p(r).
2. f(Vp(r) (C)) = Vp(r) (C)

3. If for some 8 > 0, the ball Vy(c) C S;(0) is an invariant for f, then 8 > p(r).

Foreachr € A, let us consider a measurable space (S,(0), B), in this case, B is the algebra generated
by the closed subsets of S,.(0). Each element of B is a union of some balls V,(c).

A measure i : B — R is considered to be Haar Measure if it is defined by fi(V,(c)) = p.
Notice that S, (a) = W(a)/V; (a), where p is a prime.
Consider the normalized (probability) Haar measure:

1(Vp(c)) _  br
A(5,0) ~ r(p—1)°

By Lemma 3.2, we can conclude that f preserves the measure y, i.e.,

BV = nVp(fe)) = | 7)) = V(o))

p(Vp(c)) =

The dynamical system,(X, T, ), where T': X — X, is a measure preserving transformation (i.e.
w(T~Y(A)) = u(A) , for all A)and p is a probability measure. The dynamical system is ergodic, if for
every invariant set V- we have u(V) = 0 or u(V) = 1.

Theorem 3.5. The p-adic dynamical system (S,(0), f, ) is not ergodic for all prime p and all
r e A.

Proof. Consider (S,(0), f, ) a dynamical system where p is normalized Haar measure. Note that
V() C S;(0) is a minimal invariant ball. By Lemma 3.3, we have the following:

Wiy = PO p

Crlp—1) rlp-1) A(p-1)
Ifr € A, thenr < VA, i.e., pr <+A. By this inequality, we have

1

(p—1) <t

N(Vp(r)(c)) < D
for all prime p.

Remark 3.6. The result of this section, by example ;7 . illustrates the general result on ergodic
functions on a sphere (see, for example, [2]). The case of a sphere with a radius greater than |

reduced to the case considered in this paper.
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4. 2-PERIODIC POINTS

In this section, we will be interested in finding periodic points of function (2.6).

Proposition 4.1. I function (2.6) has k-periodic points {yo — y1 — ... = yr — Yo}, then

olp = lyilp = ... = |ykl, < VA.

Proof. Let function (2.6) has k-periodic points {yo = y1 — ... = yx — Yo}-

Assume that |y;|, > v/A for some i € {0,1,...,k}. Then by part 2 of Theorem 2.4 we have y; 1 =
f(yi) € Uyu(0) e, |yivalp =71 < v/ A and S,.(0) is invariant sphere of function (2.6). From this
Yirtlp = lyivalp = - = lyelp = Iyolp = - = yilp < VA.

This contradicts to our assumption. Consequently |y;|, < v/Aforanyi € {0,1, ..., k}.

I yil, = 7 < VA, then |yolp = [y1lp = ... = |yklp = 7 < VA, because S,.(0) is invariant for all r <

VA.

If |yil, = r = V/A, then by the above-mentioned results |y; 11|, ¥ VA and |yi+1], # VA. Conse-
quently, [yolp = yilp = - = |yklp = VA

Let us consider 2-periodic points, i.e. consider the equation

CL{L’3 CL2{L’
9(2) = F(f(2)) = - — (4.1)

x4 + 3ax? + a?

Since x = 0 is the unique fixed point, it satisfies (4.1). Assuming that x # 0, the equation (4.1) is
equivalent to 22 + 2a = 0, hence two solutions, t12 = ++/—2a. For these points we have

VA, ifp#£2
¢§, ifp=2.

It is a coincidence that ¢'(t1) = ¢'(t2) = 9, i.e. the value does not rely on the parameter a. Therefore
we have

tilp = Italp =

1, ifp#3
9/ (t1)]p = 19’ (t2)|p =
5, ifp=3.

Note that the function g is defined in C,, \ {331,2 = ++/—a, %172,374 = i\/(_?’iz‘/5)a}.

Let us define the following:

Py ={x € C, : 3n € N,such that f"(z) € {Z1 2, %172,374}}.

p-ADIC NUMBERS, ULTRAMETRIC ANALYSIS AND APPLICATIONS Vol. 11 No.1 2019



p-ADIC DYNAMICAL SYSTEMS 85

4.1. Casep =2
In this case we have |t1|y = |ta]e = \/‘3 <VAand [ty —ti| = 2\/\2. By Lemma 3.3 and part 2 of
Theorem 3.4 we have

p (\/?) =|f(t1) —til2 = 2‘/\2 and f(vm (t1)) = V!fé (t1).

In this case each fixed point ¢1, t2 of g is an indifferent point and is the center of a Siegel disk.
VA

Theorem 4.2. [[fp =2 then f(S,(t1) \ P2) C Sy(t2), f(Sy(t2) \ P2) C S,(t1), forany 0 < r < o2

Proof. We shall use the following equalities:
f(t1) =t2, f(t2) =t1.
Lett; = v—2aandx € S, (t1) \ Pa C V, (t1),ie, |z —ti|a =7 < 2\/\2. We have
2v/2
—3a++v—2a(x —t1)

[z —t1 ++v—a(vV/2 = D]z —t; + V—a(vV2 +1)] (4.2)

2

[f(x) —tal2 = | f(2) = f(tr)l2 =7

In RHS of equality (4.2) we have | — 3a|s = A, |v/—2a(z —t1)|]2 = r\/‘g <Aand |[vV2—1]p = |V2 +
1|2 =1.So |f(l‘) — t2|2 = |f(l‘) — f(t1)|2 =T, i.e., f(l‘) S S,«(tg).
[z € S.(t2) \ P2 C V4 (t1), then we have
2v/2
—3a — v/—2a(z — ta)

o= ts— v—a(v2 - Dz — ts — v—a(v2+ 1), P

2

[f(z) = tala = [f(2) = f(t2)l2 = 7"
Consequently, [f(z) — ti]2 = [f(z) — f(t2)]2 = r,ie, f(z) € Sp(t1).
4.2. Casep =3

In this case [t1]3 = |ta|3 = |t — t1]3 = V/A and each fixed point ¢y, 5 of g is an attractive point of g.

Theorem 4.3. Ifp =3 andr < VA, then
a) Foranyx € S,(t1) \ Po, lim, 00 f2(x) = t1 and lim,,_,o 2" (2) = to.
b) Foranyz € S.(t3) \ P2, lim, o0 27 () = to and lim, o f2" T (z) = ;.

Proof. Let Sy(t1) C S /,(0),r < VAandz € S,(t;) \ P, i.e., |x — t1|3 = r. We have
_ . B e ' | —3a+ v/—2a(x —t1)|3
|f(x) —ta]s = |f(x) = f(t1)]3s = |z — t1]3 lz—t1 +v—a(vV2 =13z —t1 + V—a(vV2+1)|5

By this equality

T i << VA4,

[f(@) —tals = d(r) = ¢ < VA, il r= VA, (4.4)
5, dhr< \/3’4.

For f2(x) we have

|2 (2) = tls = [f*(x) — f3(t1)ls
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= |f(z) — to|3 - | = 3a+ v —=2a(f(x) —t2)3
[f(z) —te +V—a(vV2 = 1)z [f(2) —ta + V—a(vV2+ 1)]3

((”\(/’;)‘)2, it VA < b(r) < VA,

= (o(r) = § < V&, if o(r) = Y,
P g(r) < VA
[terating this argument we obtain the following formulas for x € S,.(¢1) \ Po:

|2 (@) = tals = *"(r), [f2"TH(2) = tals = 6" (r). (4.5)

Thus the dynamics of the radius r of the spheres is given by the function ¢ : [0,v/A) — [0,/ A), which
is defined in formula (4.4). The following properties of ¢ are obvious:

1. The set of fixed points of ¢(r) is Fix(¢) = {0};

2. The fixed point 7 = 0 is attractive with basin of attraction [0,v/A), independently on the value
(%) <5

Using (4.5) it is easy to see that the assertion (a) and (b) follows from property 2.

4.3. Casep > 5

In this case we have [t1], = [ta|p = |t2 — ti|p = VA and each fixed point ¢y, 5 of ¢ is an indifferent
point and is the center of a Siegel disk.

Theorem 4.4. If p > 5 then f(S,(t1) \ P2) C S,(t2), f(S,(t2) \ P2) C S,(t1), for any 0 < r < v A.

Proof. Let x € Sp(t1) \ P2 C V/,(t1), ie, |z —t1fp =71 < VA. In RHS of equality (4.2) we have
| —3al, = A, |V —2a(x —t1)|, = VA< Aand |2 — 1|, = [V2+ 1|, = 1. So | f(z) — ta|, = | f(x) —
f(t)]p =r e, f(x) € Sp(ta).
lfx e S.(ta) \ P2 C V“f (t1), then we have |f(z) — ti|, = |f(x) — f(t2)|p =1, ie., f(z) € Sp(t1).
22

Consequently, f(S,(t1) \ P2) C S, (t2) and f(S,(t2) \ P2) C Sp(t1), forany 0 < r < V/A.
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