
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 1

Daphne: A Virtual Assistant for Designing Earth
Observation Distributed Spacecraft Missions

Antoni Viros i Martin , Student Member, IEEE, and Daniel Selva, Member, IEEE

Abstract—This article describes Daphne, a virtual assistant for
designing Earth observation distributed spacecraft missions. It
is, to the best of our knowledge, the first virtual assistant for
such application. The article provides a thorough description of
Daphne, including its question answering system and the main
features we have implemented to help system engineers design
distributed spacecraft missions. In addition, the article describes
a study performed at NASA’s Jet Propulsion Laboratory (JPL)
to assess the usefulness of Daphne in this use case. The study
was conducted with N = 9 subjects from JPL, who were asked
to work on a mission design task with two versions of Daphne,
one that was fully featured implementing the cognitive assistance
functions, and one that only had the features one would find in a
traditional design space exploration tool. After the task, they filled
out a standard user experience survey, completed a test to assess
how much they learned about the task, and were asked a number of
questions in a semi-structured exit interview. Results of the study
suggest that Daphne can help improve performance during system
design tasks compared to traditional tools, while keeping the system
usable. However, the study also raises some concerns with respect
to a potential reduction in human learning due to the use of the
cognitive assistant. The article ends with a list of suggestions for
future development of virtual assistants for space mission design.

Index Terms—Distributed spacecraft missions, earth
observation, machine learning, mixed initiative, virtual assistant.

I. INTRODUCTION

M
OTIVATED by the challenges of system architecture
in general and architecting distributed satellite missions

(DSM) in particular, and inspired by the success of commercial
virtual assistants (VA), such as Siri, Google Assistant, Alexa, or
Mycroft, we have developed Daphne, the first VA – to the best
of our knowledge – to support the high-level design of DSM.
This article describes how Daphne can be used to design DSM
and includes a quantitative validation study performed at NASA
JPL where the test subjects had expertise in mission design.

The contribution of this article is two fold. First, we introduce
Daphne as a complete, open-source package for DSM tradespace
analysis that includes the standard VA functionality, such as

Manuscript received April 30, 2019; revised September 18, 2019; accepted
October 7, 2019. This work is part of a large research project funded by NSF
under Grant CMMI 1635253. (Corresponding author: Antoni Viros i Martin.)

The authors are with the Department of Aerospace Engineering, Texas
A&M University, College Station, TX 77843 USA (e-mail: aviros@tamu.edu;
dselva@tamu.edu).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2019.2948921

taking natural language inputs from users and aggregating in-
formation from different sources to reduce cognitive load, as
well as more proactive features, and more traditional tradespace
exploration tools, such as a tradespace scatter plots, model
inspection and explanation, and data mining capabilities. The
second contribution is the result of a quantitative study with
human subjects performed at JPL, from which we have obtained
data comparing Daphne with the VA capabilities to a version of
Daphne without those capabilities, as well as feedback from field
experts on how they think Daphne should evolve.

Different features and versions of Daphne have been de-
scribed both in [1] and [2]. This article will describe the current
version of Daphne as it applies to DSM design, including:
1) how the user can interact with Daphne, both in traditional ways
and using the VA functionality; 2) how the system processes user
requests and sends them to different roles; 3) how all those roles
can interact directly with the user through the use of the new
proactive functionalities described in [2].

The main motivation for Daphne is that architecting multi-
platform Earth observing systems is a challenging task due to a
number of factors. First, the number of alternatives in the design
space can be extremely large. For example, if we consider the
architecture space of a multiplatform system to be defined by
any binary relation between a set of N instruments and a set of
M orbits, then there are 2NM possible architectures. And that is
only looking at instrument-orbit assignment, neglecting other
important tradeoffs related to, for example, formation flying
or communications architecture. Second, in order to evaluate
each of these architectures, many factors need to be considered,
such as the attributes that define data quality and quantity (e.g.,
spatial resolution, revisit time, latency) for many different mea-
surements and data products (e.g., soil moisture, atmospheric
temperature), different aspects of the system’s lifecycle cost
(e.g., payload and bus cost, launch cost, operations cost), as
well as some metrics related to schedule and risk (e.g., time to
science, system reliability). Third, in the early stages of mission
design there might be significant uncertainty on some of the
technical parameters, or even ambiguity in some of the system
requirements and goals. Moreover, these challenges are likely to
become more daunting in the future as we demand missions that
are more robust, reliable, and affordable, and which generate
better data products using less resources.

In addition, many distributed concepts for DSM, such as
constellations, clusters, swarms, trains, fractionated or federated
spacecraft, are becoming more feasible and appealing, which
has opened up even more the space of alternatives, intensified

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

existing challenges, and created new ones in the architecting
process [3]. This trend toward more distributed missions in Earth
observation is seen in the latest missions flown by NASA, such as
the Cyclone Global Navigation Satellite System (CYGNSS) and
the Time-Resolved Observations of Precipitation structure and
storm Intensity with a Constellation of Smallsats (TROPICS)
[4].

Improved tools are necessary to enable these complex con-
stellations, clusters, and trains. NASA’s technology roadmap
for technology area “TA 11: Modeling, Simulation, Information
Technology, and Processing” recognizes the growing need for
improved “Analysis Tools for Mission Design.” Specifically, the
document states that current tools are designed for monolithic
missions and only take into account small parts of the system at
a time [5]. This limits NASA’s ability to consider new trends on
mission design [6].

To respond to this need, NASA is developing the Tradespace
Analysis Tool for Constellations (TAT-C) [7], [8]. Other relevant
tools to design DSMs include VASSAR [9] and DISCO [10].

One shortcoming of most of these tools is that they provide
limited cognitive support to the users, who can suffer from
information overload when analyzing large, high-dimensional
design spaces. For example, as mentioned earlier, a formulation
of a DSM architecting space as an assignment problem with 10
candidate instruments and 5 candidate orbits defines over 250 ≈
1015 valid design alternatives, that have to be assessed against
several performance, cost, risk, and schedule metrics. The eval-
uation of performance in terms of spatial resolution, temporal
resolution, accuracy, spectral content, and other attributes is a
problem because preferences among these attributes depend on
what is being measured and on the specific community, e.g.,
for soil moisture measurements, climate scientists may prefer
accuracy over spatial resolution, whereas the opposite may be
true for numerical weather prediction. Thus, the dimensionality
of the design space is extremely large, both in terms of design
decisions and design attributes, and objectives.

To address this increase in cognitive load, we advocate for
the use of VAs, such as Daphne. The objective of VAs is not
substantially different from that of most decision support tools,
namely to “augment human intellect” as stated by Engelbart [11]
in one of the first works in human-computer interaction (HCI).
What makes VA different from other decision support systems,
even from systems implementing some kind of intelligent agent,
is the types and modes of interaction with the user, as well as
the use of cognitive architectures. Most VA send and receive
information to/from the user by means of natural language, either
through a voice or text-based interface. Some of them also can
take image inputs, like Clinc [12]. Another important difference
with other intelligent agents is the fact that some VA can take
the initiative and act on what they think the user wants, by using
different cognitive architectures [13], such as belief-desire inten-
tion (BDI) [14], logic-based agents [15], reactive agents [10], or
layered architectures combining different models. The explicit
use of some model of the user’s cognitive process is arguably
the most distinctive trait of modern VA.

The rest of the article is organized as follows. Section II
reviews the literature on intelligent tools for system design and

intelligent assistants, both inside and outside the design for
aerospace domain. Section III provides an overview of Daphne
for DSM design. Section IV describes the NASA JPL study
and results, both quantitative and qualitative. Finally, Section V
provides a summary of the article and discusses its limitations
and directions of future work.

II. BACKGROUND

A. Artificial Intelligence in System Design

Intelligent tools have been used to support the design of
complex systems since the dawn of the computing era. While
VAs are rather a new concept, design automation tools have
been used for decades. An early example of a design automation
tool is the R1 system [16], which was used to design the layout
of VAX-11 computers based on a customer order. This system
was rule based, and it ensured that the computer could fit in
the customer room, and at the same time, have all the needed
components. This is one clear example of an intelligent design
tool that performs automated design, as the technician only
needed to introduce the sets of restrictions and needs to obtain
a working design. Other examples of intelligent design tools
performing design automation can be found in review papers
and special issues by Hayes et al. [17] and Goel et al. [18],
among others.

All tools described in this section are intelligent tools for either
design automation or conceptual design, including Daphne.
This being said, most of them are not VAs, while Daphne is
one. Daphne takes functionalities from design automation tools,
conceptual design tools, and VAs to have a feature set that can
help aerospace engineers design better missions.

In addition to fully autonomous agents that create designs
automatically, there are different types of intelligent tools to
support system design, including intelligent computer aided
design (CAD) systems [19], [20], knowledge databases [21],
[22], design assistants [23]–[26], and design critics [27], [28].
As can be seen, design automation tools include a wide range of
behaviors and technologies in artificial intelligence, from brute-
force search, to explanation, machine learning, and human-agent
interaction.

Another important and relevant aspect of intelligence in de-
sign tools is adapting to individual designer differences and
preferences. Peng and Gero [29] demonstrated a situated agent
that adds on to Matlab’s Optimization Toolbox and learns the
optimization algorithm that is most appropriate for a given
design problem. Another example of tool that adapts to the users
are modern integrated development environments (IDE), and
the way they adapt is by tuning the code suggestions, i.e., the
Autocomplete function, to past user choices. A last example on
the topic of self-tuning autocomplete features are all of Google’s
text editors, including diverse products, such as Gmail, Google
Docs, or Messages, which suggest answers to e-mails to the user
or the next word to write in a sentence based on past inputs from
the user community.

Since Daphne for DSM applications is centered on the first
stages of design, sometimes referred to as conceptual design (or
system architecture in the complex systems literature), we focus

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MARTIN AND SELVA: DAPHNE: A VIRTUAL ASSISTANT FOR DESIGNING EARTH OBSERVATION DISTRIBUTED SPACECRAFT MISSIONS 3

our literature search on intelligent tools that support these early
stages of design. Conceptual design is a relatively unstructured
and ambiguous task that emphasizes creativity and tradeoffs.
Thus, most tools supporting this task are catered toward helping
the designer and enhancing their cognitive abilities (e.g., de-
cision support) instead of replacing them (design automation).
Such tools often take the shape of interactive visualization tools,
which allow for the analysis of different design alternatives,
and which have the capacity to handle hundreds to millions of
designs and a handful of objectives. Examples of such tools in-
clude [30]–[32]. In these cases the extent of intelligent behavior
may be as narrow as providing some basic data mining and/or
advanced interaction. Indeed, some of these visualization tools
allow the design engineers to compare different representations
of the data (e.g., decision space versus objective space, different
two-dimensional slices/projections of the objective space, or
parallel coordinates plots), highlight architectures with common
features, and reduce the objective space search to a much more
manageable one by applying various filters [23], [30], [31],
[33]. Other tools use the results of unsupervised machine learn-
ing algorithms, such as feature extraction, manifold learning,
and clustering to help users get a clearer picture of the trade
space [25], [34]. To further reduce the cognitive load of system
engineers, other tools combine visualization and data mining
algorithms that extract patterns, for instance in the form of if-then
rules (e.g. “IF there is an atmospheric chemistry instrument
in an AM orbit, THEN the architecture is likely to have low
science benefit”) [26], [35], [36]. The use of logical rules as
data structure for these patterns has been used for decades in
artificial intelligence, due to evidence that these rules are easy
to understand by humans and that they may resemble how human
experts solve problems [37].

Despite all these efforts to reduce information overload in
complex system design [38], [39], often the amount of data is
still so large that it is hard to extract the relevant information for
the design task at hand. For example, a data mining algorithm
may give a list of features that are common among good mission
concepts, but the designer still needs to choose which ones to
apply to the final design, and this bears a nonnegligible cognitive
load on the engineer. This means there is a need to further
support the systems engineer to help him or her direct their
attention to specific portions of the dataset or specific aspects
of the problem, depending on relevance and other factors, and
this is where VAs come into play: They can answer questions
from the designer or act on their own to suggest focus points or
potential improvements to the current configurations, all while
providing easier access to the data through a natural interface.

B. Virtual Assistants

In the beginnings of computer science, the term VA was used
to define any system that could “enhance human intellect.”
As years passed and the AI field matured, different names
appeared for different types of AI systems, such as expert
systems, rule-based systems, Bayesian networks, or machine
learning. Thus, the term VA fell out of use in favor of more
specific terminology. Later, with the advent of systems, such as

RADAR [40], Cognitive Assistant that Learns and Organizes
(CALO) [14], or DARPA’s Personalized Assistant that Learns
(PAL) [41], the concept came back with a much more limited
scope: Now it is only used to describe systems which perform
tasks at the request of the user, and interact with him/her through
voice, textual, or visual interfaces. Other early examples of this
modern architecture include Open Agent Architecture (OAA)
[42] and Integrate. Relate. Infer. Share (IRIS) [43].

More recently, with the disruption of deep learning, and
as voice recognition software and natural language processing
have made important improvements in performance, commer-
cial VAs have appeared, such as IBM Watson [44], [45], Wol-
fram Alpha [46], Siri [47], Google Assistant [48], Microsoft
Cortana [49], Amazon Alexa [50], or Mycroft [51]. Several VAs
have been developed in the research world as well, including
Clinc [12], [52], YodaQA [53], or OAQA LiveQA [54]. All
these systems share the characteristics that the interaction is done
either by natural language or through pictures and that they are
“generalist”: They try to answer as many queries as possible from
the user using a plethora of data sources, as opposed to providing
high-quality answers in more specialized domains. For example,
generalist VAs help the user with personal organization by
reading e-mails, setting appointments, and other mundane tasks,
such as playing music. Naturally, generalist VAs are of no use
when the task at hand is very specialized. Thus, specialized VAs
in the field of design are described next.

C. VAs for System Design

Daphne is conceived to support the user during the system’s
early design process. There are some other VAs used in de-
sign. TAC (The Architect Collaborator) [55], for example, can
conduct trade-space exploration of house/building designs by
following commands from different users. In [56], a rule-based
system is used to provide recommendations on manufacturing
technology designs. In [57], an expert system is used to evaluate
alternatives on highway building. In this case, the user chooses
from some proposed alternatives that are refined in an interactive
process where the designer is aided by the assistant, which
checks for regulations compliance for all user modifications.
Finally, the best choices are evaluated again and the user can
choose the most preferred one. A more recent effort, PQE [58],
tries to model user curiosity and creativity, and tries to come up
with design alternatives the user might not have thought of, with
the goal of helping the user think out of the box. Another recent
work is [59], where a process for innovative problem solving
is proposed based on the human and computer assisting each
other in the identification and characterization of the obscure
features of a problem. Finally, ESA’s Design Engineering As-
sistant (DEA) [60] introduces a VA for concurrent engineering
processes that helps engineers by providing data aggregation
and synthesis capabilities of past unstructured documentation in
an automated manner. It also includes a user interface (UI) for
fast access to this information.

DEA is, by far, the most similar work to the one presented
here. However, it is still in the very early stages and it appears
to focus on data retrieval from unstructured documents. Daphne

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 1. Overview of Daphne architecture for DSM applications.

currently does not use unstructured documents as a source of
information and relies instead on structured databases as well
as a knowledge base to encode rules of thumb and procedural
knowledge as rules.

III. DAPHNE: SYSTEM ARCHITECTURE OVERVIEW

Daphne (Fig. 1) is structured as a microservices system [61]. It
consists of: 1) a web front-end; 2) a front-end server (the Daphne
Brain) that directs all user requests –which are either based on
HTTP or on Websockets and can be classic requests (e.g., from
a user interface button) or natural language through the QA
system– to the appropriate role; 3) a set of roles, which can be
understood as software snippets, that use some of the available
microservices—be it backends or data sources—to obtain the
result the user is asking for. All backends and data sources can
run independently of one another and we are currently in the
process of making the whole system run in different machines,
making Daphne scale horizontally, as the microservices design
allows for. These software components are described in detail
in both [1] and [2], but summaries of all of them are provided
below for completeness.

A. Data Sources

There are three different data sources from which Daphne
can get its information: 1) an Expert Knowledge Database,
with expert rules and recommendations about how to design

(good) spacecraft in general and DSM in particular; 2) a Design
Solutions Database, which contains information from a great
variety of possible architectural solutions for the problem at hand
– typically obtained from the output of a search or optimization
process; 3) a Historical Database, with data from all past and
planned civilian earth observation missions.

The Expert Knowledge Database is different from the other
two in that it does not contain factual knowledge in the form of
tables, but rather procedural knowledge in the form of logical
(if-then) rules. Each rule encodes a domain-specific chunk of
knowledge about how to architect space missions. These rules
are not to be interpreted as hard constraints or absolute truths,
but rather heuristics or rules of thumb with different degrees of
certainty. One example is that UV/VNIR atmospheric chemistry
spectrometers should be flown in afternoon sun-synchronous
orbits when possible rather than morning or dawn-dusk orbits,
as good illumination conditions are needed for this kind of in-
strument, pollution peaks in the afternoon, and other synergistic
atmospheric chemistry instruments are flown in an afternoon or-
bit (e.g., NASA Aura mission). There is an extensive description
of the rules in the Expert Knowledge Database in [9], [62].

The Design Solutions Database has three main objectives:
First, to provide an initial dataset of possible designs for the
system to serve as a baseline with which to compare new designs;
second, to save the new designs the user or Daphne come up
with so they are not lost after the work session is finished; and
third, to provide a dataset on which the VASSAR, iFEED, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MARTIN AND SELVA: DAPHNE: A VIRTUAL ASSISTANT FOR DESIGNING EARTH OBSERVATION DISTRIBUTED SPACECRAFT MISSIONS 5

MOEA back ends (described later in the article) can run. The
database consists of a set of designs. One design is represented
as a set of spacecraft, each of which is primarily characterized
by a set of instruments and orbit, from which a preliminary
design of the spacecraft as well as lifecycle cost and science
benefit are computed by the architecture evaluation back end.
Additional parameters can be recorded, such as the level of
satisfaction of the hundreds of measurement requirements (e.g.,
revisit time and spatial resolution for various data products) that
make up the scientific benefit metric, or the launch vehicle or
each spacecraft’s mass and power budgets. More information
can be found in [1] and [62].

The Historical Database has been obtained from the Commit-
tee on Earth Observation Satellites (CEOS) database [63]. This is
a joint effort between CEOS and ESA to create a comprehensive
database of all the Earth observation missions that have been
launched (and those that are planned) since the beginning of
the Space Age. It has detailed information on the missions,
the instruments, the measurements which can be taken, and
the space agencies that have developed them. As of March
2019, the number of missions in the database is 620, with 891
instruments also described. We have performed data mining on
the database to be able to answer questions, such as “Which is
the most common orbit for measuring <measurement>?” by
obtaining information, such as the most common kinds of orbits
for each kind of instrument and measurement mentioned on the
database.

B. Back Ends

The back ends in Daphne use the data coming from the
different data sources to compute the information needed by the
different roles to form answers to the users’ questions. There are
four back ends.

1) The VASSAR back end, an architecture evaluator which
given a design, returns the value of the objective functions
(i.e., lifecycle cost and scientific benefit primarily).

2) the iFEED back end, which runs machine learning algo-
rithms on the database of designs.

3) the MOEA back end, which is in charge of running the
background search that fuels the Explorer role.

4) the QueryBuilder back end, which is in charge of translat-
ing the questions for the Historical Database into queries
that the database can understand.

All of them are briefly described in this section.
The VASSAR back end uses the methodology described

in [62], which is a systematic framework that allows automating
the architecture evaluation process by combining both objec-
tive and subjective information encoded in logical rules. The
methodology is applied to the use case of Daphne described
in this article, namely architecting DSM, and returns a cost
and a science benefit measure when given a design. In order to
estimate lifecycle cost, VASSAR performs a preliminary design
for each spacecraft in the mission, containing basic mass, power,
and volume budgets at the subsystem level. Cost estimating
relationships are then used to estimate payload and bus cost
from spacecraft design parameters. Launch and operations cost

are also estimated. The most cost effective launch strategy is
selected for the system based on spacecraft wet mass, dimen-
sions, orbit, and launch pricing. The scientific benefit metric
essentially counts how many measurement requirements—out
of a database of thousands—are fully or partially satisfied for the
selected architecture. Full or partial requirement satisfaction is
assessed by comparing the capabilities of the given architecture
with target and threshold values for various data products and
measurement attributes, such as spatial resolution, revisit time,
and accuracy. In addition to the numerical values of lifecycle cost
and scientific benefit, VASSAR can also provide explanations
for those scores, tracing back their numerical values to specific
measurement requirements, instrument capabilities, or model
assumptions. For more information on VASSAR, the reader is
referred to [62].

The MOEA (from multiobjective evolutionary algorithm)
back end is in charge of running the background search feature
of the Explorer role. It implements a variant of the genetic
algorithm (GA) described in [64] and [65]. Specifically, it uses
the knowledge-driven optimization with adaptive operator se-
lection to try and find designs that improve the Pareto frontier
of the current data. The data are sent back and forth through
message queues, such as RabbitMQ [66], so the system can run
on multiple machines and scale horizontally.

The iFEED back end mines the Design Solution Database
and extracts features that are consistently more present in “good
designs” than in “poor designs,” so the roles can use those
features to create new or modify existing designs, or just to
provide suggestions to the user and help the user gain insight
about the problem. What constitutes a “good design” can be
defined by the user—by default, a design is good if it is on or
close to the science-cost Pareto front. An example of a dominant
feature could be that most solutions currently on the Pareto front
have instruments A and B together in the same orbit (either a
specific orbit, or more generally in any orbit), or never together in
the same orbit. Specifically, the data mining back end uses clas-
sification rule mining, an extension of association rule mining.
Standard association rule mining [67] seeks to extract frequent
patterns in the attributes of observations in large datasets, where
attributes can be discrete-valued decisions and objective values
of solutions. Classification rule mining applies association rules
in a classification context, and extracts rules F → G where the
precedentF is a feature or logical combination of features – e.g.,
instruments A and B together in any orbit, and the consequent
G is a class label, in our case, indicating whether or not the
design is “good.” The algorithm used to extract the rules is based
on genetic programming. Features are encoded as trees, and an
evolutionary algorithm with adaptive operator selection is used
to search the space of possible features, while simultaneously
optimizing specificity (a.k.a. recall), coverage (a.k.a. precision),
and rule complexity (number of literals). For more information
on the iFEED back end, the reader is referred to [26].

The QueryBuilder back end is in charge of translating natural
language questions into SQL queries that can be answered by
the Historical Database. Upon receiving a question, the Query-
Builder back end classifies the question between different types
that have to be answered by different database queries, loads

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

the parameters that need to be extracted by the natural language
processing (NLP) module, the query template, and the response
template from a file for each type, extracts the relevant features
(the information needed to answer the question contained inside
of it), augments the data with context information sent to it from
the historian role, crafts the database query, and puts everything
together to create a response based on the results of the query
that can be in any format demanded by the user, be it plots, text,
images, or lists. These steps are detailed in the next paragraphs,
as while the rest of the back ends are described thoroughly in
previous papers, there is no published work that describes this
back end.

1) Text Classification: The raw text input needs to be pre-
processed so that the classifier can do its job better. This is done
by leveraging the models in the spaCy Python library [68]. The
decision to use spaCy instead of using more sophisticated exist-
ing solutions, like NLTK or OpenNLP [69], [70], or developing
a custom solution in house was taken after observing that the
needed functionality existed in all three solutions, but spaCy
was the only system that provided a fast enough computation to
make the system work in almost real time.

The raw string is processed by lemmatization, part of
speech tagging, and stop word classification, which outputs the
following:

1) the lemma (the version of the word found on a dictionary)
for each word, which is used as the input of the classifica-
tion model;

2) its classification as a number or not, which is useful for
feature extraction;

3) whether the word can be ignored for the rest of the pipeline
(referenced as a stop word in the literature);

4) the lower-case version of the word, which is used to
normalize the text for the rest of the pipeline.

With all this information obtained, the next step in the Query-
Builder is to perform a classification to determine the type of
query to do on the database and the data to be extracted from
the question in order to successfully perform the query.

Classification is a recurring problem when dealing with text,
so many algorithms are available, including [71] rule-based sys-
tems, nave Bayes, k-nearest neighbors, support vector machines,
decision trees, logistic regressions and, for the last three to four
years, deep neural networks of the convolutional and recurrent
varieties.

Focusing on neural networks, the state of the art evolved
from using the relatively simple convolutional neural networks
[72], to augmenting them [73] with word embeddings, such as
word2vec [74] or GloVe [75], to using recurrent neural networks
(RNNs) with long short term memory (LSTM) units [76] and at-
tention mechanisms [77]. State-of-the-art algorithms keep using
LSTM RNNs, but have moved from considering words as a unit
to considering each individual letter in a sentence to perform the
classification. Examples of this current trend include [78], which
add context dependent word embeddings, and BERT [79], which
is a pretrained neural network model from Google that can be
understood as a more powerful version of word embeddings.

When deciding what algorithm to use for classification,
we strove for a balance between accuracy—as in number of
questions correctly classified, training performance—the time

the model needs to be properly trained, - and evaluation
performance—the time the model needs to come up with a
classification for a question–, as well as implementation ease.

As seen in [77], the accuracy of neural networks is usually
higher than that of other algorithms before them, especially if
trained with enough data, for problems, such as text classifica-
tion. But training RNNs takes much longer than training CNNs,
due to the more sequential nature of RNNs over CNNs, which
makes RNN much harder to parallelize. This large difference in
training time coupled with a less acute loss of accuracy ended up
tipping the balance in favor of a model based on CNN with word
embeddings, as in [73]. Its implementation has been relatively
fast to train (it takes around 8 min on a Nvidia GTX1080 for our
dataset).

The whole classification subsystem is implemented in Ten-
sorflow [80], and the hyperparameter tuning of the model has
been done using the results in [81]: The size of the word filters
has been set to 3, 4, and 5 words and the number of filters per
word size has been set to 100, as these values appear to give
consistently good results on different datasets.

Regarding the training data, it is known that machine learning
algorithms, and especially neural networks, need large datasets
to be able to perform with good accuracy. To solve this problem
for the QueryBuilder as well as the main QA system of Daphne,
where no datasets existed, we created a question generator,
which can add random variations to generate multiple versions
of the same question. The system also adds examples with
noise (random words that make no sense in the middle of the
question) so the algorithm can be robust to spelling mistakes
in the speech-to-text translation. A set of 8670 examples has
been generated in this way, with different numbers for each
question type depending on how many variations of the question
are plausible. The input for an NN based on word embeddings
is a vector of word vectors, so all the words in the questions are
separated into a vector, and each word is turned into a vector
of 128 randomly initialized numbers, which are then trained
together with the rest of the network, whose weights are also
randomly initialized.

This training approach has given good results, as system
testers have a hard time finding questions that can fool the
neural network into misclassifying a question, while at the same
time, keeping the time and effort required to add a new function
relatively low, as the only two steps needed are generating a
new set of examples with the random generator and retraining
the network, which is already programmed to get the number of
output classes from the number of files with examples that are
provided to it.

The reported accuracy of the neural networks is computed
according to (1), with the batch referring to the set of questions
being evaluated at the same time, outputij being the sigmoid
score being computed by the model for an output class j of a
sentence i and expectedij indicating whether sentence i is of
class j or not.

acc=
1

|classes| |batch|

batch
∑

i

⎛

⎝

classes
∑

j

∣

∣⌊outputij⌉−⌊expectedij⌉
∣

∣

⎞

⎠.

(1)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MARTIN AND SELVA: DAPHNE: A VIRTUAL ASSISTANT FOR DESIGNING EARTH OBSERVATION DISTRIBUTED SPACECRAFT MISSIONS 7

Both are rounded to obtain the classes computed as most
probable as correct scores and the rest as incorrect. Although
most inputs only belong to one class, some inputs might be
valid for more than one role, so the system has been designed to
accept such a case, and this is why outputij has to be a vector
instead of an indicator function, and this is also the reason for
using a sigmoid score instead of the more common softmax for
classification problems. The training and test sets are created
by using a random sample with a size of 80% of the dataset
as a training set and the other 20% as a evaluation set. The
accuracy obtained for the evaluation set of inputs is of 100%
for all models we have trained, which include the one that gives
the QueryBuilder the type of database query it should use as
well as the main one for the QA System and one for each of
the roles. All of these are described later when explaining the
QA System in Section III-C. Since the number of trainable
parameters is greater than the number of examples, there is
some risk of overfitting. However, so far, all the models have
performed well both in a pilot test we had run in 2017 and the JPL
experiment. All 46 questions the test subjects on the pilot asked
were classified correctly while out of the 249 questions asked by
JPL test subjects, 85% got answered correctly. This decrease is
expected as test subjects were less familiar with the syntax the
system has been trained for, and their expectation was that the
system would understand questions of any type, as per their own
feedback.

2) Question Type Definition: There are three pieces of infor-
mation that define a question type: The parameters that need to
be obtained from the question, its database query template, and
the response template. All three pieces are defined in a file we
call the “question definition file” that is unique to each question
type. To make the QA system as easy as possible to expand,
adding a new question type should not require anything more
than basic database knowledge. This means the person adding
it should not have to be an expert on the internal workings of
Daphne. Making changes to existing question types and adding
new ones does not involve writing new code for Daphne. To
make this section easier to follow, we will use the following
example question during the whole section: “What is the most
common orbit for soil moisture at the surface?”. The following
list describes the information that needs to be defined for each
question type in more detail.

1) Parameters: A parameter is a piece of information needed
for the query that is contained within the question. What
is contained in the question definition file is an array
with the names and the types of the parameters, some
extra data, and whether parameters are mandatory for the
question type. For example, in our question, there is a
single parameter for the “measurement” parameter, with
name “measurement1” and that is mandatory to obtain an
answer.

2) Query: The query is built by stitching together different
building blocks (or templates). There is an “always” sec-
tion, which is executed all the time, followed by an array
of optional filters and subqueries that depend on some of
the optional parameters being present. Then, there is the
“end” portion, which is always appended at the end of

the query. The last two sections are the “result_type” and
the “result_field,” which define if the result is a number, a
text, or a list, for example, and tell the system which field
of all those returned by the database is the needed result.
For example, in our example question, the query would
be (in pseudocode): “SELECT common_orbit WHERE
measurement = measurement1.”

3) Response: The response is built from a template that
can use all the different parameters and the result from
the query. It can contain text, audio, graphics, and
video. For the example question, this would be the sen-
tence: “The most common orbit for <measurement1> is
<common_orbit>.”

3) Extraction of Parameters: The next step is to extract the
parameters. The algorithm is the following.

1) For each parameter, an Extract function is called depend-
ing on the type of the parameter. This function can be of
three types: a) it can use the named entity recognition of
spaCy to obtain the required features from the question,
if spaCy already implements the algorithm for that type
of feature. For example, numbers are easily recognized by
spaCy, so all numerical parameters such as IDs are rec-
ognized through it; b) it can be a substring matcher based
on the lists of possible values for each parameter type
being extracted from the database. Instruments, missions,
measurements, and instrument types are all extracted in
this way, and the algorithm will be thoroughly described
below; c) it can be just a substring search to see if there
are substrings in the question that comply with certain
conditions. For example, the years are extracted by check-
ing if there is any substring that looks like a year—four
digits—and then saving all of them in order in case more
than one is needed.
To extract names of missions, measurements and tech-
nologies the process is more complex, and is described in
the following steps.
a) First, a list E with all the possible values (e.g., of

measurements) is obtained from the database.
b) Then, each element in E, e ∈ E, is compared to

the whole question Q using Sellers’ algorithm [82].
As a result, the elements in E are sorted by max-
imum similarity to Q. The maximum similarity be-
tween e and Q is computed, according to Sellers’
algorithm, as the minimum edit distance between e

and a substring of Q, s ⊂ Q, of the same length
as e, normalized as follows: max_similarity(e,Q) =

maxs(
|e|−edit_dist(e,s)

|e|). The list is then cropped to only
the elements with a high enough max similarity (the
threshold is 0.75).

c) The list is cropped to only the number of required
elements of the same type if it is longer than that.

d) The list is then reordered by the appearing position of
each element in the question and then saved in that
order for the rest of the pipeline.

2) Once the extraction is done, the list of features is passed
through a processing function that applies certain modifi-
cations to each feature depending on its type. For example,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

years are converted into specific dates depending on some
extra data from the definition file. Most other features
remain roughly the same, with some minor adjustments,
such as the elimination of spaces at the beginning and at
the end of the string or some changes in the capitalization.

3) All the extracted and processed features are sent back to
the main pipeline so they can be used in the next steps.

In our example question, we would run the question through
this algorithm to extract a parameter of type “measurement,”
which would trigger the substring matcher based on lists and
would yield the value of “soil moisture at the surface” for
“measurement1.”

4) Adding Contextual Information: After extracting all the
parameters from the question, the next step is appending all the
contextual information available to the system so more questions
can be answered. One example of this is the meaning of “now”
or “currently,” which may appear in some questions and is not
explicitly told by the user to the system. Another example is the
meaning of “this design,” which changes every time the user
clicks on a new design on the Daphne UI. A third one is the last
measurement the user has asked about.

In our example question, all of this information is added,
but it will not be used. Example questions where some of this
information might be used are “What do you think of this

design?” and “What missions currently flying are measuring
soil moisture at the surface?”

5) Querying the Database: The second to last step in the
pipeline is querying the database to obtain the required informa-
tion from it. The data needed in this step are all the augmented
data from the question along with all the query templates that
have already been mentioned. There are a few substeps to it,
which are described in the following list.

1) First, the “always” template is run through the Python
template engine to obtain the first part of the query, which
is going to be run. In our example question, that is the only
part that exists, and it is similar to what we described in
the question-type definition.

2) Then, for each “optional” template, the condition of ac-
tivation is checked against all the available data, and if
it evaluates to true, then the template is run through the
engine and appended to the end of the query. For example,
some questions have an optional parameter to filter the
results by space agency, or a year range. These filters
would be applied here.

3) Finally, the “end” portion of the query is run through the
engine and it is appended to the end of the query. This is
used when listing missions to order the results by year, for
example.

With the query fully constructed, it is run in the database and
its results are obtained. In our example, this will return the most
common orbit for this kind of measurement, which is a low
earth, sun-synchronous, high-altitude (within LEO), no repeat
cycle orbit.

6) Answer Building: With the results in hand, the portion of
the answer which depends on them is built. Responses can be
of different types and can use multiple fields from the query

response. Each type has a completely different process to build
itself.

For example, if the response is a list, all the query results are
appended in a string with separating commas. In the case of a
date, the date is written in a human readable form, as the database
stores it as a UNIX timestamp. The last implemented case is for
orbits, as the orbit-related questions have their answers stored in
a format which can encode all the information from the decision
tree used for data mining the Historical Database, so a parser was
built in order to decode that information into a human readable
format.

Finally, the last step in the pipeline is building the answer
the user will see in his/her screen. The answer is built by
running the answer template corresponding with the question
type on the template engine with all the augmented data from
the question together with the response from the last step. The
final answer for our example question will look like this: “The
most common orbit for soil moisture at the surface is a low earth,
sun-synchronous, high-altitude, no repeat cycle orbit.”

C. Daphne Brain

The Daphne Brain is the key component of the system ar-
chitecture, as it sends user requests of any kind to the different
roles, be it voice commands, a click on a button, or just some
textual instructions. Its job also includes returning the response
from the roles to the front end. The latest addition to this module
is the ability for the roles to send messages directly to the user
without waiting for the user first. This is used extensively by the
proactive or mixed-initiative functionalities.

As a critical piece of software, it is very important for the
Brain not to fail, as it can be considered a single point of failure:
The system becomes unresponsive under a Brain error (e.g., due
to a malformed HTTP request). This is why it is implemented
using multiple processes, which are replicated, so functionality
is not lost in case one fails.

Requests received by the Brain can be “classic” requests, such
as HTTP or Websockets, which are triggered by UI interactions,
such as clicking or hovering and are processed through REST
and WebSockets end points, or they can be sentences in natural
language. This second kind of requests is processed by the
QA system, which also lives inside the Brain. All requests can
use the whole power of Daphne: Roles have access to all the
back ends and data sources. This gives a lot of flexibility when
implementing them, as anything can be done inside each request
handler: Back ends can be called, data sources can be accessed,
and computations can be performed. At the same time, having
this flexibility means it is even more important to have the Brain
be resilient to failures, as they are bound to happen.

While HTTP and WebSockets requests are handled in a stan-
dard way, the QA system, which processes questions, merits
additional explanation, as it is a key differentiator between
Daphne and other decision support tools for engineering design.
It helps in creating a more intuitive interface for Daphne, by
giving the users a natural language interface, which is believed
to be a more natural HCI (in some circumstances) compared

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MARTIN AND SELVA: DAPHNE: A VIRTUAL ASSISTANT FOR DESIGNING EARTH OBSERVATION DISTRIBUTED SPACECRAFT MISSIONS 9

to the other most common ways of interacting with a decision
support tool, such as querying databases, programming charts,
or just using a mouse [83], [84].

The QA receives questions in natural language (English) and
then processes them to call the appropriate role. The user can
input these questions by either voice or text. In case the user uses
their voice, we use Google STT service to turn it into text. After
this, it generates an answer based on the result from the role,
which is human readable and may contain text, audio, and/or
images.

The QA system classifies the input questions according to
their intent and type from a finite set of intents and question
types. To classify the intent of the user, the same CNN model
used on the QueryBuilder back end is used. This model, trained
with different datasets for each case, is used to classify the input
to decide which role will process the sentence. For example,
a question such as “Which is the most common orbit for at-
mospheric lidars?” would first be classified as a question for the
Historian role, and then the QA system would send it to that role.
When the answer comes back from the role, the QA system is
responsible for presenting it in the front end, which can involve
showing the visual response sent by the different roles or voicing
it out using a text-to-speech service.

D. Roles

Roles, as called by most VA, are computer programs that
leverage all the services available (data sources, back ends) to
perform the actual useful tasks to the end user. The next few
paragraphs describe the roles in Daphne for DSM design.

1) The Engineer, a role in charge of obtaining data from a
design.

2) The Analyst, a data mining role that provides all the
functionalities of iFEED [26].

3) The Explorer, a role in charge of fostering exploration of
the design space.

4) The Historian, the role in charge of answering questions
about past missions to foster innovation and creativity.

5) The Critic, which, given a design, can identify poten-
tial weaknesses and give back suggestions on how to
improve it.

The Engineer role is in charge of evaluating new DSM designs
found by the user and return both cost and science performance
back to the user, as well as answering questions about the
different metrics of a design, such as “Why does this design
get this cost/science score?” Both functionalities are fulfilled by
calling the VASSAR back end.

The Analyst role supports the systems engineer in the task
of mining the dataset of design solutions for features common
to good designs. It looks for features that best describe those
good designs or, more generally, that best describe designs in a
user-defined region of interest, e.g., the Pareto front. It uses the
iFEED mining back end for this purpose.

The Explorer role controls the background search being per-
formed by the MOEA back end, and keeps track of the diversity
of the designs found by the user. A sequence diagram is shown in

Fig. 2. This role begins the background search on startup. The
role also receives new designs and presents them to the user.
This includes sending notifications to the user when enough
new designs have been found. The second task of the explorer
is to aid in increasing the diversity of the designs found by the
user. This feature is named “Diversifier” in the front end. In our
experiments, we found that users of Daphne tend to focus on
small areas of the dataset to search for new designs, missing out
on opportunities to explore certain design configurations. Thus,
we created a feature that recommends new areas of the design
space that might be interesting to the user. This subsystem works
by partitioning the Pareto frontier in ten smaller sets of the same
size and computing the mean crowding distance (a well-known
metric for diversity in multiobjective optimization algorithms,
such as NSGA-II [85]) in each set. If an area has a high maximum
crowding distance compared to the rest, the system recommends
that the user explore it.

The Historian role takes questions about past and planned
missions, channels them to the QueryBuilder back end, and
displays the responses back to the user. For example, the user can
ask: “Which missions can measure <measurement>?,” “When
was mission <mission> launched?,” or “Which missions are
currently flying <technology>?” The role is designed as a
restricted domain question answering system, meaning it can
only answer a limited set of question types about a limited set
of knowledge. This is appropriate for the use case of answering
questions about Earth observing missions, as the set of questions
which can be asked is small compared to that of general-purpose
VAs. Priority is placed on getting correct answers rather than
tackling a lot of question types. This is important because trust
is a critical factor in the interaction with any kind of intelligent
system [86].

The Critic role receives a system design as an input, and its
output is some feedback to the user about the strengths and
weaknesses of that design, together with specific suggestions to
the user about how to improve it. It includes four different agents
based on each of the roles. All of them create different kinds of
feedback and suggestions: The rule-driven agent (Engineer role),
which uses the expert knowledge base (i.e., expert design rules
about designing spacecraft in general and DSM in particular)
to obtain recommendations; the legacy-driven agent (Historian
role), which uses the Historical Database to identify past or
planned missions that are similar to those of the current design;
the data-driven agent (Analyst role), which uses the Design
Solutions Database to notify the user if a given design shares
some of the driving features usually found among good designs
so far; and the exploration-driven agent (Explorer role), which
attempts to improve the design at hand by searching its close
neighborhood. One of the new mixed-initiative features lives
inside the Critic: It is named “Live Recommender System” on
the front end. This new feature of the Critic shows part of the
feedback from the aforementioned agents in real-time while the
user of Daphne is modifying an DSM design. This needs to be
real-time, so only the feedback that can be gathered fast enough
is shown. This includes feedback from the rule-driven agent,
which shows some rule-of-thumb feedback; feedback from the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 2. Background search interaction timeline.

Fig. 3. Daphne’s interface.

Historian, which compares the currently modified design to past
and current missions; and feedback from the Analyst, which
runs the iFEED back end every few seconds to find features that
describe the Pareto frontier and looks at the current design to
check whether those features are present in the design or not.
The reader is directed to [2] for more information on this addition
to the system.

E. Front End

Daphne has a web front end, shown in Fig. 3, which serves
as the main interface of the system. It has the following
functionalities: the user can work on a dataset of design solu-
tions, select arbitrary regions of interest, use the design inspector
to hover over designs and obtain information about them, evalu-
ate new designs, create and visualize a new iFEED feature, use

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MARTIN AND SELVA: DAPHNE: A VIRTUAL ASSISTANT FOR DESIGNING EARTH OBSERVATION DISTRIBUTED SPACECRAFT MISSIONS 11

Fig. 4. iFEED Feature space plot and a logical tree representing a feature.

the data mining interface to extract dominant iFEED features,
ask questions through the natural language interface, change
datasets and problem definitions, read about the different func-
tionalities available, download the working dataset, register and
login, and control the mixed-initiative features. The designs on
the scatter plot are obtained from the Design Solutions Database.
The user can also explore the iFEED feature space—a second
scatter plot displaying all the best features found so far in a space
of specificity (a.k.a. recall) versus coverage (a.k.a. precision).
By hovering over a given feature, the user can graphically see
what the feature is in a logical tree, and modify the feature (e.g,
change a logical connective from “AND” to “OR”, or combine
the existing feature with another one from the feature space), by
manipulating the tree. Fig. 4 gives an example of this secondary
plot and its accompanying tree.

IV. EXPERIMENT

To validate whether Daphne is useful to engineers designing
Earth observing missions, a human study was conducted at
NASA JPL with system engineers as participants. Based on
some pilot experiments we conducted, we had some concerns
that Daphne’s advanced VA functionalities could lead to reduced
learning and/or perceived usability. When we refer to learning
in this article, we are thinking about the improvement in un-
derstanding of the design problem by the system engineers.
For example, we want to test their understanding of the main
tradeoffs involved, how sensitive the models are to changes in the
design, what are the driving features (as in iFEED features) for
both cost and science scores, and the mapping between design
decisions and mission attributes. Therefore, the ideal outcome
going into the experiment was that Daphne would lead to better
designs, without sacrificing human learning or usability.

Thus, our hypotheses when performing this experiment are
the following. H1) Test subjects using Daphne with all its
features will have a better performance when designing DSMs
than those using the version with more traditional tradespace
exploration features. H2) Users will learn the same amount about
the problem when using the fully featured version of Daphne
when compared to the more limited one. H3) The usability scores
for both versions of Daphne will be similar, according to past
experimental results.

The experimental design and the details of how the measures
of performance, learning, and usability are taken are provided
below.

A. Experimental Design

We recruited N = 9 NASA JPL Engineers. Recruitment was
done by soliciting existing contacts from the authors’ network
over e-mail, in person, and through LinkedIn. The demographics
are the following: eight subjects were male, one was female; six
of them had a Ph.D. degree, two of them an M.S. degree, and one,
a B.S. degree; eight subjects are Aerospace Engineers, while one
was a Designer. Finally, six of them have direct experience in
conceptual satellite design, while three of them did not.

The procedure for the experiment consisted of three steps:
first, the subjects completed a 20-min tutorial during which they
familiarized themselves with the Daphne system. Then, subjects
were asked to solve a mission design task in two conditions
(independent variable): 1) using a version of Daphne loaded with
all the capabilities described in the previous sections except the
Data Mining ones, named Daphne-VA from now on, and 2) using
a version of Daphne implementing a baseline tradespace explo-
ration tool only containing the interactive scatter plot, a Design
Builder, and the data mining capabilities (scatter plot, filters,
and feature trees), named Daphne-DM from now on. Our idea
is that Daphne-DM provides an experience to the test subjects
more akin to that of other tools in the field, while Daphne-VA
provides access to all of the new features we developed that are
not present in other tools. This is done to get a clearer comparison
between a tool that test subjects are used to versus one where
they are not.

The experimental design was within subjects, so each partic-
ipant solved a different instance of the same task in each con-
dition. The order of conditions and tools was randomly chosen
for each subject, in order to minimize learning effects. Each task
had different performance models to minimize learning effects.
Care was taken so that the two problem instances were of similar
difficulty, yet different enough to minimize learning effects. All
interactions of users with Daphne (e.g., clicking buttons) were
recorded, as well as all questions and answers of the dialogue
between the subject and Daphne. At the end of each task, users
were asked to do a short test to measure learning and respond

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

TABLE I
CANDIDATE INSTRUMENTS

TABLE II
CANDIDATE ORBITS

SSO = Sun-synchronous orbit; LTAN = Local time of the ascending node.

to a usability survey. At the end of both tasks, a semi-structured
survey was conducted to gather additional feedback and insights.

B. Task Details

The task is based on an existing problem developed by the au-
thors to design a DSM for monitoring soil moisture [62]. Specifi-
cally, subjects were given a set of five candidate instruments (see
Table I) and five orbits (see Table II), and they were asked to
create DSM designs by combining different sets of instruments
and orbits, with no constraints: Each instrument can, in principle,
be assigned to any subset of the orbits, including none or all of
them. The VASSAR engine described earlier was used to assess
the scientific benefit and cost of the architectures [9]. The goal
of the task is for users to find the best possible set of designs,
in terms of science and cost. Specifically, they were asked to
interact with each tool (Daphne-VA and Daphne-DM) and come
up with a set of satellite mission designs, which were as close
to the “true” science-cost Pareto front as possible within a cost
range ranging from $800 M to $4000 M.

C. Dependent Variables

1) Performance: Since the actual Pareto front for this prob-
lem is not known, an approximate “true Pareto front” was
obtained by running a multiobjective GA [85], with an initial
population size of 500 different architectures and a maximum
of 20 000 generations. It can be seen, with normalized values for
science and cost, in Fig. 5. Distance to the “true” Pareto front was
determined through the relative improvement in hypervolume
(HV), which is computed through (2), where HV is a well-known
metric in multiobjective optimization that computes the volume
of a dominated set of designs. The reason for creating such a
metric is being able to compare problems that are of similar
difficulty, but have slightly different starting, ending, and “opti-
mal” HV measures. HV improvement metric as defined below
is a large-is-better metric bounded between 0 (no improvement
in HV with respect to the initial population) and 1 (same final
HV as the “true” Pareto front)

HVI =
(HVend − HVstart)

(HVoptimal − HVstart)
. (2)

Fig. 5. Plot of the “true” Pareto front found by the GA.

TABLE III
LIST OF INITIAL QUESTIONS ASKED IN THE INTERVIEW

2) Human Learning: To assess how much users learned
about the problem at hand and underlying model by interacting
with the tools, they were asked to do a test at the end of
each task that consisted of ten questions. Each question asked
them to choose among two designs with the same cost, the one
they thought had the largest science score as predicted by the
model. The use of tests to assess learning is commonplace in the
education literature [87], [88]. Specifically, this test is designed
to assess the ability of the user to predict the outputs of the model.
While this is clearly a limited view of human learning, which has
multiple dimensions as stated for example in Bloom’s taxonomy,
prediction is a reasonable choice given the time constraints, as it
is a higher-level cognitive task that requires integrating multiple
pieces of knowledge learned before [89].

3) Usability: A standard usability survey was conducted af-
ter each task, namely the system usability scale (SUS) [90]. The
SUS survey consists of ten Likert items listed in the Appendix.
The SUS instrument has been validated and has been widely
used to assess software usability including for intelligent sys-
tems [91]–[93].

D. Exit Interview

An exit interview was conducted after the experiment. The
interview was semi structured, consisting of several open-ended
questions shown in Table III about their experience with the
interface. More in-depth follow-up questions were asked after
those, depending on the answers of each subject.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MARTIN AND SELVA: DAPHNE: A VIRTUAL ASSISTANT FOR DESIGNING EARTH OBSERVATION DISTRIBUTED SPACECRAFT MISSIONS 13

Fig. 6. Results of the within subjects comparison.

Fig. 7. Results of the learning effects comparison.

E. Results

1) H1. Daphne Helps Engineers Find Better DSM Designs:

To test Hypothesis H1, we performed a within-subjects com-
parison. The results are shown in Fig. 6. The paired t-test
for the null hypothesis of equal performance between the two
Daphne versions has a p-value of 0.00433. (Normality tests
were performed). Thus, we observe a significant improvement
in performance in the Daphne-VA condition. Specifically, test
subjects using Daphne-DM have a mean HV Improvement score
of 0.317, while those that used Daphne-VA have a mean of 0.766.
The difference of scores is 0.449, or almost half the distance
between the initial dataset and the “optimal” Pareto front that
was found by running a GA for 5 h 30.

To ensure this result is not due to learning effects between
stages, we checked for significant differences in the performance
of the first stage versus the second one. The results are shown in
Fig. 7. In this case, the paired t-test with null hypothesis of equal
performance has a p-value of 0.378, which is not significant.
Thus, there are no significant learning effects.

2) H2. The Cognitive Assistant Does Not Hinder Human

Learning: Our next hypothesis is that learning will not be
affected when using Daphne-VA. The results of the learning

Fig. 8. Results of the learning test.

Fig. 9. Results of the learning test for each user.

survey are summarized in Fig. 8. In this case, the paired t-test
with null hypothesis of equal number of questions gives a p-value
of 0.710. Thus, there is no significant difference in learning in
either condition, which provides support for H2. We note that in
both versions, the test mean results are well over two standard
deviations compared to randomly answering the questions.

We also compared test scores between systems engineers (five
subjects) versus participants with other positions (four subjects).
The results are shown in Fig. 9. It can be seen that there are no
clear trends.

3) H3. The Cognitive Assistant Does Not Reduce Usability:

The final hypothesis for our experiment is that the usability
scores will not be significantly different between versions of the
tool, and we are testing this through the SUS score. The results
of this survey are shown in Fig. 10. The statistical test yields a
p-value of 0.411, so the results are not significant, thus providing
support for H3. However, we do see a trend of Daphne-VA being
a little better than the traditional tradespace exploration tool.

4) Exit Interview: A summary of the feedback gathered from
the interviews is presented in the following paragraphs. To begin
with, when asked about the general feeling about the interface,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 10. Results of the SUS scale.

the general opinion was that it was a well-designed interface,
clean and easy to understand.

The strategies being used to solve the task with Daphne were
mixed, with no clear patterns. When users used Daphne-DM,
six out nine found the tree-based representation of the features
hard to understand, so they relied mostly on the scatter plot,
the filters, and the design builder to explore the dataset, while
the other three relied a lot on the Data Mining feature to solve
the problem. Strategies for Daphne-VA, meanwhile, revolved
around the GA, mentioning how the GA can be a double-edged
sword, as it helps find better designs, but, at the same time,
hinders the learning of the dataset structure. Most of them used
mostly the Critic (which responds to “What do you think of
this design?”), ignoring many of the other abilities of Daphne.
Some users still resorted to just basic random exploration, as
they thought it was faster than waiting for the Critic’s feedback.

Difficulty wise, five out of nine of the test subjects thought the
task was easy enough, while six out of nine said more time would
have made the experience better. Asked on what they would
improve from the experience, we got a lot of different opinions.
Some recurring ones are that the tutorial for the experiment
would have been much better if done live or in video format,
the models for cost and performance should justify themselves
better, and that some of the Critic feedback could be made better
by generalizing some answers to instrument types and taking
into account what has already been said.

As far as interface improvements and limitations go, test
subjects pointed out the following.

1) The way to ask questions should be revamped by means
of an autocomplete feature.

2) The feature trees should be shown in the design builder
window.

3) Some way to remove unimportant points from the dataset
would be helpful.

4) The choice of colors in the scatter plot could be better and
more contrasting.

5) The relationship between different functionalities should
be more transparent.

6) The changes in different parts of the interface should be
more telegraphed by means of animation or changes in
color or font, so it is easier to notice something changed
when they scroll to it.

When asked what changes would be needed for Daphne to be
useful in the context of JPL, the main answer was to have easy
traceability of the science and cost models. While the current
models are already traceable, test subjects found it hard to make
sense of most of the internal information, and they mentioned
that having a clear understanding of this information is vital to
their job as decisions need to be justified to humans. The ways to
do so can range from graphical representations improving on the
already existing Details panels, to summary statistics, new plots,
or a way to discover what differences make an architecture better
than any other one. They also mentioned the ability to change the
problem configuration, models, and assumptions easily online,
as requirements can and will change fast in an architectural study
environment.

Finally, when asked about new questions for Daphne to an-
swer, there was a wide range of recommendations. In relation
to the Historian, test subjects were interested in learning why
(and not just whether) something has or has not been done
before. Questions for the Data Mining role include asking what
instruments go best together, and knowing which are the most
similar architectures in the dataset to the current one. Finally,
users were interested in asking questions about sets of point
designs, and not only a single architecture.

F. Discussion

The results from the study support our three hypotheses. First,
Daphne-VA does significantly improve the quality of the gen-
erated designs: The mean score improvement, when compared
to Daphne-DM, is around half of the maximum improvement
a computer found by working on the problem for 5 h and
30 min. Following that Daphne-VA does improve the quality
of the designs generated, we were interested in understanding
how the improvement comes about. To shed some light into
this question, we plotted the evolution of the HV Improvement
metric for each user in terms of both the number of function
evaluations (NFE) and the elapsed time of the experiment.
NFE measures how many times the objective function (i.e., the
function that computes the scores for an architecture) is called
throughout the optimization. The number of NFE required to
achieve convergence (e.g., to achieve a certain target value for
HV) is a common metric to compare the performance of different
optimization algorithms, since unlike run time, it is independent
of the computing hardware used and the computational expense
of the objective function itself. The results are provided in
Fig. 11(a) and (b).

If we compare the results between Daphne-DM and Daphne-
VA time wise, we can see different trends. Regarding Daphne-
VA, the early advantage in performance is due to the designs
found by the Background Search algorithm. The great jump in
performance seen in some of the users of the VA around the
5-min mark is mainly due to them using the responses of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MARTIN AND SELVA: DAPHNE: A VIRTUAL ASSISTANT FOR DESIGNING EARTH OBSERVATION DISTRIBUTED SPACECRAFT MISSIONS 15

Fig. 11. HV Improvement for each user. (a) HV Improvement as a function of NFE. (b) HV Improvement as a function of time.

Fig. 12. HV Improvement for each user compared to GA. (a) Comparison as a function of NFE. (b) Comparison as a function of time.

Critic question (“What do you think of this design?”) to improve
further on the designs found by Daphne. The rest of the users of
the VA relied mostly on the Background Search to get results,
and did not ask as many questions to the system as the first
group, resulting in lower task performances. As for the Daphne-
DM results, the late performance improvements for most users
match with their perceived confusion with the tree-based feature
representation in the Data Mining, which resulted in many users
not evaluating many new architectures for the first half of the
experiment or just resorting to random exploration, with mixed
results.

One potential criticism of the comparison in Fig. 12 is that
while the human with Daphne-VA obtains better search perfor-
mance than the human with Daphne-DM, it is unclear whether it
outperforms Daphne by itself. To address this question, we plot-
ted the user results against a GA running for the same time on the
same problems to compare the user performance with Daphne
to that of a GA running for the same amount of time (during
which it can evaluate many more architectures than the human
with Daphne). These results can be seen in Fig. 12(a) and (b).
The human-Daphne combination systematically obtains better
performance than Daphne (the GA) alone when the comparison

is on a per NFE basis. When an isotime comparison is done,
we observe that the test subjects using Daphne-VA can still do
better than the GA about half of the times, even though that the
GA evaluates many more architectures during that time. The
differences in performance within the Daphne-VA group can,
as already mentioned, be explained by some users only relying
mostly on the GA to obtain the results, while some others used
the full extent of the Daphne features, such as the responses
from the VA, and specially the Critic responses. It is important
to note that the isotime comparison depends on how long it takes
to evaluate an architecture, and the longer it takes to evaluate,
the more relevant the per-NFE comparison becomes.

There are several limitations of this paper. First, we believe
the way we are testing for learning is not ideal. Being based on
ten binary questions, the test does not provide much power. In
addition, we have observed significant variance in this and other
experiments using similar tests [94]. Another limitation is that
we are only testing Daphne with all its features versus a very
limited version. So we do not know which roles are the ones
contributing the most to the improvements we are seeing, other
than from anecdotal evidence based on the interview feedback,
and thus we do not have quantitative guidance on where we

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

should focus our efforts next if we want to maximize the return
on investment on the system.

Given all the results from the experiment, we have gathered
a set of recommendations for future development of VAs for
engineering design.

1) We have observed how the VA could reduce human learn-
ing and understanding of the problem at hand. Future VAs
should take this into account to ensure users of the VA can
increase task performance without sacrificing learning,
which could be a proxy for future task performance.

2) Mixed-initiative features should be explored by turning
the VA into a “Virtual Peer,” meaning the VA should be
able to listen to conversations and chip in with meaningful
contributions, apart from the features we already described
in this article.

3) The vocabulary used by the VA should be similar to that of
the target population, and this involves specializing both a)
the speech-to-text (STT) system to understand specialized
vocabulary, and b) the answers generated by the system.

4) Natural language interactions should preferably be used
to answer questions that are harder to represent or query
by traditional means, such as suggestions for improve-
ment. Traditional representations for things, such as per-
formance and cost models, seem to work better for users.

5) Simple is better, at least as far as the VA feedback goes.
When answers from Daphne get too long or are too difficult
to interpret (such as some feature trees), even professional
users will get lost and stop trying to understand them.

While some of this could be alleviated with proper training,
to maximize performance, feedback from the system should be
as simple as possible.

We have also gathered a set of recommendations for perform-
ing experiments in the field of VAs for design.

1) The most important recommendation is that researchers
and developers should strive to test the system with expert
users, as we have found that their feedback, methods,
and usage patterns differ greatly to those of an undergrad
student population. Results of pilot experiments with a
student population, even if those students are of the same
field, are not indicative of the actual usage patterns of the
system in the real world. Feedback, both in the form of
interviews and scales, such as SUS is much more strict
and unforgiving in the professional community.

2) New methods should be studied to measure human learn-
ing in design space exploration (we found no significant
quantitative differences in our study, whereas many users
mentioned in the interview that they learned less with
Daphne-VA).

3) Special care needs to be put in designing tasks and ex-
periments to avoid learning effects. Creating different
problems of similar difficulty is a difficult task, but one
that is essential is to ensure validity. In pilot experiments,
we had both problems that were too similar, which led
to significant learning effects, and problems that were too
different, so the results could not be compared at all. Proper
experimental design and the use of relative metrics, such as

HV Improvement, help reduce some of those differences,
but care should still be put in the actual problem design.

Finally, given all the feedback we obtained from JPL, we
believe Daphne and other VAs for design have an opportunity to
drastically improve early mission design. The fact that perfor-
mance clearly improves when combining everything together
is a strong signal that such a system can help improve the
performance of professionals exploring new mission designs.

V. CONCLUSION

This article described the architecture of, and an experiment
to validate, a VA to architect Earth Observation DSM. Most VAs
so far have been developed for commercial general usage. While
there have been a few instances of VAs developed for aerospace
and design tasks, Daphne is, to the best of our knowledge, the
first VA to specifically support the task of architecting DSM.
The system is completely open source and publicly available
(https://github.com/seakers/daphne_brain).

The aim of Daphne is to help system engineers reduce their
cognitive load when exploring large tradespaces for DSMs by
providing them with easier and timely access to relevant infor-
mation. Daphne’s different roles support this task in different
ways, and accept inputs both in natural language and more
classical interactions.

The article also described a validation study where nine JPL
engineers worked on a DSM tradespace exploration task with
two versions of Daphne (within-subjects experiment): One with
all its features, and another one that looked more like traditional
tradespace exploration tools. We measured the performance in
the task as the hypervolume of the designs generated, and mea-
sured human learning and usability at the end of each task using
a test and the standard usability survey, respectively. The results
provided support for our hypotheses that Daphne with all its
capabilities can help engineers find better and more diverse DSM
designs without sacrificing learning or usability. Moreover, we
showed that the user-Daphne collaboration outperformed both
the human with a traditional tool and Daphne alone, even (for
some subjects) when the comparison is done on an isotime basis.

In terms of future work on Daphne, we have identified several
limitations that need to be addressed, both in the system and
the testing that we have performed to date. From the feedback
we gathered during the interviews post experiment, most peo-
ple asked for better ways to foster innovation using Daphne.
One common suggestion is the ability to redefine aspects of
the problem formulation during the tradespace search exercise,
without having to change code or text files and rerun Daphne
(e.g., to add a new instrument online). We also want to continue
exploring the mixed-initiative functionalities of Daphne. Several
subjects shared our vision of Daphne as a team mate during
mission architectural and concept studies; one who listens to
the conversation in real time and chip in with suggestions as
appropriate.

Another major point of improvement concerns human learn-
ing. In addition to improving task performance, we would like
Daphne to not only hinder learning, but increase it. As we

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MARTIN AND SELVA: DAPHNE: A VIRTUAL ASSISTANT FOR DESIGNING EARTH OBSERVATION DISTRIBUTED SPACECRAFT MISSIONS 17

TABLE IV
LIST OF QUESTIONS IN THE SUS (ANSWERS RANGE FROM 1 - STRONGLY

DISAGREE TO 5 - STRONGLY AGREE)

develop new strategies to do that, we will need to develop and
try new measures of learning that take into account a broader set
of learning dimensions. Finally, we plan to conduct additional
experiments with a similar population to test our new learning
instruments as well as determine the effects of different skills
on performance and learning.

APPENDIX

ADMINISTERED SUS QUESTIONNAIRE

Table IV contains a list of the questions administered to the
test subjects as part of the SUS.

REFERENCES

[1] H. Bang, A. Viros, A. Prat, and D. Selva, “Daphne : An intelligent assistant
for architecting earth observing satellite systems,” in Proc. AIAA SciTech,
2018, pp. 1–14.

[2] A. V. Martin and D. Selva, “From design assistants to design peers: Turning
daphne into an AI companion for mission designers,” in Proc. AIAA Scitech

Forum, 2019, p. 0402.
[3] D. Selva, A. Golkar, O. Korobova, I. L. i Cruz, P. Collopy, and O. L.

de Weck, “Distributed and federated satellite systems: What is needed to
move forward?” J. Aerosp. Inf. Syst., vol. 14, no. 8, pp. 412–438, 2017.

[4] P. Garcia Buzzi, D. Selva, N. Hitomi, and W. J. Blackwell, “A survey and
assessment of the capabilities of Cubesats for Earth observation,” Acta

Astronautica, vol. 74, pp. 50–68, 2019.
[5] National Aeronautics and Space Administration, “NASA Tech-

nology Roadmaps: Introduction, Crosscutting Technologies, and
Index,” National Aeronautics and Space Administration, Wash-
ington, D.C., USA, Jul. 2015. [Online]. Available: https://www.
nasa.gov/sites/default/files/atoms/files/2015_nasa_technology_
roadmaps_ta_0_introduction_crosscutting_index_final_0.pdf

[6] National Aeronautics and Space Administration, “NASA Technology
Roadmaps TA 11: Modeling, Simulation, Information Technology, and
Processing,” National Aeronautics and Space Administration, Wash-
ington, D.C., USA, May 2015. [Online]. Available: https://www.nasa.
gov/sites/default/files/atoms/files/2015_nasa_technology_roadmaps_ta_
11_modeling_simulation_final.pdf

[7] S. Nag, S. P. Hughes, and J. Le Moigne, “Streamlining the design
tradespace for earth imaging constellations,” in Proc. AIAA Space, 2016,
pp. 1–17. [Online]. Available: http://arc.aiaa.org/doi/10.2514/6.2016-
5561

[8] J. Le Moigne et al., “Tradespace analysis tool for designing constellations
(tat-c),” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2017, pp. 1181–
1184.

[9] D. Selva, “Knowledge-intensive global optimization of Earth observing
system architectures: A climate-centric case study,” in Proc. SPIE Remote

Sens., vol. 9241, 2014, pp. 1–22.

[10] R. E. Thompson, J. M. Colombi, J. Black, and B. J. Ayres, “Disaggre-
gated space system concept optimization: Model-based conceptual design
methods,” Syst. Eng., vol. 18, no. 6, pp. 549–567, 2015.

[11] D. C. Engelbart, “Augmenting human intellect: a conceptual framework,”
Stanford Research Institute, Washington D.C., Tech. Rep. AFOSR-3233,
1962.

[12] Clinc AI, “Clinc.” (2019). [Online]. Available: https://clinc.com/. Ac-
cessed on: Nov. 5, 2019.

[13] G. Weiss, Multiagent Systems, 2nd ed. Cambridge, MA, USA: MIT Press,
2013. [Online]. Available: https://mitpress.mit.edu/books/multiagent-
systems-0

[14] K. Myers, P. Berry, J. Blythe, K. Conley, and M. Gervasio, “An intelligent
personal assistant for task and time management,” AI Mag., vol. 28, no. 2,
pp. 47–62, 2007. [Online]. Available: http://www.aaai.org/ojs/index.php/
aimagazine/article/viewArticle/2039

[15] J. Grant, S. Kraus, and D. Perlis, “A logic-based model of intention for-
mation and action for multi-agent subcontracting,” Artif. Intell., vol. 163,
no. 2, pp. 163–201, 2005.

[16] J. McDermott, “R1: A rule-based configurer of computer systems,” Artif.

Intell., vol. 19, no. 1, pp. 39–88, 1982.
[17] C. C. Hayes, A. K. Goel, I. Y. Tumer, A. M. Agogino, and W.

C. Regli, “Intelligent support for product design: Looking backward,
looking forward,” J. Comput. Inf. Sci. Eng., vol. 11, pp. 1–9, 2011.
[Online]. Available: http://computingengineering.asmedigitalcollection.
asme.org/article.aspx?articleid=1402355

[18] A. K. Goel, S. Vattam, B. Wiltgen, and M. Helms, “Cognitive, collabora-
tive, conceptual and creative - Four characteristics of the next generation
of knowledge-based CAD systems: A study in biologically inspired de-
sign,” Comput. Aided Des., vol. 44, no. 10, pp. 879–900, 2012. [Online].
Available: http://dx.doi.org/10.1016/j.cad.2011.03.010

[19] W. C. Regli, S. Szykman, and R. D. Sriam, “The role of knowledge in
next-generation product development systems,” J. Comput. Inf. Sci. Eng.,
vol. 1, pp. 3–11, 2001.

[20] W. Song, A. Keane, J. Rees, A. Bhaskar, and S. Bagnall, “Turbine blade
fir-tree root design optimisation using intelligent cad and finite element
analysis,” Comput. Structures, vol. 80, no. 24, pp. 1853–1867, 2002.

[21] K. L. Wood, R. B. Stone, D. Mcadams, J. Hirtz, and S. Szykman, “A
functional basis for engineering design: Reconciling and evolving previous
efforts,” Res. Eng. Des., vol. 13, pp. 65–82, 2002.

[22] Y. Kitamura, M. Kashiwase, M. Fuse, and R. Mizoguchi, “Deployment
of an ontological framework of functional design knowledge,” Adv. Eng.

Inform., vol. 18, no. 2, pp. 115–127, 2004.
[23] G. Stump, S. Lego, M. Yukish, T. W. Simpson, and J. A. Donndelinger,

“Visual Steering Commands for Trade Space Exploration: User-Guided
Sampling With Example,” J. Comput. Inf. Sci. Eng., vol. 9, no. 4, pp. 1–10,
2009.

[24] S. Watanabe, Y. Chiba, and M. Kanazaki, “A proposal on analysis support
system based on association rule analysis for non-dominated solutions,”
in Proc.IEEE Congr. Evol. Computation, 2014, pp. 880–887.

[25] X. Yan, M. Qiao, T. Simpson, J. Li, and X. Zhang, “Work-centered visual
analytics to support multidisciplinary design analysis and optimization,”
in Proc. 12th AIAA Aviation Technol., Integr., Operations Conf. 14th

AIAA/ISSM, 2012, pp. 1–12.
[26] H. Bang and D. Selva, “iFEED: Interactive feature extraction for engineer-

ing design,” in Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng.

Conf., 2016, pp. 1–11.
[27] M. C. Fu, C. C. Hayes, and E. W. East, “Sedar: Expert critiquing system for

flat and low-slope roof design and review,” J. Comput. Civil Eng., vol. 11,
no. 1, pp. 60–68, 1997.

[28] S. A. Guerlain et al., “Interactive critiquing as a form of decision support:
An empirical evaluation,” Human Factors, vol. 41, no. 1, pp. 72–89, 1999.

[29] W. Peng and J. Gero, “Computer-aided design tools that adapt,” Comput.-

Aided Architectural Des. Futures, 2007, pp. 417–430. [Online]. Avail-
able: http://link.springer.com/content/pdf/10.1007/978-1-4020-6528-6_
31.pdf

[30] J. Eddy and K. E. Lewis, “Visualization of multidimensional design and
optimization using cloud visualization,” Proc. ASME Int. Des. Eng. Tech.

Conf. Comput. Inf. Eng. Conf., 2002, pp. 899–908.
[31] G. M. Stump, M. Yukish, T. W. Simpson, and E. N. Harris, “Design space

visualization and its application to a design by shopping paradigm,” in
Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., 2003,
pp. 795–804. [Online]. Available: http://dx.doi.org/10.1115/DETC2003/
DAC-48785

[32] P. W. Chiu and C. L. Bloebaum, “Hyper-Radial Visualization (HRV)
method with range-based preferences for multi-objective decision mak-
ing,” Structural Multidisciplinary Optim., vol. 40, no. 1–6, pp. 97–115,
2010.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

[33] P. Chiu and C. Bloebaum, “Visual steering for design generation in multi-
objective optimization problems,” in Proc. 47th AIAA Aerosp. Sci. Meeting,
2009, pp. 1–14. [Online]. Available: http://arc.aiaa.org/doi/pdf/10.2514/
6.2009-1167

[34] N. Knerr and D. Selva, “Cityplot: Visualization of high-dimensional design
spaces with multiple criteria,” J. Mech. Des., vol. 138, no. 9, pp. 1–53,
2016.

[35] S. Watanabe, Y. Chiba, and M. Kanazaki, “A proposal on analysis support
system based on association rule analysis for non-dominated solutions,”
in Proc. IEEE Congr. Evol. Comput., 2014, pp. 880–887.

[36] G. Cervone, P. Franzese, and A. P. Keesee, “Algorithm quasi-optimal (AQ)
learning,” Wiley Interdisciplinary Rev.: Comput. Statist., vol. 2, no. 2,
pp. 218–236, 2010.

[37] A. Newell, Human Problem Solving. Upper Saddle River, NJ, USA:
Prentice-Hall, 1972.

[38] N. W. Hirschi and D. D. Frey, “Cognition and complexity: An experiment
on the effect of coupling in parameter design,” Res. Eng. Des., vol. 13,
pp. 123–131, 2002.

[39] D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, Mastering The Infor-

mation Age Solving Problems with Visual Analytics. Geneve, Switzerland:
Eurographics Assoc., Jan. 2010.

[40] M. Freed et al., “RADAR : A personal assistant that learns to re-
duce email overload,” in Proc. 23rd AAAI Conf. Artif. Intell., 2008,
pp. 1287–1293.

[41] DARPA, “PAL - The PAL framework.” (2011). [Online]. Available: https://
pal.sri.com/. Accessed on: Nov. 5, 2019.

[42] A. Cheyer and D. Martin, “The Open Agent Architecture,” Auton. Agents

Multi-Agent Syst., vol. 4, no. 1–2, pp. 143–148, 2001. [Online]. Available:
https://doi.org/10.1023/A:1010091302035

[43] A. Cheyer, J. Park, and R. Giuli, “IRIS: Integrate. Relate. Infer. Share,”
in Proc. Int. Conf. Semantic Desktop Workshop, Aachen, Germany, 2005,
pp. 59–73. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2890006.2890011

[44] D. A. Ferrucci, “Introduction to this is watson,” IBM J. Res. Develop., vol.
56, no. 3.4, pp. 1–15, 2012. [Online]. Available: http://ieeexplore.ieee.org/
document/6177724/

[45] IBM, “IBM Watson products and services.” (2019). [Online]. Available:
https://www.ibm.com/watson/products-services/. Accessed on: Nov. 5,
2019.

[46] Wolphram Alpha LLC, “Wolfram|Alpha: Computational Intelligence.”
(2019). [Online]. Available: http://www.wolframalpha.com/. Accessed
on: Nov. 5, 2019.

[47] Apple, “Siri - Apple.” (2019). [Online]. Available: https://www.apple.
com/siri/. Accessed on: Nov. 5, 2019.

[48] Google, “Google Assistant, your own personal Google.” (2019). [Online].
Available: https://assistant.google.com/. Accessed on: Nov. 5, 2019.

[49] Microsoft, “Personal Digital Assistant - Cortana Home Assistant - Mi-
crosoft.” (2019). [Online]. Available: https://www.microsoft.com/en-us/
cortana. Accessed on: Nov. 5, 2019.

[50] Amazon, “Amazon Alexa - Build for Amazon Echo Devices.” (2019).
[Online]. Available: https://developer.amazon.com/alexa. Accessed on:
Nov. 5, 2019.

[51] Mycroft AI Inc., “Mycroft - Open Source Voice Assistant - Mycroft.”
(2019). [Online]. Available: https://mycroft.ai/. Accessed on: Nov. 5,
2019.

[52] J. Hauswald et al., “Sirius: An open end-to-end voice and vision personal
assistant and its implications for future warehouse scale computers,” in
Proc. 20th Int. Conf. Architectural Support Program. Lang. Operating

Syst., 2015, pp. 223–238. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2694344.2694347

[53] P. Baudiš, “YodaQA : A modular question answering system pipeline,” in
Proc. 19th Int. Student Conf. Elect. Eng., 2015, pp. 1156–1165. [Online].
Available: http://ailao.eu/yodaqa/yodaqa-poster2015.pdf

[54] D. Wang and E. Nyberg, “CMU OAQA at TREC 2016 LiveQA : An
attentional neural encoder-decoder approach for answer ranking,” in Proc.

Text REtrieval Conf., 2016, pp. 1–6.
[55] K. Koile, An Intelligent Assistant for Conceptual Design. Dordrecht, The

Netherlands: Springer, 2004, pp. 3–22.
[56] P. Floss and J. Talavage, “A knowledge-based design assistant for intel-

ligent manufacturing systems,” J. Manuf. Syst., vol. 9, no. 2, pp. 87–102,
1990.

[57] L. Mandow and J. L. Perez-De-La-Cruz, “Sindi: An intelligent assistant
for highway design,” Expert Syst. With Appl., vol. 27, no. 4, pp. 635–644,
2004.

[58] K. Grace, M. L. Maher, D. Wilson, and N. Najjar, “Personalised specific
curiosity for computational design systems,” in Des. Comput. Cognition,
2017, pp. 593–610. [Online]. Available: http://link.springer.com/10.1007/
978-94-017-9112-0

[59] T. McCaffrey and L. Spector, “An approach to human–machine collabora-
tion in innovation,” Artif. Intell. Eng. Des., Anal. Manuf., 2017, pp. 1–15.
[Online]. Available: https://www.cambridge.org/core/product/identifier/
S0890060416000524/type/journal_article

[60] A. Berquand et al., “Towards an artificial intelligence based design engi-
neering assistant for the early design of space missions,” in Proc. 69th Int.

Astronaut. Congr., 2018.
[61] S. Newman, Building Microservices: Designing Fine-Grained Systems.

Sebastopol, CA, USA: O’Reilly Media, 2015.
[62] D. Selva, B. G. Cameron, and E. F. Crawley, “Rule-Based system ar-

chitecting of earth observing systems: Earth science decadal survey,”
J. Spacecraft Rockets, vol. 51, no. 5, pp. 1505–1521, 2014. [Online].
Available: http://arc.aiaa.org/doi/abs/10.2514/1.A32656

[63] CEOS, “The CEOS database: Mission, instruments and measurements.”
(2017). [Online]. Available: http://database.eohandbook.com/. Accessed
on: Nov. 5, 2019.

[64] N. Hitomi and D. Selva, “Incorporating expert knowledge into evolution-
ary algorithms with operators and constraints to design satellite systems,”
Appl. Soft Comput., vol. 66, pp. 330–345, 2018.

[65] N. Hitomi, H. Bang, and D. Selva, “Adaptive knowledge-driven optimiza-
tion for architecting a distributed satellite system,” J. Aerosp. Inf. Syst.,
vol. 15, no. 8, pp. 485–500, 2018.

[66] Pivotal Software Inc., “Messaging that just works - RabbitMQ,” (2019).
[Online]. Available: https://www.rabbitmq.com/

[67] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” ACM SIGMOD Rec., vol. 22, no.
2, pp. 207–216, 1993. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=170036.170072

[68] Explosion AI, “spaCy -industrial-strength natural language processing in
Python.” (2019). [Online]. Available: https://spacy.io/. Accessed on: Nov.
5, 2019.

[69] NLTK Project, “Natural Language Toolkit.” (2019). [Online]. Available:
http://www.nltk.org/. Accessed on: Nov. 5, 2019.

[70] Apache Software Foundation, “Apache OpenNLP.” (2019). [Online].
Available: https://opennlp.apache.org/. Accessed on: Nov. 5, 2019.

[71] A. Khan, B. Baharudin, L. H. Lee, and K. Khan, “A review of machine
learning algorithms for text-documents classification,” J. Advances Inf.

Technol., vol. 1, no. 1, pp. 4–20, 2010.
[72] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural

network for modelling sentences,” 2014, arXiv:1404.2188.
[73] Y. Kim, “Convolutional neural networks for sentence classification,”

in Proc. Conf. Empirical Methods Natural Lang. Process., Aug. 2014,
pp. 1746–1751.

[74] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

[75] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. Conf. Empirical Methods Natural Lang.

Process., 2014, pp. 1532–1543.
[76] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic repre-

sentations from tree-structured long short-term memory networks,” 2015,
arXiv:1503.00075.

[77] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proc. Conf. North

Amer. Chapter Assoc. Comput. Linguistics: Human Lang. Technol., 2016,
pp. 1480–1489. [Online]. Available: http://aclweb.org/anthology/N16-
1174

[78] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual string embeddings for
sequence labeling,” in Proc. 27th Int. Conf. Comput. Linguistics, 2018,
pp. 1638–1649.

[79] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

[80] M. Abadi et al., “Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems,” 2016, arXiv:1603.04467.

[81] Y. Zhang and B. Wallace, “A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification,” 2015,
arXiv:1510.03820. [Online]. Available: http://arxiv.org/abs/1510.03820

[82] P. H. Sellers, “The theory and computation of evolutionary distances: Pat-
tern recognition,” J. Algorithms, vol. 1, no. 4, pp. 359–373, 1980. [Online].
Available: http://linkinghub.elsevier.com/retrieve/pii/0196677480900164

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MARTIN AND SELVA: DAPHNE: A VIRTUAL ASSISTANT FOR DESIGNING EARTH OBSERVATION DISTRIBUTED SPACECRAFT MISSIONS 19

[83] G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz, and J. Slocum, “Developing
a natural language interface to complex data,” ACM Trans. Database Syst.,
vol. 3, no. 2, pp. 105–147, 1978.

[84] G. G. Hendrix, “Natural-language interface,” Comput. Linguistics, vol. 8,
no. 2, pp. 56–61, 1982.

[85] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[86] R. R. Hoffman, M. Johnson, J. M. Bradshaw, and A. Underbrink, “Trust
in automation,” IEEE Intell. Syst., vol. 28, no. 1, pp. 84–88, Jan. 2013.

[87] N. E. Gronlund, Assessment of Student Achievement. London, England,
UK: Pearson, 1998.

[88] C. A. Palomba and T. W. Banta, Assessment Essentials: Planning, Imple-

menting, and Improving Assessment in Higher Education. (Higher and

Adult Education Series). Hoboken, NJ, USA: Wiley, 1999.
[89] L. W. Anderson et al., “A taxonomy for learning, teaching, and assessing: A

revision of blooms taxonomy of educational objectives, abridged edition,”
White Plains, NY, USA: Longman, 2001.

[90] J. Brooke, “Sus - a quick and dirty usability scale,” Usability Eval. Industry,
vol. 189, no. 194, pp. 4–7, 1996.

[91] D. Ghosh, P. S. Foong, S. Zhang, and S. Zhao, “Assessing the utility of
the system usability scale for evaluating voice-based user interfaces,” in
Proc. Sixth Int. Symp. Chin. CHI, 2018, pp. 11–15.

[92] G. Cordasco et al., “Assessing voice user interfaces: The vassist system
prototype,” in Proc. 5th IEEE Conf. Cogn. Infocommunications, 2014,
pp. 91–96.

[93] X. Rong, A. Fourney, R. N. Brewer, M. R. Morris, and P. N. Bennett,
“Managing uncertainty in time expressions for virtual assistants,” in Proc.

CHI Conf. Human Factors Comput. Syst., 2017, pp. 568–579.
[94] H. Bang, Y. L. Z. Shi, S.-Y. Yoon, G. Hoffman, and D. Selva, “Exploring

the feature space to aid learning in design space exploration,” in Design

Computing and Cognition. Cham, Switzerland: Springer, 2018.

Antoni Viros i Martin (SM’18) received the B.Sc.
degree in aerospace engineering and the B.Sc. degree
in computer science from the Universitat Politecnica
de Catalunya, Barcelona, Spain, in 2017. He is cur-
rently working toward the Ph.D. degree in Virtual
Assistants for early mission formulation at the De-
partment of Aerospace Engineering at Texas A&M
University, College Station, TX, USA.

Prior to starting Ph.D., he worked as a Researcher
with Cornell University, Ithaca, NY, USA, on the
same fields for a year and a half. His research interests

include virtual assistants and artificial intelligence applications in the aerospace
field, and in particular the design of distributed missions for earth observation.

Daniel Selva (M’09) received the Diplome
d’Ingenieur degree from École Nationale Supérieure
de l’Aéronautique et de l’Espace, Toulouse, France,
which is equivalent to the M.Eng. degree in aerospace
engineering in the US system, in 2004, the Ingeniero
Superior de Telecomunicaciones degree, equivalent
to the M.Eng. degree in electrical engineering, from
Universitat Politecnica de Catalunya, Barcelona,
Spain, in 2004, and the Ph.D. degree in aerospace
engineering from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 2012.

Before doing his Ph.D., he worked for four years in Kourou (French
Guiana) as an Avionics Specialist within the Ariane 5 Launch team. He
is currently an Assistant Professor of Aerospace Engineering with Texas
A&M University, College Station, TX, USA, where he directs the Systems
Engineering, Architecture, and Knowledge (SEAK) Lab. His research interests
include the application of knowledge engineering, global optimization, and
machine learning techniques to systems engineering and architecture, with a
strong focus on space systems.

Dr. Selva is a member of the AIAA Intelligent Systems Technical Committee,
and the European Space Agency’s Advisory Committee for Earth Observation.

