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Abstract—The high rate of false alarms is a key challenge
related to patient care in intensive care units (ICUs) that can
result in delayed responses of the medical staff. Several rule-based
and machine learning-based techniques have been developed to
address this problem. However, the majority of these methods
rely on the availability of different physiological signals such as
different electrocardiogram (ECG) leads, arterial blood pressure
(ABP), and photoplethysmogram (PPG), where each signal is
analyzed by an independent processing unit and the results
are fed to an algorithm to determine an alarm. That calls for
novel methods that can accurately detect the cardiac events
by only accessing one signal (e.g., ECG) with a low level of
computation and sensors requirement. We propose a novel and
robust representation learning framework for ECG analysis
that only rely on a single lead ECG signal and yet achieves
considerably better performance compared to the state-of-the-art
works in this domain, without relying on an expert knowledge.
We evaluate the performance of this method using the “2015
Physionet computing in cardiology challenge” dataset. To the best
of our knowledge, the best previously reported performance is
based on both expert knowledge and machine learning where
all available signals of ECG, ABP and PPG are utilized. Our
proposed method reaches the performance of 97.3%, 95.5 %,
and 90.8 % in terms of sensitivity, specificity, and the challenge’s
score, respectively for the detection of five arrhythmias when
only one single ECG lead signals is used without any expert
knowledge' >

Index Terms—Simultaneous multiple feature tracking, repre-
sentation Learning, cardiac event detection, false alarm, ECG.

I. INTRODUCTION

False Alarms (FA) refers to the alarms that are falsely
triggered by the patient monitoring systems. Medical moni-
toring systems generate audible alarms when the value of one
or multiple monitoring sources reaches or goes beyond the
predefined thresholds [6] [20]. Different sources of noise and
signal distortion such as motion artifacts result in a high rate of
false alarms in detecting different arrhythmia using the current
techniques. The high rate of false alarm in ICUs can result in
ignoring the true alarms by the medical staff [11]. The rate of
ICU FA is reported between 65% to 95%, while between 6%
and 40% of these alarms are true but clinically insignificant
and do not require an immediate action [7, 8, 18]. Therefore,
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reducing the rate of false alarms is an important concern in
hospitals.

Many works take steps to decrease the high rate of FA
by different approaches from human knowledge [9, 21], and
classical machine learning [12]. The methods based on human
knowledge often lead to better results compared to machine
learning ones [7, 20]. Several factors contribute to the weaker
performance of ML-based methods including the problem of
imbalanced datasets where there is a limited number of ar-
rhythmia samples to train the ML model, and their impotence
in dealing with long recordings of highly-noise contaminated
signals with non-linear patterns.

In this paper, a novel framework based on simultaneous
multiple feature tracking for representation learning is pre-
sented that considerably improves the state of the art results
while it only utilizes the entire recording for one ECG lead. We
like to note that the majority of the current methods achieve
good performance when working with short recordings of sig-
nals. For instance, the best reported results for the false alarm
reduction challenge take advantage of the fact that the alarm
has occurred in the last 14 seconds of available recordings,
therefore they only analyzed of a short window of the signals.
However, these methods cannot offer the desired performance
in online alarm detection when dealing with long recordings
with no prior knowledge on when the arrhythmia is expected to
happen. More importantly, the majority of current techniques
take into account the general rules related to the arrhythmia
type or extracted knowledge from the entire dataset rather than
focusing on patient specific characteristics of the signal. In our
proposed work, we develop a simultaneous multiple feature
tracking method for periodic processing of time series signals.
We segment the signal based on the periodic parts and map
each segment to some simple features as a light weight feature
extracting step. Then machine learning looks for the relation-
ships between the entire signal recordings as the sequence of
periodic parts through the time with labels. Since the method
simultaneously learns the relation among the set of features
that describe each segment through the time, the method is
called simultaneous multiple feature tracking. In summary, the
main contribution of the paper is to introduce a simultaneous
multiple features tracking method for classification of semi-
periodic time series signals using Bidirectional long short-
term memory (Bi-LSTM) to track and learn non-linear patterns
throughout the long signals. The proposed approach is applied
on signals that last approximately between a range of 70 to
82 thousands time steps and learn even from a small number



of instances without using human knowledge.

II. RELATED WORKS

In this section, we review several reported works in the
literature that achieved the best results in alarm detection
on the 2015 PhysioNet Computing in Cardiology Challenge
dataset [8].

The authors in [21] proposed a method that passes the
pre-processed signals through multiple tests for each type of
arrhythmia including regularity and arrhythmia tests. While
this method shows a good performance, it highly relies on
expert knowledge that limits its scalability to other arrhythmia.
We like to note that this method was ranked the first place in
the challenge and outperformed other methods that are based
on classical machine learning or representation learning.

The presented method in [16] trains five SVM-based ar-
rhythmia classifiers using different features according to the
type of arrhythmia. A false-positive test is conducted after
each classifier. A method based on signal quality index (SQI)
for each channel was proposed in [9] that captures different
lengths of the input signal based on different arrhythmia. Then,
a trust assignment based on the SQI is applied after comparing
the QRS annotation from a different channel, from which the
final result is decided. The proposed method in [12] calculates
the heart rate from ECG, ABP, and PPG, along with the
spectral purity index from ECG. The veracity of the alarm
is determined based on a set of decision rules on heart rate
and the spectral purity index.

In [3], the authors proposed a false alarm suppression
method that uses multiple models for beat detection. The
detection results are verified and summarized into fused anno-
tation results. Finally, the outputs of the previous step are used
by a rule-based decision method that determined the accuracy
of the alarm based on the type of arrhythmia. They use a
combination of learning and expert knowledge in different
phases of their approach. A method to suppress the false
ventricular tachycardia alarm was proposed in [19]. After a
beat detection step, the method selects a 3-second window that
contains the beat with the highest ventricular probability from
the last 25 seconds of the signal. Then a supervised denoising
auto-encoder (SDAE) takes the FFT-transformed ECG features
over the window and classify whether the alarm is true or
not. It should be noted they uses the MIT-BIH database that
includes annotated ECG recordings to train their ventricular
beat classifier.

The proposed method in [15] used a deep neuroevolution
method that utilizes genetic algorithms and [2] utilized neural
networks for arrhythmia classification. The former utilizes
handcraft features introduced in [4] which include morpho-
logical and frequency features extracted from ECG, ABP, and
PPG. The latter one utilizes SQI, physiological features, and
features used in obstructive sleep apnoea (OSA) detection.

We note that all of the aforementioned methods except [2]
utilized all available signals for each patient and the methods
with highest accuracy such as [3, 21] also utilize expert
knowledge in their approaches, while the results of our method
reported in Section V is only based on one lead ECG with no
expert knowledege.
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III. DATABASE DESCRIPTION: PHYSIONET CHALLENGE
2015

The PhysioNet/Computing in Cardiology Challenge 2015
focuses on reducing the false arrhythmia alarm in the ICUs,
which provides a publicly available database for training and
a test database for evaluation that was not publicly released
[8, 20].

The training set includes 5 minutes and 30 seconds or 5
minutes of one or some of the ECG, ABP, and PPG signals
for each patient before the alarm is triggered, the type of
arrhythmia that triggers the alarm, and a true or false label.
The arrhythmia type includes asystole (no QRS for 4 seconds),
extreme bradycardia (heart rate lower than 40 , beats Per
minute, for 5 consecutive beats), extreme tachycardia (heart
rate higher than 140 bpm for 17 consecutive beats), ventricular
tachycardia (5 or more ventricular beats with heart rate higher
than 100 bpm), and ventricular flutter/fibrillation (fibrillatory,
flutter, or oscillatory waveform for at least 4 seconds). Each
record, resampled at 250Hz, contains two ECG signals (from
lead I, II, III, aVR, aVL, aVEF, or MCL) and one or more
pulsatile waveform, such as arterial blood pressure (ABP)
or photoplethysmogram (PPG). The public training database
contains 750 samples, whose arrhythmia types and labels are
listed below in table I. The test database is not publicly
available, hence the training dataset is used in this study for
both training and testing.

IV. REPRESENTATION LEARNING BASED ON MATCHING
LAYER

In the proposed method, we first pre-process the signal by
removing the noise, and the invalid parts of the signals. A
segmentation approach is then applied on the pre-processed
signal to extract the location of PQRST waves. Then, several
morphological features are extracted from each segment as
described in Table IV. The dataset is partitioned for K-fold
cross-validation in which k = 15. k is selected as 15 since the
number of instances in some classes are few. These features
are then fed into the Bi-LSTM learning algorithm to classify
the signals.

A. Pre-processing

We first choose one of two ECG leads for each record. The
default choice is the lead II. If this lead is not available for
a patient, we select another lead in the order of I, aVF, and
V. If none of these leads are available, we use the first ECG
channel. Out of 750 patients, there are 22 subjects which did
not include lead II, and only one patient (patient ID: a6751)
does not include any of the aforementioned four leads. Hence,
we used the first provided ECG channel that was lead III. Table
IT presents the list of samples that any ECG leads beside the
lead II was used.

The signal is first validated by detecting and removing
unreadable parts that are caused by noise or interference.
Some parts of the ECG signals could be unreadable due to
the body movement of the patient or the electrodes falling
off which creates sharp spikes, flat lines, and high-frequency
noise signal. Thus, we remove those unreadable parts from the
signal before further processing.

We used the method proposed in [21] to detect and remove
invalid parts of the ECG signal. This method searches the



TABLE I

DATA SUMMARY OF PATIENTS PER ALARM AND ARRHYTHMIA.

Arrhythmia Type Arrhythmia Definition # of Patients | # of False Alarm | # of True Alarm
ASY no QRS for 4 seconds 122 100 22
EBR heart rate lower than 40 bpm for 5 consecutive beats 89 43 46
ETC heart rate higher than 140 bpm for 17 consecutive beats 140 9 131
VFB fibrillatory, flutter, or oscillatory waveform for at least 4 seconds 58 52 6
VTA 5 or more ventricular beats with heart rate higher than 100 bpm 341 252 89
Total 750 456 294

TABLE 11
SUBJECTS THAT THE ECG LEAD II IS NOT AVAILABLE FOR THEM.
Patient ID Lead | Total
b3491, b672s, b824s, t116s, t208s, I 9
t2091, v2891, v290s, v6191
t6931 aVF 1
t4771, t478s, t622s, t6651, ad571, a582s, v 11
a6611, t7391, v328s, v4591, v6291
a6751 T 1
TABLE III

DETAILS OF RECORDS THAT BECAUSE OF MANY INVALID PARTS ARE
CONSIDERED AS FALSE ALARM.

Type Name Total
ASY a382s, a3911, a608s, a668s 4
VFB £530s 1
VTA | v244s, v400s, v4051, v4331, v4911, v623l, v774s 7

signal inside 2-second windows and detects high-frequency
noise by looking at the amplitude envelope of the signal at the
frequency range of 70-90 Hz. It also detects saturated areas
including the aforementioned sharp spikes and flat lines, by
analyzing the histogram of the 2-second windows. The marked
invalid parts are removed before further processing. If a signal
has more than 80% region marked as invalid, it will be treated
as noise and labeled as false alarm. During the experiment,
the ECG signals from 12 records are detected with more than
80% invalid regions and are removed from following process.
All these records turn out to be false alarm according to their
labels. Details of these records are listed in table III.

B. PQRST Detection and Signal Segmentation
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Fig. 1. An sample normal ECG beat.

Figure 1 shows an example of a normal ECG signal. We
first search for the QRS complex locations using the proposed
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method in [21], which detects the R wave locations based
on amplitude envelopes of the ECG signal. It detects local
maxima by looking at the difference among three frequency
ranges (1-8 Hz, 5-25 Hz, and 50-70 Hz) and using descriptive
statistics to determine whether or not the maxima is an R
wave location. Then, we refine the results and find PQST
locations by searching for peaks and valleys within an interval
around the R locations. If two segments are too close to
each other, we compare their QRS complex amplitudes with
the rest of the signal and remove the improper one. The
signal is segmented by extracting PQRST waves of beats and
then several morphological features are extracted from the
aforementioned beats.

C. Morphological Feature Extraction

A proper low-level representation of the signal is vital for
representation learning. Therefore, we extract several features
from each beat as described in Table IV (using some of the
introduced features in [10]). Extracting the proposed features
only involves a low cost computation and yet our proposed
method by only using these basic morphological features per
segments offers significant performance using the simultane-
ous multiple feature tracking.

Morphological features describe the signal behavior in the
time domain using the morphology of PQRST waves. These
features (as described in Table IV) include PQRST amplitude,
intervals, differential intervals, RR energy, the amplitude dif-
ference between SQ wave, the amplitude ratio of SR, SR (with
respect to Q), TR, and QR waves, the width difference between
QS, QR, QT, and PQ wave, and the slope between ST, QR,
RS, Sx (slope of the period within 0.05 seconds after S wave)
and PQ waves. We calculate different QT measurements using
Bazett[5], Fridericia[13], and Sagie[22]’s QT formula. We also
keep track of the negative ST slope and the zero-crossing point
in the ST period. These features are fed into the matching
layer learning and then to Bi-LSTM algorithm to determine
the labels of arrhythmia.

D. Simultaneous Multiple Feature Tracking and Bi-LSTM

In this section, we introduce the proposed simultaneous
multiple features tracking method to learn the relations among
the multiple sets of morphological features extracted from
different beats and with the labels. We first segment the
ECG signal to its beats where each beat includes a complete
beat (PQRST) and extract a set of d low-level morphological
features from each beat, as depicted in Figure 2. The ECG
signals is a pseudo-periodic signal since it consists of a
sequence of beats with variable length (i.e., variable heart rate).
Therefore, this method considers a variable-length window to
extract a pre-determined number of initial features from the



TABLE IV
THE LIST OF MORPHOLOGICAL FEATURES THAT ARE EXTRACTED PER
BEATS.

Feature Name Number of Features
PQRST amplitude 5
PQRST interval
PQRST interval difference
RR energy
Amp difference of SQ
Amp ratio of SR, SR(wrt Q), TR, and QR
Width difference between QS, QR, QT, and PQ
Slope between ST, QR, RS, Sx, and PQ
ST neg slope, ST zero crossing point
Bazett, Fridericia, Sagie QT formula
RR cluster distance
PPRR ratio

=09 L N W = = Uy iy

ECG beats. The list of the features are shown in the IV with
the total number of 39 features (i.e., d = 39). In order to
learn the relationships among these low level features with
each other and through the time with the labels. we need a
machine learning approach that captures time relation among
the sequence of features. Thereby, the features are fed to Bi-
LSTM as a version of recurrent neural networks that have
memories to capture time relation.

The extracted morphological low-level features from the
signal’s of each arrhythmia are normalized by z scores. We
equal the number of each class of a arrhythmia by replicating
randomly of each class as the amount of twice of instances
in the largest class of that arrhythmia. Then, they are fed to
the Bi-LSTM followed by a fully connected layer to obtain
the classification label. A key difference of this method with
existing works is that we consider the input layer as the
number of features, d, per time steps for Bi-LSTM to track
multiple features simultaneously and learn the relationships
between them and thorough time. Bi-LSTM is a known
machine learning method for sequence data and time series
especially the long ones, but the input size of Bi-LSTM for
time series is typically consider as 1 or 2 while in here
we simultaneously track a set of features, d, of each beat.
The architecture of the deep learning block is depicted in
Figure 3. The learning of the network is based on adam [17].
The learning rate of the network is 5 * 1076, We use L2
regularization and the rate is 110" and the number of epoch
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Fig. 2. A schematic description of the feature extraction step. The ECG signal
is segmented to its beats, and then 39 low-level morphological features are
extracted from each beat (d is 39).
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Fig. 3. The extracted morphological features per beat are fed as the features
per time step to the Bi-LSTM.

is 700. The size of batch is 8.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed method in com-
parison with the top-ranking entries from 2015 PhysioNet
Challenge [8] and several other expert-based and machine
learning-based methods. We also report the performance of
several baseline classifiers applied on wavelet features. These
wavelet features are obtained by using the discrete wavelet
transform (DWT) applied on the entire ECG recording in
which a 6-level Daubechies 8 (db8) wavelet is used. Since
using all wavelet coefficients as features for classification
methods can lead to over—fitting; we decrease the number of
features by using 20 representative statistical and information—
theoretic features of each level of the wavelet vectors as
mentioned in [1, 14].

Since the test database of PhysioNet 2015 Challenge is
not publicly available for evaluation, we re-implement most
aforementioned approaches on the public training database for
the sake of fairness in comparing the results. For example, the
results of the top-ranked works for 2015 PhysioNet challenge
were reported for the case that the model was trained on the
training database and evaluated on the test database. Hence,
we regenerated their results by evaluating their proposed
algorithms on the training dataset with K-fold cross-validation
(k = 15) to compare the results with our proposed approach.
We replicate the data The results are compared based on the
following three measures:

o True positive rate (TPR), also known as sensitivity, recall,

and hit rate.

o True negative rate (TNR), also called as specificity, and

selectivity.

o The challenge score calculated based on

100 - (TP + TN)
(TP+TN +FP+5-FN)

Score =

(D



TABLE V

COMPARISON OF TPR, TNR, AND THE CHALLENGE SCORE OF RECENT FALSE ALARM REDUCTION METHODS USING PHYSIONET 2015 CHALLENGE

DATABASE.
Method Features Input Signal TPR | TNR | Challenge Score
Rule-based Arrhythmia Test [21] Hand crafted features ECG, ABP, PPG 93.5 86.0 80.8
SVM-based Classifier [16] Time and frequency features ECG, ABP, PPG 85 93.2 72.9
Trust Assignment and Thresholding [9]" SQI and SPI ECG, ABP, PPG 89.0 | 91.0 79.0
Feature-based Decision Making [12] Heart rate and SPI ECG, ABP, PPG 93.5 779 76.3
Decision Tree and Rule-based [3] Detected beats ECG, ABP, PPG 97.0 92.0 89.1
Deep Neuro-evolution [15]2 Time and frequency features ECG lead 11, V, PPG 91.9 86.8
Neural Network [2] SQI, physiological, and OSA features ECG lead II 81.6 T 8.2 80.6
Unsupervised Feature Learning [14] Morphological features ECG lead II 81 83 -
Tree? ECG lead II 65.3 | 80.2 52.8
Linear Discriminant ECG lead I 65.0 | 76.1 50.8
Logistic Regression ECG lead II 554 | 67.8 413
Naive Bayes* Wavelet features ECG lead I 52.7 | 76.1 43.0
SVM® ECG lead II 55.1 | 89.0 49.6
KNN©6 ECG lead II 68.0 | 71.1 50.8
Ensemble” ECG lead II 762 | 829 62.7
PCA (Quadratic Discriminant)® ECG lead 11 98.6 9.0 432
Proposed representation learnin; -
based on s e e multiple feature gtmking Morphological features ECG lead II 97.3 | 955 90.8

L The reported results in [9] are based on training on the public training dataset and testing on the private test database from PhysioNet 2015 Challenge.
2 The reported results in [15] are not provided TPR and TNR, so the accuracy is reported instead. The result is based on a subset (572 records) of PhysioNet

2015 Challenge public database.

We experimented various methods for each baseline approach in MATLAB Classification Learner and reported the best results for that version. The specific
name of the method we used are listed as follow: *Medium Tree. *Kernel Naive Bayes. Fine Gaussian SVM. 6Cubic KNN. "RUSBoosted Tree.

8 The result scores of different classifiers utilizing principle component analysis (with 95, 98, and 99 percents explained variance) are far lower than those
without it. Thus, we just report the best result of the baseline using PCA with 99 percents explained variance.

TABLE VI
COMPARISON OF TPR, TNR RESULT PER ARRHYTHMIA TYPE USING PHYSIONET 2015 CHALLENGE PUBLIC DATABASE.
Method ASY1 EBR2 ETC3 VFB4 VTA5S

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

Rule-based Arrhythmia Test[21] 95.5 92.0 97.8 74.4 99.2 88.9 83.3 100.0 83.1 82.5
SVM-based Classifier [16] 71.3 93.0 100.0 93.0 100.0 66.7 16.7 96.2 61.8 93.7

Trust Assignment and Thresholding [9]! 78 94 95 66 100 80 89 96 69 95
Feature-based Decision Making[12] 100.0 88.0 97.8 62.8 96.9 333 83.3 84.6 85.4 76.6
Decision Tree and Rule-based [3] 95 86 98 88 98 67 50 100 97 94
Neural Network[2] 83 93 73 50 100 100 100 100 52 83
Supervised denoising autoencoder (SDAE)[19]2 - - - - - - -training 89.0 86.0
Tree3 45.5 85.0 54.3 69.8 91.6 0 16.7 80.8 51.7 81.0
Linear Discriminant 72.7 63.0 69.6 58.1 77.9 22.2 83.3 80.8 48.3 73.4

Logistic Regression 68.2 58.0 58.7 48.8 79.4 22.2 33.3 69.2 50.6 68.7

Naive Bayes* 9.1 93.0 91.3 30.2 96.9 0 0 94.2 41.6 85.7
SVMP 13.6 99.0 87.0 349 100.0 0 0 100.0 23.6 96.0

KNNGS 9.1 96.0 76.1 55.8 100.0 0 0 100.0 47.2 90.1

Ensemble” 72.7 73.0 67.4 51.2 70.2 33.3 50.0 73.1 69.7 77.8

Proposed representation Learnin
based on Siﬁl ultanet?us Multiple Feature gTracking 0.9897 | 0.875 100 0.9562 100 0.9924 100 100 0.957 | 0.9176

L This result comes from [9] and is based on the hidden database from PhysioNet 2015 Challenge.

2 This result comes from [19] with the task of reducing false VTA alarm. It is based on two ECG leads of 562 VTA records from PhysioNet 2015 Challenge

public and hidden databases.

We experimented various methods for each baseline category in MATLAB Classification Learner and reported the best results for that category. The specific
name of the method we used are listed as follow: 3Medium Tree. *Kernel Naive Bayes. °Fine Gaussian SVM. 6Cubic KNN. 7RUSBoosted Tree.

Table V and Table VI compare the performance of our
proposed method with recent reported techniques for all alarm
types and per alarm type, respectively.

As it can be seen in the first comparison table V, the
proposed method with one ECG lead as the input and by
learning from scratch without expert knowledge provides the
best sensitivity, specificity, and challenge score even compared
to other methods while they used more multiple signals of
ECG, ABP and PPG. The best rank in the challenge [21] took
into account the expert knowledge and processed only specific
parts of the signals (the last potions of the signal?). Other
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methods such as [3] used several rule-based decision making
based on expert knowledge and machine learning in different
phases by using all the available signals to obtain the best
result, while our proposed method is based on one ECG lead
with a simple feature extraction method. Deep neuro-evolution
[15] that involves much more processing and utilizes several
input signals show weaker results related to our proposed
method. The proposed approach in [14] is a light weight
processing using a unsupervised representation learning to
extract few features of the clustering of the beats, but the
clustering step wipes out the temporal relation among the



features. Table V also reports the results of several classifiers
applied on wavelet features as generic approaches it can be
seen in the most of them the scores much lower than other
tuned methods.

VI. CONCLUSION

In this paper, a novel ECG analysis approach is proposed
that provides unique abilities to process noisy and long time
series recordings when the datasets are imbalanced. This
method albeit uses one lead of ECG and completely stands
on machine learning to learn from scratch and yet provides
much better performance in comparison with the-state-of-the-
art works that use several sensory information and processing
units for each collected signal. The proposed framework offers
significant performance for all arrhythmia types without any
in advanced knowledge.
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