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Abstract—We show that any (1, 2)-rational function with a unique fixed point is topologically
conjugate to a (2, 2)-rational function or to the function f(x) = ax

x2+a . The case (2, 2) was studied
in our previous paper, here we study the dynamical systems generated by the function f on the
set of complex p-adic field Cp. We show that the unique fixed point is indifferent and therefore the
convergence of the trajectories is not the typical case for the dynamical systems. We construct
the corresponding Siegel disk of these dynamical systems. We determine a sufficiently small set
containing the set of limit points. It is given all possible invariant spheres. We show that the p-adic
dynamical system reduced on each invariant sphere is not ergodic with respect to Haar measure on
the set of p-adic numbers Qp. Moreover some periodic orbits of the system are investigated.
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1. INTRODUCTION

We study p-adic dynamical systems generated by a rational function. For motivation of such
investigations see [1–8] and references therein. The paper is organized as follows: First we give some
necessary definitions and facts. Then in Section 2 show that any (1, 2)-rational function with a unique
fixed point is topologically conjugate to a (2, 2)-rational function or to the function f(x) = ax

x2+a
. In [7]

the case of (2, 2)-rational function with a unique fixed point is studied. In this paper for f we show that
the unique fixed point is indifferent. We give a Siegel disk of the dynamical system. We give a localization
of the set of limit points. Section 3 contains a description of all invariant spheres with respect to f .
We study ergodicity properties of the dynamical system reduced on each invariant sphere with respect
to Haar measure and show that the p-adic dynamical system reduced on each invariant sphere is not
ergodic. In Section 4 we find 2-periodic orbit {t1, t2} and show that it can only be either an attracting or
an indifferent. We shall prove that if the cycle is attracting then it attracts each trajectory which starts
from an element of an open ball of radius h = |t1 − t2|p centered at t1 or at t2. If the 2-periodic cycle is an
indifferent one then every iteration maps either of the two aforementioned balls to another one. All other
spheres of radius > h and center t1 and t2 are invariant independently of the attractiveness of the cycle.
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1.1. p-Adic Numbers

Let Q be the field of rational numbers. The greatest common divisor of the positive integers n and
m is denotes by (n,m). Every rational number x �= 0 can be represented in the form x = pr n

m , where
r, n ∈ Z, m is a positive integer, (p, n) = 1, (p,m) = 1 and p is a fixed prime number.

The p-adic norm of x is given by

|x|p =

⎧
⎪⎨

⎪⎩

p−r, for x �= 0,

0, for x = 0.

It has the following properties:
1) |x|p ≥ 0 and |x|p = 0 if and only if x = 0,
2) |xy|p = |x|p|y|p,
3) the strong triangle inequality

|x+ y|p ≤ max{|x|p, |y|p},

3.1) if |x|p �= |y|p then |x+ y|p = max{|x|p, |y|p},

3.2) if |x|p = |y|p then for p = 2 we have |x+ y|p ≤ 1
2 |x|p (see [10]).

This norm is a non-Archimedean one.
The completion of Q with respect to p-adic norm defines the p-adic field which is denoted by Qp (see

[3]).
The algebraic completion of Qp is denoted by Cp and it is called complex p-adic numbers. Note that

(see [3, 5, 9]) Cp is algebraically closed, an infinite dimensional vector space over Qp, and separable. The
value group of Cp is {pr : r ∈ Q}. Any element of Cp can be expressed as the product of a fractional
power of p, a root of unity and an element of the unit disk around 1 in Cp.

For any a ∈ Cp and r > 0 denote

Ur(a) = {x ∈ Cp : |x− a|p < r}, Vr(a) = {x ∈ Cp : |x− a|p ≤ r},

Sr(a) = {x ∈ Cp : |x− a|p = r}.

A function f : Ur(a) → Cp is said to be analytic if it can be represented by

f(x) =

∞∑

n=0

fn(x− a)n, fn ∈ Cp,

which converges uniformly on the ball Ur(a).

1.2. Dynamical Systems in Cp

Recall some known facts concerning dynamical systems (f, U) in Cp, where f : x ∈ U → f(x) ∈ U
is an analytic function and U = Ur(a) or Cp (see for example [4, 11]).

Now let f : U → U be an analytic function. Denote fn(x) = f ◦ · · · ◦ f
︸ ︷︷ ︸

n

(x).

If f(x0) = x0 then x0 is called a fixed point. The set of all fixed points of f is denoted by Fix(f). A
fixed point x0 is called an attractor if there exists a neighborhood U(x0) of x0 such that for all points
x ∈ U(x0) it holds lim

n→∞
fn(x) = x0. If x0 is an attractor then its basin of attraction is

A(x0) = {x ∈ Cp : fn(x) → x0, n → ∞}.
A fixed point x0 is called repeller if there exists a neighborhood U(x0) of x0 such that |f(x)− x0|p >
|x− x0|p for x ∈ U(x0), x �= x0.
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p-ADIC DYNAMICAL SYSTEMS 79

Let x0 be a fixed point of a function f(x). Put λ = f ′(x0). The point x0 is attractive if 0 < |λ|p < 1,
indifferent if |λ|p = 1, and repelling if |λ|p > 1.

The ballUr(x0) (contained in V ) is said to be a Siegel disk if each sphereSρ(x0), ρ < r is an invariant
sphere of f(x), i.e. if x ∈ Sρ(x0) then all iterated points fn(x) ∈ Sρ(x0) for all n = 1, 2 . . . . The union of
all Siegel disks with the center at x0 is said to a maximum Siegel disk and is denoted by SI(x0).

Let f : U → U and g : V → V be two maps. f and g are said to be topologically conjugate if
there exists a homeomorphism h : U → V such that, h ◦ f = g ◦ h. The homeomorphism h is called
a topological conjugacy. Mappings that are topologically conjugate are completely equivalent in terms
of their dynamics. For example, if f is topologically conjugate to g via h, and x0 is a fixed point for f ,
then h(x0) is fixed for g. Indeed, h(x0) = hf(x0) = gh(x0).

2. (1, 2)-RATIONAL p-ADIC DYNAMICAL SYSTEMS

In this paper we consider the dynamical system associated with the (1, 2)-rational function f : Cp →
Cp defined by

f(x) =
ax+ b

x2 + cx+ d
, a �= 0, a, b, c, d ∈ Cp. (2.1)

where x �= x1,2 =
−c±

√
c2−4d
2 .

We can see that for (1, 2)-rational function (2.1) the equation f(x) = x for fixed points is equivalent
to the equation

x3 + cx2 + (d− a)x− b = 0. (2.2)

Since Cp is algebraic closed the equation (2.2) may have three solutions with one of the following:
(i) One solution having multiplicity three;
(ii) Two solutions, one of which has multiplicity two;
(iii) Three distinct solutions.
In this paper we investigate the behavior of trajectories of an arbitrary (1, 2)-rational dynamical

system in complex p-adic filed Cp when there is unique fixed point for f , i.e., we consider the case (i).
The following lemma gives a criterion on parameters of the function (2.1) guaranteeing the unique-

ness of its fixed point.

Lemma 2.1. The function (2.1) has unique fixed point if and only if

−c

3
= −

√
d− a

3
=

3
√
b or

−c

3
=

√
d− a

3
=

3
√
b. (2.3)

Proof. Necessariness. Assume (2.1) has a unique fixed point, say x0. Then the LHS of equation (2.2)
(which is equivalent to f(x) = x) can be written as

x3 + cx2 + (d− a)x− b = (x− x0)
3.

Consequently,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3x0 = −c

3x20 = d− a

x30 = b

,

which gives

x0 =
−c

3
= ±

√
d− a

3
=

3
√
b.
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Sufficiency. Assume the coefficients of (2.1) satisfy (2.3). Then it can be written as

f(x) =
ax− c3

27

x2 + cx+ c2

3 + a
, a �= 0, a, c ∈ Cp. (2.4)

In this case the equation f(x) = x can be written as

(x+
c

3
)3 = 0.

Thus f(x) has unique fixed point x0 = − c
3 .

It follows from this lemma that if the function (2.1) has unique fixed point then it has the form (2.4).
Thus we study the dynamical system (f,Cp) with f given by (2.4).

Let homeomorphism h : Cp → Cp is defined by x = h(t) = t+ x0. So h−1(x) = x− x0. Note that,
the function f is topologically conjugate to function h−1 ◦ f ◦ h. We have

(h−1 ◦ f ◦ h)(t) =
c
3 t

2 + (a+ c2

9 )t

t2 + c
3t+ a+ c2

9

. (2.5)

In (2.5), the case c �= 0 is studied in [7].
Thus in this paper we consider the case c = 0 in (2.5). Therefore, in this paper we study dynamical

systems of the following function

f(x) =
ax

x2 + a
, a �= 0, a ∈ Cp. (2.6)

where x �= x̂1, x̂2 = ±
√
−a.

It is easy to see that function (2.6) has unique fixed point x0 = 0. For (2.6) we have

f ′(x0) = f ′(0) = 1,

i.e., the point x0 is an indifferent point for (2.6).
It follows from (2.6) that

|f(x)− x0|p = |f(x)|p = |x|p ·
|a|p

|x2 + a|p
. (2.7)

Letting A = |a|p, we have

|f(x)|p = |x|p ·
A

|x2 + a|p
.

Denote:

P = {x ∈ Cp : ∃n ∈ N ∪ {0}, fn(x) ∈ {x̂1, x̂2}}. (2.8)

Let the function ϕA : [0,+∞) → [0,+∞) be defined by:

ϕA(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r, if r <
√
A

A∗, if r =
√
A

A

r
, if r >

√
A

,

where A∗ is a positive number such that A∗ ≥
√
A.

Lemma 2.2. If x ∈ Sr(x0), then the following holds for the function (2.6):

|fn(x)|p = ϕn
A(r).
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We now see that the real dynamical system compiled from ϕn
A is directly related to the p-adic

dynamical system fn(x), n ≥ 1, x ∈ Cp \P. The following lemma gives properties to this real dynamical
system.

Lemma 2.3. The function ϕA has the following properties

1. Fix(ϕA) = {r : 0 ≤ r <
√
A} ∪ {

√
A: if A∗ =

√
A}.

2. If r >
√
A then ϕn

A(r) =
A
r for all n ≥ 1.

3. If r =
√
A and A∗ >

√
A, then ϕn

A(
√
A) = A

A∗ for all n ≥ 2.

Proof. 1) This is a simple observation of the equation ϕA(r) = r.

2) If r >
√
A, then by definition of function ϕA, we have

ϕA(r) =
A

r
. (2.9)

Moreover, r >
√
A, Ar <

√
A. By part 1 of this lemma, A

r is to be considered a fixed point forϕA(r).
Furthermore, ϕn

A = A
r for all n ≥ 1.

3) The proof of part 3 follows from part 2 of this lemma.

From this lemma it follows that

lim
n→∞

ϕn (r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

r, 0 ≤ r <
√
A

√
A, r =

√
A, A∗ =

√
A

A
A∗ , r =

√
A,A∗ >

√
A

A
r , r >

√
A

, (2.10)

for any r ≥ 0.
Denote:

A∗(x) = |f(x)|p, if x ∈ S√
A(0).

Applying Lemma 2.2, and 2.3, and formula (2.10) we get the following properties of the p-adic
dynamical system complied by the function (2.6).

Theorem 2.4. The p-adic dynamical system is generated by the function (2.6) has the following
properties:

1. 1.1) SI(x0) = U√
A(0).

1.2) P ⊂ S√
A(0).

2. If r >
√
A and x ∈ Sr(0), then

fn(x) ∈ SA
r
(0) for all n ≥ 1.

3. Let x ∈ S√
A(0) \ P.
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3.1) If A∗(x) =
√
A, then

f(x) ∈ S√
A(0).

3.2) If A∗(x) >
√
A, then

fn(x) ∈ S A
A∗(x)

(0), ∀ n ≥ 2.

Proof. 1.1 By lemma 2.2 and part 1 of Lemma 2.3, sphere Sr(0) is invariant for f if and only if
r <

√
A. Consequently, SI(x0) = U√

A(0).

1.2 Note that |x̂1| = |x̂2| =
√
A, i.e., {x̂1, x̂2} ⊂ S√

A(0). By part 1.1, and 2 of this theorem

if x ∈ Sr(0), r �=
√
A, then f(x) /∈ S√

A(0). By definition of set P, we can conclude that
P ⊂ S√

A(0).

2. The proof of part 2 easily follows from Lemma 2.2 and part 2 of Lemma 2.3.

3.1 If x ∈ S√
A(0) \ P and A∗ =

√
A, we have |f(x)|p =

√
A, i.e., f(x) ∈ S√

A(0).

3.2 If A∗ >
√
A, then by part 2 of this theorem we have fn(x) ∈ S A

A∗(x) (0)
, for all n ≥ 2.

3. ERGODICITY PROPERTIES OF THE DYNAMICAL SYSTEM f(x) = ax
x2+a

IN Qp

In this section we assume that
√
−a exists in Qp. Consider the dynamical system (2.6) in Qp.

Define the following set:

Δ = {r : 0 < r <
√
A}.

From previous section we have

Corollary 3.1. The sphere Sr(0) is invariant for f if and only if r ∈ Δ.

In this section we study ergodicity of dynamical system on each invariant sphere.

Lemma 3.2. For every closed ball Vρ(c) ⊂ Sr(0), r ∈ Δ, the following is sufficient to say

f(Vρ(c)) = Vρ(f(c)). (3.1)

Proof. By inclusion of Vρ(c) ⊂ Sr(0), we have |c|p = r.
Let x ∈ Vρ(c), i.e. |x− c|p ≤ ρ, then

|f(x)− f(c)|p = |x− c|p ·
|a|p · |a− xc|p
(x2 + a)(c2 + a)

. (3.2)

|x · c|p = r2, since x ∈ Vρ(c) ⊂ Sr(0). Moreover, |a|p = A. If r ∈ Δ i.e. r <
√
A, then |x2|p = |x · c|p =

r2 < A = |a|p. By the equality of (3.2), |f(x)− f(c)|p = |x− c|p ≤ ρ.

Lemma 3.3. If c ∈ Sr(0), r ∈ Δ, then |f(c)− c|p = r3

A .

Proof. This follows from the following equality,

|f(c)− c|p = | −c3

c2 + a
|p =

|c3|p
|c2 + a|p

=
r3

A
, because r2 < A. (3.3)
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By Lemma 3.3, we have that |f(c)− c|p relies on r, but does not rely on c ∈ Sr(0), therefore we define
ρ(r) = |f(c)− c|p, if c ∈ Sr(0).

The following theorems and respective proofs can be reviewed upon in the references as they are
similar to the results of paper [7].

Theorem 3.4. If c ∈ Sr(0), r ∈ Δ then,

1. For any n ≥ 1 the following equality holds |fn+1(c) − fn(c)|p = ρ(r).

2. f(Vρ(r)(c)) = Vρ(r)(c).

3. If for some θ > 0, the ball Vθ(c) ⊂ Sr(0) is an invariant for f , then θ ≥ ρ(r).

For each r ∈ Δ, let us consider a measurable space (Sr(0),B), in this case, B is the algebra generated
by the closed subsets of Sr(0). Each element of B is a union of some balls Vρ(c).

A measure μ̄ : B → R is considered to be Haar Measure if it is defined by μ̄(Vρ(c)) = ρ.

Notice that Sr(a) = Vr(a)/V r
p
(a), where p is a prime.

Consider the normalized (probability) Haar measure:

μ(Vρ(c)) =
μ̄(Vρ(c))

μ̄(Sr(0))
=

pρ

r(p− 1)
.

By Lemma 3.2, we can conclude that f preserves the measure μ, i.e.,

μ(f(Vρ(c))) = μ(Vρ(f(c))) =
pρ

r(p− 1)
= μ(Vρ(c)).

The dynamical system,(X,T, μ), where T : X → X, is a measure preserving transformation (i.e.
μ(T−1(A)) = μ(A) , for all A) and μ is a probability measure. The dynamical system is ergodic, if for
every invariant set V we have μ(V ) = 0 or μ(V ) = 1.

Theorem 3.5. The p-adic dynamical system (Sr(0), f, μ) is not ergodic for all prime p and all
r ∈ Δ.

Proof. Consider (Sr(0), f, μ) a dynamical system where μ is normalized Haar measure. Note that
Vρ(r)(c) ⊂ Sr(0) is a minimal invariant ball. By Lemma 3.3, we have the following:

μ(Vρ(r)(c)) =
pρ(r)

r(p− 1)
=

p · r3

A

r(p− 1)
=

pr2

A (p− 1)
.

If r ∈ Δ, then r <
√
A, i.e., pr ≤

√
A. By this inequality, we have

μ(Vρ(r)(c)) ≤
1

p(p− 1)
< 1,

for all prime p.

Remark 3.6. The result of this section, by example ax
x2+a

, illustrates the general result on ergodic
functions on a sphere (see, for example, [2]). The case of a sphere with a radius greater than 1
reduced to the case considered in this paper.
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4. 2-PERIODIC POINTS

In this section, we will be interested in finding periodic points of function (2.6).

Proposition 4.1. If function (2.6) has k-periodic points {y0 → y1 → ... → yk → y0}, then

|y0|p = |y1|p = ... = |yk|p ≤
√
A.

Proof. Let function (2.6) has k-periodic points {y0 → y1 → ... → yk → y0}.

Assume that |yi|p >
√
A for some i ∈ {0, 1, ..., k}. Then by part 2 of Theorem 2.4 we have yi+1 =

f(yi) ∈ U√
A(0), i.e., |yi+1|p = r <

√
A and Sr(0) is invariant sphere of function (2.6). From this

|yi+1|p = |yi+2|p = ... = |yk|p = |y0|p = ... = |yi|p <
√
A.

This contradicts to our assumption. Consequently |yi|p ≤
√
A for any i ∈ {0, 1, ..., k}.

If |yi|p = r <
√
A, then |y0|p = |y1|p = ... = |yk|p = r <

√
A, because Sr(0) is invariant for all r <√

A.

If |yi|p = r =
√
A, then by the above-mentioned results |yi+1|p ≯

√
A and |yi+1|p ≮

√
A. Conse-

quently, |y0|p = |y1|p = ... = |yk|p =
√
A.

Let us consider 2-periodic points, i.e. consider the equation

g(x) ≡ f(f(x)) =
ax3 + a2x

x4 + 3ax2 + a2
= x. (4.1)

Since x = 0 is the unique fixed point, it satisfies (4.1). Assuming that x �= 0, the equation (4.1) is
equivalent to x2 + 2a = 0, hence two solutions, t1,2 = ±

√
−2a. For these points we have

|t1|p = |t2|p =

⎧
⎪⎨

⎪⎩

√
A, if p �= 2

√
A
2 , if p = 2.

It is a coincidence that g′(t1) = g′(t2) = 9, i.e. the value does not rely on the parameter a. Therefore
we have

|g′(t1)|p = |g′(t2)|p =

⎧
⎪⎨

⎪⎩

1, if p �= 3

1
9 , if p = 3.

Note that the function g is defined in Cp \
{

x̂1,2 = ±
√
−a, ˆ̂x1,2,3,4 = ±

√
(−3±

√
5)a

2

}

.

Let us define the following:

P2 = {x ∈ Cp : ∃n ∈ N, such that fn(x) ∈ {x̂1,2, ˆ̂x1,2,3,4}}.
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4.1. Case p = 2

In this case we have |t1|2 = |t2|2 =
√

A
2 <

√
A and |t2 − t1|2 =

√
A

2
√
2

. By Lemma 3.3 and part 2 of

Theorem 3.4 we have

ρ

(√
A

2

)

= |f(t1)− t1|2 =
√
A

2
√
2

and f(V √
A

2
√

2

(t1)) = V √
A

2
√

2

(t1).

In this case each fixed point t1, t2 of g is an indifferent point and is the center of a Siegel disk.

Theorem 4.2. If p = 2 then f(Sr(t1) \ P2) ⊆ Sr(t2), f(Sr(t2) \ P2) ⊆ Sr(t1), for any 0 < r ≤
√
A

2
√
2

.

Proof. We shall use the following equalities:

f(t1) = t2, f(t2) = t1.

Let t1 =
√
−2a and x ∈ Sr(t1) \ P2 ⊂ V √

A
2
√

2

(t1), i.e., |x− t1|2 = r ≤
√
A

2
√
2

. We have

|f(x)− t2|2 = |f(x)− f(t1)|2 = r ·
∣
∣
∣
∣

−3a+
√
−2a(x− t1)

[x− t1 +
√
−a(

√
2− 1)][x − t1 +

√
−a(

√
2 + 1)]

∣
∣
∣
∣
2

. (4.2)

In RHS of equality (4.2) we have | − 3a|2 = A, |
√
−2a(x− t1)|2 = r

√
A
2 < A and |

√
2− 1|2 = |

√
2 +

1|2 = 1. So |f(x)− t2|2 = |f(x)− f(t1)|2 = r, i.e., f(x) ∈ Sr(t2).
If x ∈ Sr(t2) \ P2 ⊂ V √

A
2
√

2

(t1), then we have

|f(x)− t1|2 = |f(x)− f(t2)|2 = r ·
∣
∣
∣
∣

−3a−
√
−2a(x− t2)

[x− t2 −
√
−a(

√
2− 1)][x − t2 −

√
−a(

√
2 + 1)]

∣
∣
∣
∣
2

. (4.3)

Consequently, |f(x)− t1|2 = |f(x)− f(t2)|2 = r, i.e., f(x) ∈ Sr(t1).

4.2. Case p = 3

In this case |t1|3 = |t2|3 = |t2 − t1|3 =
√
A and each fixed point t1, t2 of g is an attractive point of g.

Theorem 4.3. If p = 3 and r <
√
A, then

a) For any x ∈ Sr(t1) \ P2, limn→∞ f2n(x) = t1 and limn→∞ f2n+1(x) = t2.

b) For any x ∈ Sr(t2) \ P2, limn→∞ f2n(x) = t2 and limn→∞ f2n+1(x) = t1.

Proof. Let Sr(t1) ⊂ S√
A(0), r <

√
A and x ∈ Sr(t1) \ P2, i.e., |x− t1|3 = r. We have

|f(x)− t2|3 = |f(x)− f(t1)|3 = |x− t1|3 ·
| − 3a+

√
−2a(x− t1)|3

|x− t1 +
√
−a(

√
2− 1)|3|x− t1 +

√
−a(

√
2 + 1)|3

.

By this equality

|f(x)− t2|3 = φ(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r2√
A
, if

√
A
3 < r <

√
A,

≤
√
A
9 , if r =

√
A
3 ,

r
3 , if r <

√
A
3 .

(4.4)

For f2(x) we have

|f2(x)− t1|3 = |f2(x)− f2(t1)|3
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= |f(x)− t2|3 ·
| − 3a+

√
−2a(f(x)− t2)|3

|f(x)− t2 +
√
−a(

√
2− 1)|3 · |f(x)− t2 +

√
−a(

√
2 + 1)|3

= φ(φ(r)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(φ(r))2√
A

, if
√
A
3 < φ(r) <

√
A,

≤
√
A
9 , if φ(r) =

√
A
3 ,

φ(r)
3 , if φ(r) <

√
A
3 .

Iterating this argument we obtain the following formulas for x ∈ Sr(t1) \ P2:

|f2n(x)− t1|3 = φ2n(r), |f2n+1(x)− t2|3 = φ2n+1(r). (4.5)

Thus the dynamics of the radius r of the spheres is given by the function φ : [0,
√
A) → [0,

√
A), which

is defined in formula (4.4). The following properties of φ are obvious:

1. The set of fixed points of φ(r) is Fix(φ) = {0};

2. The fixed point r = 0 is attractive with basin of attraction [0,
√
A), independently on the value

φ(
√
A
3 ) ≤

√
A
9 .

Using (4.5) it is easy to see that the assertion (a) and (b) follows from property 2.

4.3. Case p ≥ 5

In this case we have |t1|p = |t2|p = |t2 − t1|p =
√
A and each fixed point t1, t2 of g is an indifferent

point and is the center of a Siegel disk.

Theorem 4.4. If p ≥ 5 then f(Sr(t1) \ P2) ⊆ Sr(t2), f(Sr(t2) \ P2) ⊆ Sr(t1), for any 0 < r <
√
A.

Proof. Let x ∈ Sr(t1) \ P2 ⊂ V√
A(t1), i.e., |x− t1|p = r <

√
A. In RHS of equality (4.2) we have

| − 3a|p = A, |
√
−2a(x− t1)|p = r

√
A < A and |

√
2− 1|p = |

√
2 + 1|p = 1. So |f(x)− t2|p = |f(x)−

f(t1)|p = r, i.e., f(x) ∈ Sr(t2).
If x ∈ Sr(t2) \ P2 ⊂ V √

A
2
√

2

(t1), then we have |f(x)− t1|p = |f(x)− f(t2)|p = r, i.e., f(x) ∈ Sr(t1).

Consequently, f(Sr(t1) \ P2) ⊆ Sr(t2) and f(Sr(t2) \ P2) ⊆ Sr(t1), for any 0 < r <
√
A.
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