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Abstract

This study proposes a deep learning model that effectively suppresses the false alarms in
the intensive care units (ICUs) without ignoring the true alarms using single- and multi-
modal biosignals. Most of the current work in the literature are either rule-based methods,
requiring prior knowledge of arrhythmia analysis to build rules, or classical machine learning
approaches, depending on hand-engineered features. In this work, we apply convolutional
neural networks to automatically extract time-invariant features, an attention mechanism to
put more emphasis on the important regions of the segmented input signal(s) that are more
likely to contribute to an alarm, and long short-term memory units to capture the temporal
information presented in the signal segments. We trained our method efficiently using a two-
step training algorithm (i.e., pre-training and fine-tuning the proposed network) on the data-
set provided by the PhysioNet computing in cardiology challenge 2015. The evaluation
results demonstrate that the proposed method obtains better results compared to other
existing algorithms for the false alarm reduction task in ICUs. The proposed method
achieves a sensitivity of 93.88% and a specificity of 92.05% for the alarm classification,
considering three different signals. In addition, our experiments for 5 separate alarm types
leads significant results, where we just consider a single-lead ECG (e.qg., a sensitivity of
90.71%, a specificity of 88.30%, an AUC of 89.51 for alarm type of Ventricular Tachycardia
arrhythmia).

Introduction

The electrocardiogram (ECG) is a biomedical signal that includes information about the elec-
trical activity of heart function and heart conditions over a period of time. Monitoring and
interpretation of ECG signals serve the most useful tool for medical staff in ICUs to check the
patients’ heart condition such as arrhythmia, ventricular hypertrophy, and myocardial infarc-
tion, etc. Cardiac arrhythmias can cause serious and even potentially fatal symptoms if they
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are not inspected promptly. Although patient-monitoring alarms play an indispensable role in
saving patients’ lives, the high rate of false alarms not only can be annoying for patients but
also may delay the response of medical staff due to making them less sensitive to warnings.
Moreover, it can delay patients’ recovery by causing sleep deprivation and depressed immune
systems. Therefore, suppressing the rate of false alarms in ICUs will improve the quality of
patient care and reduce the number of missed true fatal alarms by medical staff. As reported
by Aboukhalil et al. [1] and Drew et al. [2], the rate of false alarms in ICUs reaches as high as
almost 90%. In regard to this concern, the PhysioNet directed the challenge 2015 to reduce the
incidence of false arrhythmia alarms in ICUs while the true alarms are not suppressed [3].

In order to reduce the rate of false alarms in ICUs, various methods have been proposed.
Typically, they can be classified into two general categories: 1) methods based on cardiac rules
and 2) machine learning based methods. In the first category, some cardiac rules are defined
by experts to detect alarm types. All of the approaches in this category depend primarily on the
QRS-complex detection in order to estimate heart rate (HR) and evaluate the signal quality.
Ansari et al. [4] adopted several peak detection algorithms to create a robust peak detection
algorithm and exploited the information from all three ECG, ABP and PPG signals. Fallet et al.
[5] used an adaptive frequency tracking algorithm to estimate HR from PPG and ABP signals
and an adaptive mathematical morphology approach to estimate HR from the ECG. Also, they
exploited the Spectral Purity Index (SPI) to quantify the morphological changes of QRS com-
plexes related to the Ventricular Arrhythmia. Then, they employed a set of rules based on the
HR and the SPI to inspect false alarms. Plesinger et al. [6] and Couto et al. [7] applied a set of
rules on each alarm types to distinguish between false and true alarms using ECG, ABP and
PLETH signals. He et al. [8] classified alarms using ECG and ABP signals by following a set of
rules related to Signal Quality Index (SQI) and Heart Rate Variability (HRV). However, one
challenge with the false alarm detection based on cardiac rules is the need for an expert to
determine the rules and the required thresholds. To tackle this, recent studies have exploited
machine-learning approaches to detect false alarms.

In machine learning based methods, a false alarm detection model is trained using some
extracted features from the dataset’s samples. In [9], features of interest are extracted from the
two-dimensional beat-to-beat correlograms using Fast Fourier Transform (FFT) and principle
component analysis (PCA) as well as basic statistical and self-similarity analysis. Then, several
machine learning algorithms are evaluated using the extracted features to detect false alarms.
In [10], a random forest technique is applied to reduce false alarms using different methods of
probability and class assignments. Lehman et al. [11] adopted a supervised denoising autoen-
coder (SDAE) to identify false alarms in Ventricular Tachycardia using features of interest
extracted by FFT. Kalidas and Tamil [12] used a combination of logical and SVM algorithm
to classify arrhythmias using ECG and PPG signals. In their work, the features of interest are a
set of both time and frequency-domain information. [13] and [14] proposed game theoretical
approaches in order to extract more discriminative features to reduce the rate of false alarms.

The performance of the classification methods highly depends on the quality of class dis-
criminating features in terms of on what extent they can capture the main characteristics of
the input. Most of the machine learning methods are trained based on hand-crafted features.
However, one challenge facing the hand-crafted features is that it depends on a specific dataset,
thereby new features may be needed if the dataset changes in terms of size and variety of
patients. Although deep learning algorithms have been utilized in medical applications [15-
17], only a few numbers of studies in the false alarm reduction literature applied deep learning
methods and automatic feature extraction [11, 18]. In this paper, we propose a deep learning-
based approach to reduce the rate of false alarms in ICUs for five life-threatening arrhythmias:
Asystole (ASY), Extreme Bradycardia (EBR), Extreme Tachycardia (ETC), Ventricular
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Tachycardia (VTA), and Ventricular Flutter/Fibrillation (VEB). The performance of the pro-
posed model is evaluated using the publicly available alarm dataset for ICUs provided by “Phy-
sioNet computing in cardiology challenge 2015”. The experimental results show the proposed
method can significantly suppress the rate of false alarms in ICU equipment with respect to
five mentioned life-threatening arrhythmias without suppressing true alarms. In the following,
the main contributions of this work are summarized:

o We present a multi-modal model that integrates three main signals of arterial blood pressure
(ABP), photoplethysmograph (PPG) and ECG in order to enhance the accuracy of arrhyth-
mia detection and reduce the false alarm rate in ICUs. A multi-modal approach that analyzes
a set of independent sources/signals for alarm detection can significantly improve the alarm
detection performance. The reason behind this idea is that each independent channel or
source of data is inclined to distinct noise and/or artifacts, thereby a hidden pattern in a cer-
tain channel caused by noise and/or artifacts can be disclosed by other clean channels.

We develop a network architecture for automatic feature extraction that utilizes a convolu-
tional neural network (CNN) with two consecutive one-dimensional convolutional layers
composed of different filter sizes, attention and long short-term memory (LSTM) units, and
a classification layer. The CNN part extracts a vector of features from each segment of a sin-
gle channel, while the attention and LSTM units are trained to identify the most effective
parts of the segment in the detection and capture long-range of dependencies between seg-
ments of an input signal, respectively. Typically, some indicators appear in the signals as
early as few hours before cardiac events [19-21]. Since considering the entire length of the
signals is not necessarily feasible, an attention mechanism along with a memory-based
approach can divide the signals into different partitions by putting a higher weight on the
most important ones to save space/computation as well as enhance the accuracy.

o We apply two loss functions of Mean False Error (MFE) and Mean Squared False Error
(MSFE) instead of using the common loss function in deep learning algorithms; Mean
Squared Error (MSE), to reduce the effect of class unbalanced dataset on degrading the per-
formance. This proposed loss function propagates the training error for a misclassified sam-
ple without considering its membership to the major or minor class.

In the next section (Methodology), we describe the proposed false arrhythmia alarm reduc-
tion method. Dataset section provides a description of the dataset used in this study. In Section
Experimental Results, we present the experimental results and compare the performance of
the proposed algorithm to other state-of-the-art algorithms, followed by the conclusion in Sec-
tion Conclusion.

Methodology

We develop a deep learning model to classify the arrhythmias from the segments of three com-
mon physiological signals of ECG, ABP, and PPG signals based on a two-stage approach to
further reduce the false alarm rate. In the first part, we develop three pre-trained networks to
extract features of interest for the three biosignals separately, followed by a shallow neural net-
work in the second part that uses the extracted features from the pre-trained nets to perform a
classification task. At each time step, pre-trained networks extract features of their correspond-
ing input signals, and then, the extracted features are averaged and fed to the fully-connect
layer with the size of 256 neurons followed by a dropout block. Finally, a softmax layer is used
to determine the probability of the input signal belonging to each class of interest (true or

false alarm). Fig 1 shows an overall view of the proposed model for reducing false arrhythmia
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Fig 1. An overview of the network architecture for multi-model false alarm reduction method. AVG: average, FC: fully connected layer.

https://doi.org/10.1371/journal.pone.0226990.9001

alarms in ICUs. It should be noted that the dropout block is frozen during the testing phase
and is just used in the training phase. In the following sections, we describe the details of differ-
ent parts of the proposed model.

Pre-processing

Prior to feature extraction and classification parts, the ECG, ABP, and PPG signals were sub-
jected to normalization and segmentation steps. For the normalization step, the signals are
normalized to a range of 0 to 1. The segmentation part is perfomed using a sliding 200-sample
window with an overlap of 25% for all three signals separately. These segments are fed to their
corresponding networks (i.e., ECG, ABP, and PPG NETs as shown in Fig 1) as the input
sequences. It is worth mentioning that the pre-processing process does not include any noise
removing and/or filtering steps to remove muscle artifacts and baseline wander.

The model architecture

The following subsections describe the main parts of the automatic feature extraction network.
We train a feature extraction network for each of the three input signals separately. Fig 2 illus-
trates the proposed network architecture for automatic feature extraction.

Convolutional neural network (CNN). We employ two consecutive 1D convolutional
layers with different sizes of filters and a max-pooling layer following the first convolutional
layer. The first convolutional layer is composed of 32 filters with a kernel size of 2 x 1 and a
stride 1, and a Rectified Linear Unit (ReLU) layer. The second convolutional layer with larger
sizes of filters has 64 filters with a kernel size of 2 x 1 and a stride 1, and a ReLU layer. The
max-pooling layer has a pooling region of size 2 x 1 with a stride size of 2 x 1. At each time
step, a sequence of a segmented signal (e.g., ECG, ABP or PPG) with the size of n is fed to the
CNN to extract features of interest. The second CNN layer generates D feature maps of size
L x 1 for each sample of the input signal, which is converted to L vectors of D-dimension as
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Fig 2. The network architecture of the proposed model for feature extraction.
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Fig 3. A systematic diagram of the attention unit. The attention unit takes as input vertical feature slices, C,;i € 1,
2,..., L, and the RNN previous hidden state, /,_;. Then, it computes a linear weighted vector, ¢, that is a multiplication
of each feature slice and its corresponding importance, o ;.
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follows:

Ct = [Ct,la Ct,2’ LR CLL]? Ct,i € RD'

Here, we have 64 feature maps with the sizes of 5 x 1 (see Fig 2).

Attention and long short-term memory (LSTM) units. We use an attention unit to learn
the most effective parts of the input signal that are responsible to trigger a specific alarm. The
attention mechanism has also been used in previous biomedical signal processing studies such
as [17, 22] to improve the atrial fibrillation classification performance. In [22], they have placed
attention modules after the LSTM units to have attentions on each 30s input segment. How-
ever, we put the attention units before LSTM units to focus on the segments parts (each seg-
ment is divided into fixed predefined parts (i.e., here, 10)) instead of input segments of the
signal. The attention unit assigns a probability value to each part of the signal to specify its
importance in the prediction process (e.g., predicting true or false alarm). For instance, as
depicted in Fig 2, the attention unit assigns a probability value to each vector extracted from
the input segment by the CNN. Finally, an expected value of the most effective regions of the
input segments is generated using the probability values provided by the attention units (rep-
resented by the feature vector, C,).

Fig 3 illustrates a systematic diagram of the attention unit utilized in our proposed model.
The attention unit is fed by two inputs: (1) L feature vectors, C;;, C;», . . ., C; 1, where each C;
represents a different part of the input segment, and (2) A hidden state h,_;, which is the inter-
nal state of the RNN at the previous time step, ¢t — 1. Then, it calculates a vector, ¢; which is a
weighted sum over feature slices, C; ;. With respect to the aforementioned assumptions, the
attention mechanism can be formulated as:

a,, = f(tanh (W,h,_, + W.C,))) i€l,2,... L, (1)

L
& = Zat,ict,iv (2)
i=1

In the above equations, ¢ ; is the importance of part i of the input segment. f(.) is a softmax
function that processes a vector of L real numbers as input, and normalizes them into proba-
bility values. At first, a vector consisted of a weighted sum over C,; and h,_, values is created
and passed to the tanh function. Then, the softmax function normalizes the L values of the
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input vector and creates «; ;. In other words, each «;; is considered as the amount of impor-
tance of the corresponding vector C,; among L vectors in the input segment. Finally, the
attention unit calculates ¢, a weighted sum of all vectors C,; with respect to ¢, ;5. Following the
above process, the model attempts to learn to put more emphasis on the important regions of
the input segment with higher probabilities that make to trigger an alarm (e.g., a false or true
alarm) in ICUs.

In order to extract temporal information and capture long-range of dependencies between
segments of the input signal, we employ a stack of two long short-term memory (LSTM) units
with sizes of 256. The LSTM units are following the attention units and take c;,; values pro-
duced by the attention units and the previous hidden states of the LSTM units as inputs to gen-
erate the next hidden states. In other words, the LSTM unit takes c;, the output of attention
unit at time ¢, and h,_,, previous hidden state, to return the next hidden state h,. The new hid-
den states are fed to the attention units to produce the value of 4, at the next step and also the
fully-connected layer with a size of 256 (see Fig 2).

Classification layer. This layer specifies the label of the input signal (i.e., true or false
alarm) and consists of a fully-connected layer followed by a softmax layer. The softmax layer
assigns probabilities that the given input belongs to each of the class labels (i.e., true or false
alarm classes). Note that this layer is removed while the model depicted in Fig 2 is used as a
feature extractor in the network illustrated in Fig 1.

Loss calculation

An important caveat in the false alarm reduction research is the class imbalance problem,
meaning that the number of true alarms is much less than the false alarms. This problem causes
to drop the performance of the applied method for the minor class. To tackle this problem, we
examined two loss functions: mean false error (MFE) and mean squared false error (MSFE)
[23, 24] instead of the commonly used Mean Squared Error (MSE) in deep learning algo-
rithms. These loss functions calculate the training error without considering the membership
of the misclassified sample to the major or minor class. In other words, the MFE and MSFE
methods capture the training error of the classes equally as opposed to the MSE method that is
biased to the major class in a imbalanced dataset. The loss functions can be defined as follows:

i) = &> 0,5, ) ®)

ij=j

Lyer = Zl(gi)’ (4)

Lyser = Zl(gi)Q, (5)

In the above equations, g; is the class label (e.g., true or false alarm), G; is the number of
samples in the class g;, N is the number of available classes (in this study, we have two classes),
and I(g;) is the error calculated over the class g;.

Training algorithm

In order to effectively train the proposed model via back-propagation algorithm, we present a
two-step training algorithm as illustrated in 1. Step 1 (lines 1-9) involves extracting the features
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of interest for a specific input signal (i.e., for each of ECG, ABP, and PPG signals, separately).
Then, pre-trained networks are used as feature extractors for their corresponding models
including ECG, ABP, and PPG. In this step, in order to apply the pre-trained networks as fea-
ture extractors, only the output of the fully-connected layer in the classification layer is utilized
to represent the given signal and the softmax layer is discarded (i.e., line 8). In step 2 (lines 10-
16), the classification task is accomplished using the three signals as shown in Fig 1. It must be
pointed out that the three pre-trained networks are frozen during training process and the sec-
ond part of the model is trained to generate a label. Also, training the models in both steps are
performed with the same hyper-parameters.

Algorithm 1 Two-step training algorithm for the proposed model

Input: hyper-parameters, data

Output: f model

Step 1:

1: for each modal in [ECG, ABP, PPG] do

2 Initialize NET[modal] with random weights

3: for i =1 to n _epochs do

4 for each batch in batch data(data, modal) do

5 NET[modal] <« train network
(NET[modal], batch),
as shown in Fig 2

6: end for
7: end for
8: NET[modal]«+r softmax layer (NET[modall)
9: end for
Step 2:

10: Initialize f model with random weights

11: for i = 1 to n _epochs do

12: for each batch in batch data(data) do

13: f model « train model (f model,
NET[ECG], NET[ABP], NET[PPG], batch),
as shown in Fig 1

14: end for = Learning for NET[.] is frozen.

15: end for

16: return f model

Dataset

We applied the publicly available alarm database for ICUs provided by PhysioNet computing
in cardiology challenge 2015 [3, 25]. It includes five types of life-threatening arrhythmia
alarms: Asystole (ASY), Extreme Bradycardia (EBR), Extreme Tachycardia (ETC), Ventricular
Tachycardia (VTA), and Ventricular Flutter/Fibrillation (VEB). The definition and visualiza-
tion of each alarm are presented in Table 1 and in Fig 5, respectively. The training set includes
750 recordings and the test set includes 500 recordings. The test set has not been publicly avail-
able yet, therefore we use the training set for both test and training purposes. Each is recording
composed of two ECG leads and one or more pulsatile waveforms (i.e., the photoplethysmo-
gram (PPG) and/or arterial blood pressure (ABP) waveform). Fig 4 shows a sample of each
type of the ECG, ABP and PPG signals. The signals were re-sampled to a resolution of 12 bit
and frequency of 250 Hz and filtered by a finite impulse response (FIR) bandpass [0.05 to 40
Hz] and mains notch filters for denoising. The alarms were labeled with a team of expert to
either ‘true’ or ‘false’. Table 2 shows the statistics of the numbers of true and false alarms of
each arrhythmia type in the training set.
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Table 1. Alarms definition.

Alarm Type Definition

Asystole (ASY) There might not be heartbeats for more than 4s in the signal

Extreme Bradycardia (EBR) The heart rate is less than 40 beats per minute (bpm)

Extreme Tachycardia (ETC) The heart rate would be greater than 140 bpm for 17 consecutive

beats

Ventricular Tachycardia (VTA) A sequence of five or more ventricular beats with the heart rate
greater than 100 bpm in the signal

Ventricular Flutter/ A rapid Fibrillatory, flutter, or oscillatory waveform for at least 4

Fibrillation (VFB) seconds in the signal

HR: Heart rate

https://doi.org/10.1371/journal.pone.0226990.t001

Experimental results

The performance of the proposed model was evaluated using the PhysioNet challenge-2015
dataset. Since multi-modal prediction is based on the three signals of ECG, ABP and PPG,
only 220 samples out of 750 recordings that include all these signals are used and for the sin-
gle-modal method all samples are utilized. The PhysioNet challenge 2015 [25] have considered
two main events: (i) real-time setting in which the information before the alarm onset can be
used, and (ii) retrospective setting in which up to 30 seconds of data after the alarm can be

Fig 4. Illustration of an electrocardiogram (ECG), an arterial blood pressure (ABP) and a photoplethysmogram
(PPG) signal.

https://doi.org/10.1371/journal.pone.0226990.g004
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Fig 5. Five common critical alarm types in the intensive care units as used in the PhysioNet/computing in
cardiology challenge 2015 [3].

https://doi.org/10.1371/journal.pone.0226990.g005

used. In this study, we focus on the real-time setting where only information prior to occurring
the alarm is used. As mentioned above, using all signals in the learning process makes the
model take benefit of all available information and extract the correlation between different
models. We used k-fold cross-validation approach to train and test the proposed model with a
k size of 10 unless explicitly stated otherwise. Indeed, we divided the dataset into k = 10 folds.
Then, for each fold of the 10 folds, one fold is used for evaluating the model and the remaining
9 folds are used to train the model. In the end, all evaluation results were concatenated. It is
worth noting that the pre-training and fine-tuning steps were performed for each round of the
cross-validation rounds.

Both whole model and the three networks (ECG, ABP and PPG Nets) were trained with a
maximum of 100 epochs and a mini-batch size of 10. The RMSProp optimizer was applied to
minimize the [srp loss with a learning rate parameter of o = 0.001. Two different regularization

Table 2. The statistics of the numbers of true and false alarms of each arrhythmia type.

Alarm # of patients # of false alarms # of true alarms
Asystole (ASY) 122 100 22
Extreme Bradycardia (EBR) 89 43 46
Extreme Tachycardia (ETC) 140 9 131
Ventricular Tachycardia (VTA) 341 252 89
Ventricular Flutter/Fibrillation (VFB) 58 52 6
Total 750 456 294

https://doi.org/10.1371/journal.pone.0226990.t002
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techniques were used to prevent the overfitting problem. First, the dropout layer with the prob-
ability of dropping of 0.5 (as shown in Fig 1). At every learning iteration, the dropout function
chooses the some nodes randomly and deletes them along with their connections. Second, an
additional L, regularization term with = 0.001 was added to the loss function. This kind of
regularization tries to punish the model parameters with large values. As a result, it prevents an
unstable learning (i.e., the exploding gradient problem). Python programming language along
with Google Tensorflow deep learning library were used to implement our model. Further-
more, a machine with 8 CPUs (Intel(R) Xeon(R) CPU @ 3.60 GHz), 32 GB memory and
Ubuntu 16.04 was utilized to run the k-fold cross validation. The training time for each epoch
was 98 seconds on average and the testing time for each batch of 20 EEG epochs was approxi-
mately 0.102 seconds.

Different metrics were considered to assess the performance of the proposed model.
These metrics include accuracy (ACC), sensitivity (SEN), specificity (SPE), precision (PRE),
F1-score, and area under the ROC curve (AUC). We also report the PhysioNet Challenge 2015
score for our proposed method. It is defined as score = (TP + TN)/(TP + TN + FP + 5 x EN),
where TP is true positives, FP is false positives, FN is false negatives, and TN is true negatives.
All results are reported as an average over k-folds, where k can set to 5 and 10).

Results and discussion

The results in Table 3 represent the alarm classification (as true or false alarm) success for our
proposed method against other methods in the literature while three signals (i.e., ECG II, ABP
and PPG) are considered. It can be seen from the table that our model significantly outper-
forms other methods. We also experimented our single-modal (using just one single lead)
approach to bold how outcome might be different. Table 3 demonstrates using the multi-
modal approach absolutely leads in better performance results compared to the single-modal
one.

The results provided in Table 3 are for 220 samples of dataset with three available signals,
aggregating all alarm types. We also evaluated our model with samples with just Ventricular
Tachycardia alarm type. There were two main reasons that we selected this alarm type, (1) the
number of samples for other life-threatening arrhythmia alarm types were too small, Asystole
(34: 4 true and 30 false alarms), Extreme Bradycardia (30: 21 false and 9 true alarms), Extreme
Tachycardia (15: 14 false and 1 true alarms), Ventricular-Flutter/Fibrillation (17: 12 false and 5
true alarms), and Ventricular Tachycardia (124: 106 false and 18 true alarms), (2) the Ventric-
ular Tachycardia alarms are more difficult than other alarm types to detect [25]. Table 4 shows
the performance of our proposed model for Ventricular Tachycardia alarm type using a sin-
gle-lead signal and multi-lead signals. Our method achieves remarkable results for both the

Table 3. Comparison of performance of the proposed model against other algorithms on the PhysioNet challenge-2015 dataset.

Method Signal
Multi-modal method All
Zaeri-Amirani et al. [14] All
Afghah et al. [28] All
Single-modal method ECGII
Single-modal method ABP
Single-modal method PPG

All: ECG II, ABP, PPG; CV: Cross Validation

https://doi.org/10.1371/journal.pone.0226990.t003

Best Performance (%)

# of samples CV SEN SPE PRE F1—score AUC ACC
220 10-fold CV 93.88 92.05 79.31 85.98 92.99 92.50
220 10-fold CV 73 75 - - 81 77
220 10-fold CV 80 71 - - 74.32 77.6
220 10-fold CV 73.33 87.74 63.46 68.04 80.53 84.50
220 10-fold CV 78.72 65.35 41.11 54 72.04 68.50
220 10-fold CV 87.50 63.15 42.96 57.53 75.32 69

PLOS ONE | https://doi.org/10.1371/journal.pone.0226990 January 10, 2020 11/15


https://doi.org/10.1371/journal.pone.0226990.t003
https://doi.org/10.1371/journal.pone.0226990

@ PLOS | O N E Single-modal and multi-modal false arrhythmia alarm reduction using deep learning

Table 4. Comparison of performance of the proposed model against other algorithms for alarm type of Ventricular Tachycardia arrhythmia on the PhysioNet chal-
lenge-2015 dataset.

Best Performance (%)

Method Signal # of samples Cv SEN SPE PRE F1—score AUC ACC
Multi-modal method All 124/220 10-fold CV 93.75 95.49 85.41 86.67 94.61 95
Afghah et al. [28] All 124/220 10-fold CV 86 - 73 - - 85.48
Single-modal method ECGII 124/220 10-fold CV 93.75 93.92 79.16 84.58 93.84 93.75
Single-modal method ABP 124/220 10-fold CV 81.25 75.68 41.95 69.76 78.46 76.67
Single-modal method PPG 124/220 10-fold CV 100 50 33.33 50 75 60

All: ECGII, ABP, PPG; CV: Cross Validation

https://doi.org/10.1371/journal.pone.0226990.t004

multi-modal and the single-modal (ECG II) approaches, a sensitivity and a specificity of
93.75% and 93.92% for the single-modal technique, and a sensitivity and a specificity of
93.75% and 95.49% for the multi-modal technique. As shown in the table, our method out-
weighs the other method significantly. It also can be seen that using all available signals per-
forms better compared to the single-lead signal. The reason behind this improvement is that
the multi-modal approach has integrated information from three input signals that makes the
model to give better performance.

We also investigated how our model behaves for all alarm types using single-lead ECG
waveforms. Table 5 compares the performance (in terms of true positive rate (TPR or also
called the sensitivity) true negative rate (TNR or also called specificity) and AUC) of various
algorithms using different signals. As can be seen in Table 5, the proposed method performs
better than the methods proposed by Lehman et al. [11] and Li et al. [26] on Ventricular
Tachycardia (VTA) alarm. Furthermore, our method using single-lead ECG (ECG II) detects
Extreme Bradycardia (EBR), Extreme Tachycardia (ETC) and Ventricular-Flutter/Fibrillation
(VFB) alarms significaly better than other methods using two-lead ECG (Lehman et al. [11])
and all available signals, including ECG II, ECG V, ABP and PPG (Ansari et al. [27] and Gajow-
niczek et al. [10]). Moreover, as shown in Table 5, our proposed single-modal method leads to
comparable results (in some cases, even better outcomes) for detecting Asystole (ASY) and
Ventricular Tachycardia (VTA) arrhythmical alarm types compared to other listed algorithms
that have utilized more than one signal. In addition, we note that here our remarkable results
were obtained using a single-lead ECG (ECG II), however having more than one modal would
leads to a improvement in performance results. In addition, we have tested our proposed

Table 5. Comparison of performance of the proposed model against other algorithms for all alarm types on the PhysioNet challenge-2015 dataset.

ASY EBR ETC VTA VFB

Method Signal Cv TPR | TNR | AUC | TPR | TNR | AUC | TPR | TNR | AUC | TPR | TNR | AUC | TPR | TNR | AUC
Single-modal method | ECGII | 5-fold | 96.67 | 82.16 | 89.41 | 97.78 | 94.85 | 96.31 | 100 | 100 | 100 | 90.71 | 88.30 | 89.51 | 100 | 97.22 | 98.61
Lehman et al. [11] ECGIT* 10-fold - - - - - - - - - - - 87 - - -
Lietal. [26] ECGII 0.67/0.33 - - - - - - - - - 76.70 | 59.80 - - - -
Lehman et al. [11] ECGII/V* | 10-fold - - - - - - - - - 89 86 91 - - -
Ansari et al. [27] All 5-fold 84.97 | 89.21 - 90.49 | 90.05 - 96.55 | 97.80 - 96.63 | 95.47 - 92.40 | 61.64 -
Gajowniczek et al. [10] All 10-fold 85 90 95 84.5 91 93.3 99.2 | 77.8 99 67.8 | 88.9 87 83.3 | 94.2 95

All: ECGII, ECG V, ABP, and PPG; CV: Cross Validation;
*:1250 records (750 train, 500 hidden test of Physionet), in which 562 records contains VTA alarms

https://doi.org/10.1371/journal.pone.0226990.t005
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Table 6. Comparison of performance of the proposed model against the proposed model without employing attention and the proposed method using MSE loss for
all alarm types on the PhysioNet challenge-2015 dataset, considering just a single lead (ECG II; all available samples (750 samples)).

ASY EBR ETC VTA VFB
Method CV | TPR | TNR | AUC | TPR | TNR | AUC | TPR | TNR | AUC | TPR | TNR | AUC | TPR | TNR | AUC
Proposed method 5-fold | 96.67 | 82.16 | 89.41 | 97.78 | 94.85 | 96.31 | 100 | 100 | 100 | 90.71 | 88.30 | 89.51 | 100 | 97.22 | 98.61

Proposed method (No attention) | 5-fold 91 75.78 | 83.39 | 84.38 | 77.78 | 81.08 | 98.17 | 55.56 | 50 78.76 | 72.38 | 75.57 | 37.5 82 59.75
Proposed method (With MSE) 5-fold 43 96.40 | 69.70 | 88.46 | 83.33 | 85.89 100 | 33.33 50 53.90 | 83.74 | 68.82 | 14.29 | 98.03 | 56.16

https://doi.org/10.1371/journal.pone.0226990.t006

Table 7. Performance of the proposed model for all alarm types on the PhysioNet challenge-2015 dataset, considering just a single lead (ECG II; all available samples
(750 samples)).

Best Performance (%)

Alarm SEN SPE PRE F1-score AUC ACC Score
ASY 96.67 82.17 57.33 69.21 89.41 84.20 81.20
EBR 97.78 94.85 93.76 95.56 96.31 96 92.35
ETC 100 100 100 100 100 100 100

VTA 90.71 88.30 74.88 81.41 89.51 88.89 81.55
VFB 100 97.22 87.50 91.67 98.61 97.50 97.50

Score: PhysioNet/CinC Challenge 2015 Score

https://doi.org/10.1371/journal.pone.0226990.t007

method without employing attention mechanism into the network, and using MSE loss func-
tion. Table 6 presents the evaluation results with various metrics. As it can be seen from the
table, our proposed method in which we consider the attention module and utilize the mean
false alarm (MFE) loss achieved significantly better findings compared to the ones that do not
employ attention mechanism and use the MSE loss function instead of MFE loss function.
Furthermore, Table 7 reports the evaluation results of our single-modal proposed method
with various metrics, including the challenge score provided by the PhysioNet Challenge 2015,
using just the ECG II signal. This table can be used as a reference to compare future work.

Conclusion

False arrhythmia alarm reduction in ICUs is a challenging classification problem because of
the presence of different sources of noise and artifacts in the data (i.e., the collected signals) as
well as a large number of false alarms that results in the class imbalance problem. In this study,
we proposed a deep learning-based network composed of the CNN layers, attention mecha-
nism, and LSTM units to reduce false alarm arrhythmia in ICUs. We also utilized a new loss
function to alleviate the effect of the class imbalance problem while training the model. Our
proposed approach utilized a two-step training algorithm that trains the model for each modal
(i.e., ECG, ABP, and PPQ) to efficiently extract features, and then uses the combined features
of each modal to classify the three-input signal to a true or false alarm (i.e., in a multi-modal
way). Our proposed multi- and single-modal approaches demonstrated high performance for
the suppression of false alarms without disregarding the true alarms compared to the existing
algorithms in the literature.
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