Interactive Design of Periodic Yarn-Level Cloth Patterns

JONATHAN LEAF, Stanford University, USA
RUNDONG WU, Cornell University, USA

ESTON SCHWEICKART, Cornell University, USA
DOUG L. JAMES, Stanford University, USA
STEVE MARSCHNER, Cornell University, USA

0\ P\) A
’\'\r\x\ |
) o

»
A

(a) Pattern (b) Periodic Simulation

(c) Parameter Adjustment

i -

(d) Tiled Pattern (e) Final Render

Fig. 1. Interactive simulation-based design of yarn-level cloth patterns: The user can (a) draw a color-coded knit (Top) or woven (Bottom) pattern, (b)
quickly simulate it by leveraging both periodic boundary conditions and a fast GPU solver, (c) interactively adjust model parameters for immediate design

feedback, then (d) tile the pattern for (e) final rendering and texturing.

We describe an interactive design tool for authoring, simulating, and adjust-
ing yarn-level patterns for knitted and woven cloth. To achieve interactive
performance for notoriously slow yarn-level simulations, we propose two ac-
celeration schemes: (a) yarn-level periodic boundary conditions that enable
the restricted simulation of only small periodic patches, thereby exploiting
the spatial repetition of many cloth patterns in cardinal directions, and (b) a
highly parallel GPU solver for efficient yarn-level simulation of the small
patch. Our system supports interactive pattern editing and simulation, and
runtime modification of parameters. To adjust the amount of material used

Authors’ addresses: Jonathan Leaf, Stanford University, Stanford, USA, jcleaf@stanford.
edu; Rundong Wu, Cornell University, Ithaca, USA; Eston Schweickart, Cornell Univer-
sity, Ithaca, USA; Doug L. James, Stanford University, Stanford, USA, djames@stanford.
edu; Steve Marschner, Cornell University, Ithaca, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/11-ART202 $15.00

https://doi.org/10.1145/3272127.3275105

RIGHTS LI N K}

(yarn take-up) we support “on the fly” modification of (a) local yarn rest-
length adjustments for pattern specific edits, e.g., to tighten slip stitches, and
(b) global yarn length by way of a novel yarn-radius similarity transforma-
tion. We demonstrate the tool’s ability to support interactive modeling, by
novice users, of a wide variety of yarn-level knit and woven patterns. Finally,
to validate our approach, we compare dozens of generated patterns against
reference images of actual woven or knitted cloth samples, and we release
this corpus of digital patterns and simulated models as a public dataset to
support future comparisons.

CCS Concepts: « Computing methodologies — Physical simulation;

Additional Key Words and Phrases: Cloth modeling, yarn-level cloth, physics-
based simulation, knitted, woven, interactive design

ACM Reference Format:

Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve
Marschner. 2018. Interactive Design of Periodic Yarn-Level Cloth Patterns.
ACM Trans. Graph. 37, 6, Article 202 (November 2018), 15 pages. https:
//doi.org/10.1145/3272127.3275105

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275105
https://doi.org/10.1145/3272127.3275105
https://doi.org/10.1145/3272127.3275105

202:2 « Leaf,). etal.

1 INTRODUCTION

Yarn-level cloth relaxation is a powerful tool for creating detailed
fabric models for textile design and manufacturing, and visual tex-
ture generation in graphics. Cloth structure and deformations arise
intrinsically from the contact-based interactions between many in-
dividual yarns. While textiles are highly complex, nearly all fabric is
made up of yarn-level patterns based on repeated sections of cloth.
Yarn-level cloth patterns can produce a stunning range of 3D shapes
and appearances for knit and woven fabrics, and these results are of-
ten far from obvious from the input 2D patterns. Traditionally these
patterns are devised by trial and error, but this time-consuming
process could be greatly reduced with good simulations. With a
simulation available, one can explore and design a wide range of
possible cloth shapes and textures by adjusting input patterns and
using a physics-based relaxation of the input yarn curves to help
understand the unpredictable final shape of the cloth. Unfortunately,
yarn-level simulations to date have been extremely slow, making
them unusable for interactive yarn-level pattern design.

In this paper, we propose techniques that enable interactive yarn-
level pattern design for knit and woven cloth. In our system, the
user can simply draw an input pattern, and in seconds see the
resulting cloth shape appear during relaxation. The speed of our
system is enabled by two acceleration schemes for yarn-level pattern
relaxation:

(1) GPU Relaxation: We greatly improve relaxation speed by de-
veloping a GPU implementation of yarn-level cloth, and can
achieve a 20x speed-up over our CPU implementation.

(2) Periodic BCs: We exploit the spatial redundancy of many pat-
terns by only simulating the smallest repeated yarn patch
subject to periodic boundary conditions on yarn spline curves,
with yarn-yarn collisions resolved properly between the patch’s
yarn curves and those of the virtual periodic yarns.

Together these two accelerations can enable orders-of-magnitude
speed-ups over prior yarn-level simulation implementations, and
enable interactive yarn-level pattern design.

Our prototype interactive design tool allows naive users to author
periodic yarn-level patterns of knit and woven cloth using an intu-
itive drawing interface. Users can then adjust high-level material
parameters during an interactive relaxation phase to explore the
design space of possible pattern mechanics.

One important aspect we allow the user to control is how much
yarn material is allocated to the pattern, and where, since yarn
length is not known a priori—patterns essentially specify stitch
topology but usually not yarn lengths or gauge. Since the amount
of material in a pattern dramatically influences the look and shape
of the pattern, we support “on the fly” modification of the amount
of yarn used (“take-up”) in several ways. First, to handle extreme
material disparities generated by certain patterns (for knits, slip
stitches generate a considerable disparity), we support local yarn
rest-length adjustments for pattern specific edits, e.g., to tighten slip
stitches. Second, to support efficient global scaling to pattern yarn
length (“total take-up”) we introduce a novel yarn-radius similarity
transformation.

We demonstrate the tool’s ability to support easy interactive
modeling of a wide variety of yarn-level knit and woven patterns.

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

RIGHTS L1 N Hig

Finally, to validate our approach, we compare dozens of generated
patterns against reference images of actual woven or knitted cloth
samples. We release this corpus of digital patterns and simulated
models as a public dataset to support future comparisons.

2 RELATED WORK
2.1 Yarn-Level Cloth Simulation

Yarn-level cloth simulations, treating each thread of a fabric as a
connected series of rods/splines and simulating them directly, is a
relatively new area for computer graphics simulations. The sem-
inal yarn-level cloth simulation model was proposed in [Kaldor
et al. 2008]. Kaldor’s work established using a reduced set of de-
grees of freedom to create an energy based model that allowed
many realistic deformations to come naturally from the simula-
tion. This model excels in creating smooth deformations for yarn
curves, and enforcing the necessary constraints to mimic real cloth-
ing. The primary downside to this approach is computational cost,
with contact-related computation being the primary bottleneck. To
tackle this issue, Kaldor et al. [2010] developed clever mathemati-
cal techniques to improve the performance of the contact-related
bottleneck, by linearizing contact matrices until an error threshold
is violated. This method was able to improve the performance by
8x over its predecessor, but is still far from interactive. Also the key
features of adaptive contact linearization, and nonzero twist angles,
were disabled during relaxation. For woven cloth, Cirio et al. [2014]
used an approach to discretizing interlacing yarns based on cross-
ing and sliding, which models contacts between yarns implicitly
and avoid the high computational cost. For knits, Cirio et al. [2017]
handles the contact-related computation cost by creating a reduced
order model for contacts. Each contact is treated as a node and yarn
segments become edges in a graph. They developed reduced-order
dynamics model on this graph to speed up yarn level computation.
Jiang et al. [2017] created a general simulation framework for han-
dling frictional contacts by implementing an Eulerian-Lagrangian
hybridization of the Material Point Method. This method, while
focused on traditional cloth, was also demonstrated to simulate
yarn-level cloth. This method shows generality by supporting yarn-
level cloth as well as other models, and it is a promising look at
improving the computational cost of contacts. Recently, Fei et al.
[2018] have handled yarn-level cloth interactions with liquids.

In textile engineering, periodic boundary conditions have been
used to measure 3D elasticity using traction interfaces from a simple
regular pattern [Dinh et al. 2018], or to simulate micro-geometry
of woven textiles [Huang et al. 2013]. Our method uses periodic
boundary conditions across splines and supports a considerably
broader range of patterns and deformations.

2.2 Yarn-Level Cloth Modeling

Researchers have taken a number of approaches to generating yarn-
level cloth curves. For knitting, one approach is to replicate manufac-
turing processes used by knitting machines [Eberhardt et al. 2000]
and [Duhovic and Bhattacharyya 2006]. Although these methods
produce topologically correct results, they are slow, and therefore
impractical for a design tool.

Several works from the textile community generate knit geome-
try using spline curves and focus on the plain knit stitch [Choi and
Lo 2003, 2006; Demiroz and Dias 2000; Goktepe and Harlock 2002;
Renkens and Kyosev 2011]. Still others focus on modeling pattern
cells [Kurbak 2009; Kurbak and Alpyildiz 2008; Kurbak and Soydan
2009], which can be challenging to combine due to inconsistencies
along the boundaries. Yarn and fiber level modeling are also used
to simulate the deformation of woven textiles [Huang et al. 2013;
Lin et al. 2008; Miao et al. 2008; Sherburn 2007]. For example, Tex-
Gen [Sherburn 2007] has been used to create geometric models for
woven composites, as well as predict deformation and mechanical
properties of the textiles using the finite element method. These
works mainly focus on studying the mechanical properties of com-
mon woven patterns rather than encouraging users to explore the
design space interactively.

Igarashi et al. [2008a] introduced semi-automatic techniques for
generating knit models from an input 3D shape. A user interface for
authoring knitted yarn topologies from 3D meshes was introduced
in [Yuksel et al. 2012]. They define “Stitch Meshes,” a mesh-based
representation of knitted yarn topologies. Each polygon on the mesh
surface contains curve geometry for a single stitch that ensures cor-
rect topology. Their work allows users to edit the mesh directly
at the level of each individual stitch and synthesize topologically
correct yarn curves that are relaxed in an offline simulator to get
the correct yarn geometry. More recently, [Wu et al. 2018] have ex-
tended stitch meshes to enable automatic yarn topology generation
on meshes. Connecting to manufacturing, [Narayanan et al. 2018]
developed a method for generating automatic knitting machine in-
structions from a 3D mesh. One downside of these approaches is
that through this representation it is unclear how much yarn ma-
terial must be allocated for each individual stitch. As we will later
discuss, the effects of yarn radius and yarn allocation dominate the
relaxation result, and these parameters must be carefully calibrated.

Our yarn generation methodology is most similar to [Kaldor 2011],
who developed a semi-automated process of tiling interconnected
loops together to form yarn-level cloth. In addition, we adopt the
tile abstractions from [Yuksel et al. 2012] to easily enforce consistent
topological consistency across tile boundaries. Because our method
requires rectangular repeatable patterns, we limit the set of tiles to
be repeatable blocks. This methodology ensures users have creative
freedom, while always generating topologically valid yarn curves.

2.3 Interactive Design of Cloth Patterns

Graphics research has a long history of developing user interfaces
for visualizing and/or modifying cloth structures. Berthouzoz et al.
[2013] convert sewing patterns into 3D models for visualization. Bar-
tle et al. [2016] uses cloth simulations to drive the dynamics of the
cloth, while allowing a user to edit a simplified representation of the
garment. Each of these approaches attempts to solve the complex-
ity of designing macroscopic garment-level behavior. Igarashi et al.
[2008b] introduced “Knitty,” a sketch-based technique for designing
plush toys. McCann et al. [2016] proposed a method to generate knit-
ting instructions for knitting 3D models designed by their custom
interface, using primitives such as tubes and sheets. Recently, Wang

RIGHTS L1 N Hig

Interactive Design of Periodic Yarn-Level Cloth Patterns « 202:3

[2018] have developed improved optimization methods combining
cloth simulation for large garment design.

Textile manufacturers use a set of complex CAD tools for design-
ing cloth. Industrial grade knitting machines, such as those from
Shima Seiki or Stoll, come with user interfaces that show a color map,
where each color corresponds to a stitch instruction for the machine.
These maps can be visualized as non-physical demonstrations of the
yarn texture, which can lead to highly distorted visualizations. We
also provide a color-based interface that will be familiar to designers,
but our system previews the texture of the cloth interactively using
a full simulation of the yarn-level mechanics.

The ability to visualize physical aspects of a pattern is impor-
tant to the knitting community. At “stitch-maps.com”, knitting in-
structions are converted to a set of icons, positioned to create a
visualization of how the pattern is expected to be shaped. This
representation allows users to get some intuition about the shape.
Our method helps address this need by allowing users to generate
and simulate patterns interactively for a more informative pattern
visualization.

3 GPU SIMULATION OF YARN-LEVEL CLOTH

Our simulator is a GPU-based implementation of a yarn-level cloth
model heavily influenced by Kaldor et al. [2008]. We use a similar
physical model and integration techniques, with some key differ-
ences for performance reasons:

(1) Replaced inextensibility constraint projection with an inex-
tensibility penalty energy to reduce solver complexity and
improve parallelism.

(2) Used a Spatial Hashing technique for contact detection (in-
stead of a BVH tree) for GPU performance.

(3) Use adaptive timestep restriction to avoid yarn pull-through
while ensuring large steps for relaxation.

The implementation of the GPU solver involved specific considera-
tions to ensure high-performance code. In §3.2 we describe how we
handle contacts with spatial hashing, and use stencils to represent
the computation of intrinsic energies to increase throughput.

3.1 Revised Yarn-Level Cloth Model

Our yarn-level cloth simulation model is based on Kaldor et al. [2008]
with some modifications. We re-use equations 3-4, 6-10 which handle
contact, bending, and length energies, as well as mass-proportional
and collision damping terms; definitions and symbols imported from
Kaldor are listed in Table 1, model details in Appendix B, and an
illustration in Figure 2. Material parameters are set to mimic yarn
behaviors of common knitted and woven material in our examples;
for knits we use parameters in Table 1 of [Kaldor et al. 2008].

Allowing Yarn Stretch: One important difference for interactive
design is that we replace the hard inextensibility constraints C%en =0
on spline segments (which were solved using an ICD projection
solve), with penalty terms that drive the spline length to its rest
length, ¢;:

2
2 1 (o,
Ef =k, (cﬁe“) = k[(l - {Tf ||Y,-(5)||d8> , (1)
i Jo

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

202:4 « Leaf,). etal.

Table 1. Symbols imported from [Kaldor et al. 2008]

Quantity | Equation | Description

q Control-point positions
q Control-point velocities
yi(s) Position on i*" spline segment
vi(s) Velocity on it# spline segment
& Rest-length of ith spline segment
Ki(s) 4 Unsigned curvature of i*” spline segment
E?e“d 4 Bending energy of i/ spline segment
Clen 5 Length constraint on i‘” spline segment
EE?“ 6 Length constraint on interior of i‘" spline segment
El?,‘)j“t“t 7 Contact energy of (i, j) spline segments
Dlgl()bal 9 Mass-proportional damping energy
peontact 10 Contact damping of (i, j) spline segments

L]

stiffness bending

length energy

collision
B-Spline energy
Curve

collision

amping

[
KINEMATICS INTRA-YARN INTER-YARN
FORCES FORCES

Fig. 2. Yarn-level model summary: Yarns are splines with energy terms
handling each of the yarns behaviors. Internal forces resist bending, stretch-
ing, and intra-segment stretching, and external forces repel colliding splines.
Damping forces are applied to yarns and contact points to ensure smooth
motion. (Image is a modified version of Figure 4 of [Kaldor et al. 2008]).

where fol Ily;(s)|l ds evaluates to the measured length of spline seg-
ment i. Note that setting k; to a sufficiently large value, e.g., 1000
gcem?/s?, can reduce length strain in our examples to within a few
percent error without noticeable timestep restriction (even up to
kg=10000), and thus achieves a similar effect as the constraint pro-
jection step of [Kaldor et al. 2008] without requiring a linear system
solve. However, the main reasons we prefer to allow yarn stretch
for interactive pattern design are: (a) the yarn lengths attributed to
the default stitch curves are somewhat arbitrary, (b) in cases where
not much yarn is allocated, hard inextensibility constraints (com-
bined with periodic boundary conditions) can fight against contact
constraints, making it harder to find more natural configurations
and making the simulator less amenable to interactive design, and
(c) we can always reduce excess yarn length later using techniques
from §6.

Contact Sampling. Similar to Kaldor et al. [2008] we also use 11
integration samples per spline for all intrinsic energy gradients
(VEbe“d, VEle“, vpelobal 5nd now VEg). For contact energy inte-
grals (VEContact ypeontacty e opt for a variable number of contact
samples per spline to improve performance. To ensure that splines
have a sufficient number of samples, we require that the number of

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

RIGHTS L1 N Hig

samples per spline Ng be odd', and that Ng > L’Z”ri" , where Ly,in
is the spline of smallest length, and r is the yarn (contact-sphere)
radius. Without this condition, splines could be insufficiently sam-
pled and allow pull-through, i.e., where one yarn passes through

another yarn.

Integration and Timestep Reduction. We use a semi-implicit Euler
integrator with a small timestep (Atgefayit = 0.0004s for our default
stiffness values), and we further restrict timestep sizes to avoid pull-
through at yarn-yarn contacts. Specifically, we estimate the largest
timestep value At;(s) for each spline segment i and contact sample
s such that it does not move more than ¢ r (a fraction ¢ € (0, 1] of
the yarn radius r), then find the smallest At; and use it as the global
system timestep size if it is less than Atgefayr- In Appendix A we
derive the following per-sample timestep bound:

—lIBi(s) 4" llz + \/IIBi(S) Q"I + 4er|Bi(s) a™ Iz

201B,5) "l @
where B;(s) is the B-spline basis function matrix of the sample on
spline i and contact sample s; " are control-point velocities at the
beginning of the timestep; a” = M~! (=VE + f) are control-point
accelerations; E is the sum of model energies, and f are external
forces.

As in Kaldor et al. [2008], q is defined as the vector of control-
point positions, q are control-point velocities, and M~! is the lumped
inverse mass matrix. However, the exact layout of these terms, as
well as details relating to periodic boundary conditions (including
variables iR, iy, d) will be described later in §5. For reproducibility
of our method, please see Algorithm 1.

Ati(s) =

3.2 GPU Implementation

Efficient Contact Force Evaluation. As discussed in Kaldor et al.
[2010], the bottleneck of contact force and damping evaluation
(E‘l?"}mm and D?f}“tad) involves an all-pairs sphere-sphere overlap
test involving contact spheres (of radius r) sampled along each spline
segment at equispaced locations. Simply determining overlapping
sphere-sphere pairs (from different segments) is a major task that
occurs every tiny timestep, followed by the actual force evaluation
for contacting pairs. In this work we use the GPU to accelerate
contact pair finding (as we describe briefly), but since that is still
slow due to the tens of thousands of timesteps, we use a space-time
bound to cache nearby sphere-sphere pairs. Doing both of these
things is key to rapid force evaluation for our interactive tool.

Contact-pair Detection using Spatial Hashing. Kaldor et al. [2010]
found contact pairs using a BVH tree, however, for a GPU imple-
mentation, we use spatial hashing since it is particularly efficient for
finding overlaps between spherical particles of identical radii [Mack-
lin et al. 2014]. Our GPU spatial hashing is inspired by Green [2010],
but avoids a global grid data structure for memory efficiency. The
(gridCellID,spherelD) pairs are then hashed into a GPU-based multi-
value Cuckoo hash table implementation [Harris et al. 2007], with
hash-table collisions corresponding to sphere center locations. We
then radially search by querying nearby grid cells for sphere IDs,
and construct the necessary pairs. [Bell and Hoberock 2011].

Simpson’s Quadrature for integration requires odd sample counts.

Algorithm 1: Simulation Algorithm

Input: Control points q, Control Point Velocities q, Inverse
Mass Matrix M~1, Yarn Radius r, Yarn Radius Fraction &,
Total Steps, Virtual Indices iy, Real Indices ig, Offset
Vectors d

Output: Control points q, Control Point Velocities q¢

contactPairSet = SpatialHash(q)

MaxMov = 0

repeat

if MaxMov > er then

contactPairSet = SpatialHash(q)

MaxMov = 0;
end
VEContact — contactEnergy(contactPairSet, q)

vDeontact - contactDamping(contactPairSet,)
VE = VEbend(q) + VEIen(q) + VE(,’(q) + VEcontact |
y peontact | VDglobal(q)
At = computeMaxValidTimestep(q"”, VE, f)
Q" =q+ At M7 (-VE+1)
qn+1 =q+ At anrl
y = computeSampleMovement(q™*!, At);
MaxMov += ||y|leo
q, q = PeriodicBoundaryConditions(q
Step++
until Step > Total Steps;
9 =9
qr =9

n+1’ anrl’ iV’ iR’ d)

Amortized Estimation of Contact Pairs. GPU hashing is fast, but be-
cause of numerous timesteps it is the bottleneck. Inspired by Kaldor
et al. [2010], we use a simple space-time bound (not contact lin-
earization) to exploit the fact that potentially colliding contact pairs
remain nearby for many timesteps. The candidate set of collision
pairs is kept around as state (contactPairSet in Algorithm 1), and is
used for contact force evaluation at subsequent steps. In a similar
fashion, our method tracks the maximum sample movement at each
step. If the sum of all maximum movements is below a threshold, the
contactPairSet is retained; otherwise it is regenerated. The threshold
is set to be a fraction of the contact radius, to ensure we re-evaluate
contacts before pull-through can occur. Using this method, we can
amortize the cost of contact-pair finding across several timesteps
(e.g., 5) to remove the bottleneck.

Compute Stencils for Parallel Evaluation of Internal Forces. Each
intrinsic energy term—bending, stiffness, length—is defined for each
spline segment in terms of splines degrees of freedom. Consequently,
the energy of each spline segment will influence the forces (energy
gradients) at its four control points. Since adjacent splines share
control points, if we parallelize force contributions across spline
segments there is a write-after-write scheduling conflict. To avoid
this issue, we order the computation instead by the output point,
reading the spline data points that contribute to a single control
point’s energy gradient and computing all the force terms affecting
that point. Although there is some redundant computation using
this structure, the control-point force evaluation workload becomes

RIGHTS L1 N Hig

Interactive Design of Periodic Yarn-Level Cloth Patterns « 202:5

Table 2. Knit Tile Encodings: Each knitting instruction (or stitch) is en-
coded by a “knit tile” that has a code, color, and associated spline curves.

Stitch Code Color Visualization
Knit K H @

Purl P N @

Front Stitch F B e

Back Stitch B U_U

Yarnover(Y) + Slip Slip Knit YS
Knit 2 Together + Y 2U

Y + Slip Knit Two Pass + Y~ Y3Y [‘ -

perfectly parallel across control points, with each operation requir-
ing a total of 7 control point reads and 1 control point write. We
also experimented with using atomic adds to handle write conflicts,
to parallelize elements across splines rather than control points, but
found the performance was worse. For example, on the Basketweave
Rib Stitch pattern, atomicAdds caused a 30% slowdown in mean
step time.”

4 PATTERN REPRESENTATION

We define patterns as repeated rectangular sections of knit or woven
cloth. All patterns must be designed so that they behave as intended
when tiled edge to edge, and the simulation must ensure consistency
across the boundaries.

Woven cloth patterns are traditionally encoded using a matrix
of 1s and 0s. Each weft yarn is assigned a row, and each warp yarn
is assigned a column. A matrix value of W; ; = 1 indicates that the
ith weft yarn must be above the jth warp yarn. If Wi, j = 0, then
the warp yarn is placed above the weft yarn. Since all yarns in a
periodic weave connect to repeats of themselves, the boundaries
are well-defined.

We represent a pattern in knitted cloth as a rectangular grid of
tiles/blocks that encodes the pattern’s topology. To ensure that pat-
terns are always repeatable, we require that all tiles must also be
rectangularly tile-able. A lexicon of knit tiles, with their correspond-
ing geometry, is listed in Table 2. Each tile is identified using a set
of 1 to 3 ASCII characters, where the number of loops along that tile
corresponds to the number of ASCII characters present. Also, char-
acter strings are defined as row-based blocks. Therefore, stacking
“Y3Y” into a column would not be a valid configuration.

Using this pattern description language, pattern files mimic the
spatial layout of the pattern, and show up as rectangular patterns
of text (see Figure 3). Creating a repeatable pattern then becomes

2Experiment using CUDA 8.

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

202:6 + Leaf,). etal.

a packing problem of tiling blocks into a rectangular shape. By
constructing patterns using this representation, we guarantee that
any tiling will produce a valid knitted pattern that can be simulated
using periodic boundary conditions.

= omomg YR
Rooww R

AW ®mO YR
AW wmY YR
NP R
AP rdm o oR

Fig. 3. Text and Color Representations of a Knit Pattern: (same pattern
as in Figure 1 (Top))

5 PERIODIC BOUNDARY CONDITIONS

Since patterns in our system are always periodic, the behavior of
the simulation should also be periodic—the simulation of one copy
of the pattern should show the behavior that would be seen if the
model were surrounded by identical tiled copies, all relaxing in the
same way. Our approach to enforcing periodicity is to ensure that
all control points in the simulation experience exactly the same yarn
and collision forces that they would in the periodic case.

To achieve this, our method creates a set of virtual spline seg-
ments, which are offset versions of their corresponding real spline
segments and provide the neighborhood that is needed to simulate
points near the boundary in the same way as interior points. Af-
ter each step of the simulation, each real control-point’s position
is shifted by the correct period and overwrites the virtual control-
point’s position. The real control-point’s velocity directly overwrites
the virtual control-point’s velocity. To do this we (1) append virtual
points to the rectangular pattern, (2) automatically identify real-
virtual control-point pairs and displacement offsets, and (3) apply
update rules for the simulation to efficiently enforce these boundary
conditions.

First, using our tiling system we generate one complete set of yarn
curves from the pattern. We then extract 8 unique sub-patterns: the
4 long edges, and each of the 4 corners. For a pattern to be periodic,
each edge tile must be adjacent to the pattern tile present at a fixed
distance on the opposite side of the pattern. For each subpattern,
a virtual copy of the subpattern is placed opposite to the original
and merged with the global model. A visualization of the result of
this process is shown in Figure 4 for knits, where virtual degrees
of freedom are visualized in gray. From this model we define q as a
vector of its control point positions, and q as a vector of its control
point velocities, both of which include real and virtual (gray) degrees
of freedom. It is important to note that each merge of a subpattern
into the overall model changes the shape of q and q by appending
virtual degrees of freedom to the already present yarns.

Second, for every virtual control point, we record the real-virtual
control-point pair and its tile-specific displacement offset. This offset
is the local displacement with respect to the tile’s reference frame,
which we store for all control points in an array d. The indices of the
virtual and real control point pairs are stored in the arrays iy and

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

RIGHTS LI N K}

<}

o
7
HAE
M
52
RS

S
x

e
=
ey
X
)
oo T

e
~

S

oo
===
o

>

<

] \’/‘\'o, "\,\!“ NN
W ANACIPN T DY AUV XS
= O
— R\ & ke, SN AN S Rste e
= e R0
o V3Tl A I'IT"—“"
— VOIS N A TTe

||
||

s s
e
S
ees
v

13
A
.)
e
7

=SS
%
‘~
&)
‘)
=
2 [

<
=
5
i "b
5A
L
o
Z=
e
,{“
" —

L

S

<

12
-
ya

-
= A\
£
-
o~

SSIAS

-

Fig. 4. Knit Periodic Boundary Conditions: (Left) Colored pattern tiles
with additional gray border tiles representing virtual material; the corre-
spondence between a real corner tile and virtual tiles are indicated. (Right)
Yarn curves following relaxation, with gray portions corresponding to the
virtual degrees of freedom that track with the corresponding real (non-
gray) portion of the pattern. The correspondence between real and virtual
control-point curves are indicated.

ip respectively. These periodic BCs and virtual offsets are shown
for a woven pattern in Figure 5.

- -

Fig. 5. Woven Periodic Boundary Conditions: (Left) Colored pattern
tiles, with additional gray border tiles representing virtual material. (Right)
Yarn curves following relaxation, with gray portions corresponding to the
virtual degrees of freedom that track with the corresponding real (non-
gray) portion of the pattern. Each yarn’s virtual control-point tracks its
corresponding real control point with a tile-specific displacement offset
applied. Offset arrows are shown in (Left) for three virtual control points
that map to a single real control point.

Finally, using q, q, iy, ir, and d, we can efficiently apply gather,
scatter, and add operations standard to GPU libraries to efficiently
update the virtual degrees of freedom after each step. See Algo-
rithm 2 for details.

Discussion. It is critical to derive virtual points from entire tiles
of the pattern, not just a few points at the ends of the real splines.
This is because the virtual points immediately on the edge of the
boundary should have the same energy environment as the real
control points they correspond to so that the contribution to the
adjacent real points is accurate.

6 ADJUSTING YARN LENGTHS

When relaxing a garment, it is unclear at first how much material
to allocate for each tile and stitch, especially as the yarn take-up

Algorithm 2: Periodic Boundary Conditions

Input: Positions q, Velocities q, Virtual Point Indices iy, Real
Point Indices ig, Offset Vectors d

Output: Updated Positions q and Velocities q

p = Gather(q, iR)

u = Gather(q, ir)

p+=4d;

q < Scatter(p, iy)

q « Scatter(u, iy)

/! Get real-point positions (has duplicates)
/ Get real-point velocities (has duplicates)
Displace real positions by virtual offset
/ Set virtual-point positions

Set virtual-point velocities

of a given stitch varies dramatically from pattern to pattern. We
introduce two ways to adjust yarn lengths: (1) local yarn rest-length
adjustments for individual spline segments, e.g., to size slip stitches,
and (2) global yarn-length adjustment by way of a yarn-radius
scaling similarity transformation.

6.1 Rest-length scaling for stitch-level yarn control

Many patterns require local control on how much yarn is used,
such as for patterns with slip stitches which may either be pulled
tight or left as long strands. A good illustration of this issue is
the difference between Honeycomb, Slip Stitch Rib, and Jacquard °.
Each of these patterns has a different relationship between vertical
and horizontal slip stitch material, which naturally comes from the
pattern description itself. Because there are many ways to adjust
these yarn-length parameters, they can produce a wide range of
styles for a given pattern (as shown in our examples). Unfortunately
the rectangular color-based tiling system encodes topology with
default yarn lengths, since we do not know a priori how much
material a designer would want to allocate for each stitch.

A

Flg 6. Rest- Length Scallng We demonstrate before and after reducing
the length of slip stitches. Green and Orange yarns correspond to horizontal
and vertical slip-stitch material, respectively.

To address this problem, our design tool allows interactive control
of how much material is allocated along each horizontal or vertical
slip stitch. In our implementation, we scale the amount of yarn
allocated to a stitch, by allowing the user to scale the rest lengths,
¢;, of associated spline segments. Results are shown in Figure 6. We
also adopt this technique for controlling the lengths of yarns in the
warp and weft directions of woven cloth.

6.2 Radius scaling for global yarn-length adjustment

Sometimes we want to change the total amount of yarn used to
make the pattern, i.e., its “take up,” in order to loosen or tighten the
structure. Because we want to make these changes in an interac-
tive design tool setting, changes must be fast, and not significantly

3Visualizations may be found in supplemental material.

RIGHTSE LI MN iy

Interactive Design of Periodic Yarn-Level Cloth Patterns « 202:7

slow relaxation. One could scale the rest length of every yarn spline
segment (as in §6.1) but the large position-level motions that result
can slow relaxation. Alternately we could just add/remove spline
segments to increase/decrease the overall yarn length, but that com-
plicates interactivity and implementation, and also slows relaxation.

Instead, to globally reduce the pattern’s yarn length from L’ to
L’ /y (assumingwithout loss of generality that y > 1), we propose
a radius-scaling transformation that artificially increases the yarn
radius from the physical value, r, to yr. Mathematically, we associate
our inflated-radius simulation model (with primed variables) with a
smaller physical model (with unprimed variables) that has a shorter
yarn length L (our goal) as a result of a uniform spatial scaling by
1/y that scales control-point positions q, spline lengths ¢;, etc.:

L=Lly, q=d'ly, ti={t]ly. ®3)

The transformations are illustrated in Figure 7.

spatIaL L'/y

L/
RADIUS /_\\
SCALING SCALING P/_\H
'ﬂ0 7
bl

Scaled-Radius Implied
Simulation Model Physical Model

Original

Simulation Model
Fig. 7. Radius-scaling transformation for yarn-length adjustment:
(Left) Given a simulation model with too much yarn and loose contacts, we
can (Middle) tighten up the pattern by simulating a scaled-radius version
with modified stiffness parameters (k — k’), and thus efficiently simulate
a pattern with reduced yarn length (Right) subsequently obtained by a
post-simulation uniform spatial scaling.

For this parameter transformation to be physically consistent,
the two primed/unprimed models should deform the same up to a
spatial scaling. We enforce energy term equality by modifying the
simulator’s (primed) stiffness parameters as follows:

-2
k{)end =Y kbend kéontact =Y Kcontact
K

-4
alobal = ¥ Kglobal kit an =Y kddn (4)
k) = ke K. = kien.

For example, the bending stiffness must increase by y to simulate a
smaller physical model (¢ = ¢’ /y) with higher curvature (k = yx’),
if EE.’end = kpenafi fol K%ds = K enali fo k"?ds. For a derivation of
these modified scaling parameters, see Appendix D. Following relax-
ation, we can scale the simulated model by 1/y to obtain shortened
yarn geometry consistent with the original physical yarn gauge and

stiffness parameters, k.

Discussion. This transformation has two favorable attributes in
practice: (1) it changes the effective length of the yarn curves while
keeping the number of spline segments constant, and (2) the yarn
curves undergo relatively little motion (unlike for rest-length rescal-
ing) and so established yarn contacts are maintained and continue
relaxing efficiently. As a result, radius scaling provides a useful
“knob” for interactive adjustment of how much material was used
for a particular pattern. We later demonstrate that this transforma-
tion allows us to tune pattern take-up to better match reference
images from Nalhcib [2018] (see Figure 8). We also experimented

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

202:8 + Leaf,). etal.

with using a length-scaling approach (where we jointly scaled the
yarn rest lengths, periodic boundary offsets, and control point po-
sitions), and without including memory I/O computational cost of
the length-scaling approach, it took twice as long on average to
converge (see (5)) compared to our radius-scaling approach. Practi-
cally, the energy gradient norm struggles to settle because of the
contention between the discontinuous periodic boundary constraint
updates that shrink the perimeter, and our energy minimization
that must deal with stiff contact energies. To accommodate for this,
changes to the boundary conditions can be made with smaller steps,
which require additional time to converge to the desired result.

BTN INESY : A ,

Fig. 8. Radius-Scaling Transformation: The “Right Diagonal” pattern
(Left) is a loose knit with many visible holes (y =1.075), whereas (Right)
reducing yarn take-up with radius scaling y =1.5 produces a tighter knit.
This pattern updates interactively at approx. 710 timesteps/sec using our

GPU relaxer with periodic BCs.

7 INTERACTIVE PATTERN DESIGN

The full range of possible yarn configurations is enormous. To allow
directable exploration of this large space of patterns, we provide
a pattern editor that allows users to author patterns, and a user
interface for the simulation tool to drive yarn-level relaxation in-
teractively and adjust design parameters, such as yarn lengths and
pattern dimensions.

7.1 Pattern Editor

We provide image-based and text-based methods for describing
patterns. In a separate window a user is displayed a grid-based
image with a set of colors. Each color in the palette corresponds to
a single ASCII character in the pattern representation described in
Section 4. Using a fill-tool, users can specify grid cell colors from
a provided palette to create a pattern. The number of colors in the
palette for knits is 8, one for each character. The number of colors in
the palette for single-layer wovens is 2, to encode the binary matrix
representation.

Once a pattern file has been edited, the simulator can generate
yarn curves with matching stitch topology, as shown for a knit
pattern in Figure 9, and single- and double-layer woven patterns in
Figure 10. This new model can then be simulated and modified via
the controls described in Section 7.2.

7.2 User Interface for Yarn Relaxation Tool

Our tool provides an OpenGL visualization of the current pattern,
and a number of user controls for driving the pattern exploration.
These controls are roughly separated into three categories: simu-
lation control parameters, visualization parameters, and pattern

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

RIGHTSE LI MN iy

NS

L)
) N

/

’.

/
,l\
A

(/
(0

=
|
=)

2!
T
<

i

<
I
<4

-
-
-
-

Fig. 9. Pattern-Editor Paint Tool: (Left) Knit patterns are represented
using grid-based color images based on the color encoding of Table 2), and
image edits will update the (Right) generated yarn-curve geometry with

matching stitch topology.
(@) (b) (© (d)

Fig. 10. Woven pattern: On the left we show a 2-3 satin (b) and its pattern
(a). On the right we show a two layer cloth (d) and its pattern (c).

TT117

o7

material allocation parameters. An example of the user interface is
shown in Figure 11.

x Viewer

%f(

LA
AR
|

93
O s

(P

i

o

s,

SN
o

e

NN
e
)

.,

b
)
=

80

.'-"
G

}'—}.J::}::} [) save state [] From Image { Update J Pause Next Forward Quit

Tile Rows Tile Cols Color Alpha Hue Saturation Value - - - - -
eyl [sph [Axis [Grid (] FPs.

5 i[5 || = =C— —(]
step Interval RadiusScale X Period Y Period slip Vert Scale slip Horiz Scale
100 130 60.00 B 60.00 G| () —_—

Fig. 11. Yarn-Relaxation User Interface provides controls for simulation,
visualization, and pattern parameters: (First Row) timestep count, pattern
1/0, and simulation timestepping; (Second Row) controls for visual appear-
ance (horiz./vert. spatial tiling, pattern color, graphics styles); (Third Row)
timesteps per frame, and pattern controls (radius scaling, spatial period, and
rest-length scaling). The rendered pattern has been 5 X 5 tiled to show the
pattern’s overall appearance.

The simulation control parameters allow the userto import state
from the image-based or text-based pattern descriptions described in

Section 7.1. The user is also able to stop, step, or start the relaxation
process to fine tune other parameters dynamically.

The visualization parameters we provide include tiling, pattern
based coloring, and yarn coloring. Users can choose a number of
rows or columns to repeat the pattern in the rendering. Tiling a
pattern involves copying the generated geometry in each of the
cardinal directions, and doesn’t involve any simulation. We allow
users to use a number of color sliders to change how strongly the
pattern coloring is shown compared to the HSV color that the user
desires for the yarn aesthetic.

The material allocation parameters we provide are listed as fol-
lows: radius transformation via y, x repeat distance, y repeat dis-
tance, and slip stitch material scaling parameters in the x and y
directions. When a user sets y, the simulator gradually updates y
(as defined in §6.2) until the user-set value for y is reached. Both
parameters that set the x and y repeat distances are provided to
allow the user to stretch or compress the current pattern. Once
the user sets the desired repeat period, the simulation smoothly
changes the repeat distance of the periodic boundary conditions in
the simulation to match the desired repeats set by the user.

The slip stitch material scaling parameters allow users to affect
how much material is allocated for slip stitches in knitting patterns.
Specifically, a slider is provided that will either shrink or increase
the material at each interval. The lengths are restricted to be larger
than 10% of their original length, and less than 200% of their original
length. These sliders are also used to modify the warp and weft yarn
lengths of woven cloth independently.

8 RESULTS

We have modeled and simulated a large corpus of yarn-level patterns
that are listed in Table 3, along with performance timings for GPU-
based relaxation. Histograms of simulation costs for knit and woven
patterns are shown in Figure 12 for all patterns in the dataset. In
addition to the results shown here, please see the supplemental
document which shows all patterns, and reference photographs for
comparison. Please also see our supplemental video for interactive
pattern design sessions, relaxation animations, and other supporting
footage.

0 ‘ 04—
0 2 4 0 2 4

Mean step time per control point (us)

Knit Patterns Woven Patterns

Fig. 12. Histograms of Simulation Cost per Control Point: Histograms
showing distribution of mean wall-clock time per control point (per timestep)
of (Left) knit patterns, and (Right) woven patterns from Table 3. Woven
patterns were more expensive on average due to, e.g., many adjacent parallel
yarns in contact.

RIGHTS L1 N Hig

Mean step time per control point (us)

Interactive Design of Periodic Yarn-Level Cloth Patterns « 202:9

Table 3. Pattern Statistics and Relaxation Performance: For each pat-
tern, we run the relaxation to convergence as defined in (5). Type indicates
either a knit (K) or woven (W) pattern. Tconverge is the time to converge
from the initial pattern state. Ts;ep is the average time to compute a single
step of the simulation. Teopntroipoine 1S the average step time per control
point. Lastly, we report the number of control points simulated in each
pattern.

Pattern Tconverge [s] Tstep [ms] Tcontrotpoint [us] Type Control Points
Alternating Diagonals 2.18 0.95 025 K 3794
Basketweave Rib Stitch 0.79 0.58 034 K 1714
Block1 0.09 117 020 K 5686
Block2 0.06 0.78 038 K 2054
Cartridge Belt Rib 0.45 0.44 1.03 K 423
Double Basket Pattern 3.00 0.88 0.18 K 4860
Garter Block 0.13 0.61 030 K 2054
Honeycomb 0.33 0.77 023 K 3392
Jacquard1 0.38 0.50 033 K 1504
Jacquard2 0.18 0.54 038 K 1433
Jacquard3 0.29 0.59 028 K 2106
King Charles Brocade 1.36 0.58 024 K 2394
Lattice With Seed Stitch 0.55 1.12 0.15 K 7280
Left Diagonal 0.05 0.50 070 K 723
Left Diagonal Rib 0.68 0.58 042 K 1374
Long Slip Textured 0.10 0.42 093 K 456
Parallelograms 0.19 0.64 024 K 2732
Pie Crust Basketweave 0.15 0.65 0.65 K 986
Pyramid Stitch 0.68 0.58 026 K 2198
Rhombus Texture 1.30 0.60 025 K 2394
Right Diagonal 037 0.44 061 K 723
Right Diagonal Rib 0.45 0.55 040 K 1374
Seersucker 1.09 0.49 040 K 1230
Slip Stitch Honeycomb 0.27 0.43 150 K 284
Slip Stitch Rib 0.43 0.41 164 K 248
Stockinette And Garter 26.54 1.52 0.14 K 10890
Thunderbird 10.91 1.08 0.15 K 7280
Tumbling Moss Blocks 0.02 1.14 035 K 3214
Woven Transverse Herringbone 0.61 0.59 029 K 1996
Basket 2x2 0.09 0.49 270 W 180
Basket 3x3 0.11 0.50 164 W 304
Plain 0.16 0.42 481 W 88
Satin 2x3 0.25 0.48 202 W 238
Satin 3x2 0.23 0.44 185 W 238
Twill 2x1 0.19 0.44 337 W 130
Twill 3x2 0.12 0.51 214 W 238
Twill 4x1 0.38 0.45 190 W 238

Implementation Details. All pattern simulations were run on a
single NVIDIA GeForce GTX TITAN X (see specifications in Ta-
ble 4), on a workstation with a 4-core Intel Xeon CPU E5-2637 v3
@ 3.50GHz processor. Our implementation is written in C++ and
CUDA. To simplify writing CUDA code for the energy gradient com-
putation, we created a pipeline for generating CUDA code directly
from Mathematica expressions; see Appendix C for details.

Table 4. GPU Specifications

Specification Value
GPU Clock 1.08Ghz
GPU Memory 12 GB
CUDA Cores 3072
L2 Cache Size 3 MB

Constant Memory 65MB

Convergence. When profiling our system’s performance on a va-
riety of patterns, we opted for a convergence term that would be

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

202:10 « Leaf,).etal.

agnostic to the individual pattern. Specifically, our model has con-
verged at step i if the following inequalities are satisfied:
IVE;ll
IVEol|

VEL |,
IVEl 17

<e (5

Here VE; is the energy gradient at step i, and VEy is the energy
gradient at step 0. For our results, we used ; = 0.1 and e = 107°.

Performance Breakdown. For each of the patterns listed in Table 3
we broke down the performance into three categories: energy gra-
dient computation, contact detection, and integration/timestepping.
Over all patterns, the average percent of time spent in each of these
sections are 53.5% for gradient computation, 14.5% for contact detec-
tion, and 31.5% for integration/timestepping. Because our method
amortizes the cost of contact detection across multiple steps, the per-
formance bottleneck is now the core gradient computation. When
profiling individual kernels of a single run, we observe that the
energy gradient computation for contact pairs makes up 60% of the
computation.

Scalability for Larger Patterns. All patterns in Table 3 involve
fewer than 11k control points, however our implementation can
simulate larger systems efficiently. For example, we ran a relax-
ation of a jersey knit sweater example with 250k control points,
and observed a mean wall-clock time per timestep of 18ms. This
corresponds to 0.07 s per control points per timestep, which is an
order of magnitude faster than costs observed for our small periodic
patterns (see Figure 12) which achieve worse CUDA core utilization.
So while the primary performance bottleneck is contact energy gra-
dient computation for large problems, smaller patterns provide less
opportunities for parallelization but are still fast.

Comparison between CPU and GPU implementations with/without
Periodic BCs. We compared our GPU CUDA/C++ implementation
to a reference parallelized 4-core CPU C++ implementation for
eight woven patterns for three model sizes: a small model with
periodic BCs (PBC), a larger tiled model, and a very large tiled
model. Control point counts and CPU and GPU timings are shown
in Table 5. Overall we observe that the relative speedup of the
GPU_PBC over the CPU_PBC implementation is modest for the
tiniest models, e.g., ~3x for plain weave with only 88 control points,
but increases dramatically for larger problem instances, e.g., #21x
for the tiled satin3-2. For GPU_Large_Tile, a problem 100x the size
of GPU_Tiled, the GPU exhibits excellent parallelism and maintains
reasonable step times. In general, larger patterns for which the
number of control points exceed the number of CUDA cores (3072
on TITAN X) tend to achieve better speedups.

Scalability of GPU Implementation. We constructed tiled plain
weave models of increasing sizes to test the performance of the GPU
implementation without periodic BCs. The timing per timestep, as
well as per control point, is plotted in Figure 13, and demonstrates
roughly linear scaling (except for very tiny models).

Yarn-Length Adjustment (Rest-Length Scaling). We found rest-
length scaling (from §6.1) to be indispensible for adjusting slip

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

RIGHTS L1 N Hig

Table 5. Control-point count / wallclock time (in ms) per timestep
for 8 woven models used in 5 CPU/GPU performance tests

CPU_PBC CPU_Tiled GPU_PBC GPU_ Tiled GPU_Large_Tile
plain 88/1.38 4288/ 33.29 88/0.42 4544/2.11 21744 / 14.54
twill2-1 130/1.62 4288/3591 130/0.44 4544/1.90 21158 /10.78
twill4-1 238/2.88 4288/31.49 238/0.45 4544/151 21744/ 09.50

twill3-2 238/2.88 42838/31.35 238/0.51 4544/1.48 21744/ 10.44

basket2x2 | 180/1.71 3780/28.88 180/0.49 4020/ 1.40 20580/ 10.82
basket3x3 | 304/3.25 4283/34.61 304/0.50 4544 /1.37 19448 / 08.78
satin3-2 238/2.85 4283/31.50 238/0.44 4544 /147 21744 / 10.40
satin2-3 238/2.79 4288/31.59 238/0.48 4544/1.42 21744/ 08.39

2 1073

3 T — 15

E af

g

: z

e 15] 110

= £

8 =

i g
w

S" 1 -15 g

£ &

Q

L

» 0.5

g ! ! ! ! ! ! 0

p 0 200 400 600 800 1,000 1,200

Number of tiles

Fig. 13. GPU performance on tiled plain weave models:
(Green/LeftAxis) Time per timestep per control point and (Blue/RightAxis)
time per timestep plotted versus # tiles. On average there are 18.7 control
points/per tile, including virtual points.

stitches where the default material allocation from the pattern tiling
approach can be highly undesirable. The Honeycomb pattern shown
in Figure 14 is a good demonstration of the need for slip-stitch
correction. This example also demonstrates how a fixed period
approach to periodic boundary conditions produces a stretched
version of the natural shape; we therefore also gradually reduce
the period until the correct aspect ratio is achieved. We also use
rest-length scaling for woven patterns to control the length of warp
and weft yarns separately, since that could not be achieved with the
global radius scaling transformation.

Yarn-Length Adjustment (Radius Scaling). We used the radius-
scaling transformation from §6.2 extensively during interactive de-
sign to effectively control essentially every pattern’s yarn take-up,
and adjust its look. Please see the result shown earlier in Figure 8,
as well as the supplemental video for numerous demonstrations of
increasing the radius scaling parameter, y. Since increasing radius
scaling introduces new contacts, which slow the relaxation process,
we measured a slowdown of the contact detection time that scales
with y.

Knit Pattern Dataset. We synthesized and simulated a total of
32 knit patterns in a dataset that accompanies this paper. These
patterns were derived in part from the knitting instructions found
at http://knittingstitchpatterns.com [Nalhcib 2018], which provides

http://knittingstitchpatterns.com

(a) Simulated

(b) Reference

Fig. 14. Rest-Length Scaling (Honeycomb pattern): (Left) Vertical slip
stitches were shortened using rest-length scaling to produce the distinctive
honeycomb cavities present in (Right) reference photograph of actual knitted
samples (image from https://knittingstitchpatterns.com).

a rich collection of patterns using standard knitting instructions.
A subset of the simulated patterns are compared to reference pho-
tographs in Table 6. Please see the supplemental document for all
other examples. Our results closely match the reference images
from visual inspection, and benefitted from interactive adjustment
of model parameters. Our method also handles lace patterns, as
demonstrated in the “Stockinette and Garter Diamonds” pattern.

Woven Pattern Dataset. We also synthesized and simulated a small
collection of 8 one-layer woven examples including common basket,
twill and satin patterns. For each example we created the bitmap pat-
tern and fabricated the cloth with an industrial loom. We took macro
photographs for all of these examples and compared them with our
simulation results, some of which are shown in Table 7. Simulated
and manufactured patterns have similar structural features, despite
different rendering styles. Please see the supplemental video for ad-
ditional woven examples, including an interactive session designing
double-layer woven examples.

9 CONCLUSION

We have introduced the first fully interactive methodology for
physics-based stitch pattern design. Our approach is based on core
advances for interactive simulation of yarn-level patterns (GPU sim-
ulator, periodic boundary conditions), and interactive techniques
for on-the-fly pattern adjustment (yarn-length adjustments, sizing,
visualization). We have demonstrated the effectiveness of this over-
all interactive pattern design approach by simulating and adjusting
a large corpus of periodic yarn-level cloth models that reasonably
match photographs of manufactured samples. By releasing this yarn-
level pattern dataset, we hope to inspire research into new methods,
and enable the community to more easily compare techniques and
results.

Limitations and Future Work. We believe that the implications of
this technology are broad, and that in the future, such techniques
will fundamentally change the way that yarn-level patterns and
textiles are designed, tested, and manufactured by both experts
and casual users. While there are several limitations of our specific
approach, there are many opportunities for future work.

Regarding our prototype implementation, there are some obvious
shortcomings. Every time a pattern is updated during simulation,

RIGHTSE LI MN iy

Interactive Design of Periodic Yarn-Level Cloth Patterns « 202:11

we completely recreate the yarn curves, discarding any relaxation
progress. We opted for this approach due to the complexity of sup-
porting live updates for knit fabrics. Live updates to knit fabric
requires tracking contacts and contact relationships, and finding
stable transformations that do not cause pull-through or perturb the
solution too far from the global optimum. While the periodic-BC
GPU relaxer is fast, future work should develop reliable method-
ologies for on-the-fly modification of local stitch topology for de-
forming knit and multi-layered woven cloth models. Our radius
scaling approach (§6.2) can adjust yarn take-up while keeping a
fixed number of spline segments, which works well for increasing
the radius, however increasing the yarn length (decreasing the ra-
dius) too much may require more degrees of freedom be added to
the system and finer contact sampling to avoid pull through. Our
current tool only implements a common subset of possible stitches,
and others are possible.

Future incarnations could connect more directly to manufactur-
ing, and ultimately aim to produce a fully functional and predictive,
universal, interactive, textile design system. Such a system would
require the design model be able to translate simulation parameters,
such as yarn take-up and tension, to low-level machine parameters.
For virtual designs to be most useful, more predictive models are
necessary for many aspects of simulation. For example, we have
experimented with only a simplified single-ply yarn model with cir-
cular cross section, but multi-ply yarn models and yarn-yarn contact
interaction methods are needed, possibly in a final validation and
visualization phase. Better yarn models should be investigated that
deform in ways that more realistically match yarn-level renderings
with real-world observations. Better approaches should be devised
for quantitative validation of simulated patterns against their man-
ufactured counterparts, possibly using CT scans and photographic
techniques. Joint garment-pattern design requires more sophisti-
cated models than rectangular periodic patterns. Finally, in graphics,
techniques are needed to efficient design and texture animated cloth
models for virtual characters that capture the natural appearance
and deformation of realistic yarn-level cloth in a production setting.

ACKNOWLEDGMENTS

We would like to acknowledge Raj Setaluri and James WoMa for
discussions and digital translation of cloth patterns, Jui-Hsien Wang
for video production, Kui Wu and Cem Yuksel for Stitch Mesh code
and discussions, Anastasia Onegina and Brooks Hagan for knitting
discussions and demonstrations, http://knittingstitchpatterns.com
for reference images and pattern descriptions, and anonymous re-
viewers for helpful feedback. This work is supported in part by
the National Science Foundation IIS-1513967, CM-1644490, and do-
nations from Adobe. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

Aric Bartle, Alla Sheffer, Vladimir G Kim, Danny M Kaufman, Nicholas Vining, and
Floraine Berthouzoz. 2016. Physics-driven pattern adjustment for direct 3D garment
editing. ACM Trans. Graph. 35, 4 (2016), 50-1.

Nathan Bell and Jared Hoberock. 2011. Thrust: A productivity-oriented library for
CUDA. In GPU computing gems Jade edition. Elsevier, 359-371.

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

https://www.knittingstitchpatterns.com
http://www.knittingstitchpatterns.com

202:12 « Leaf,).etal.

Floraine Berthouzoz, Akash Garg, Danny M Kaufman, Eitan Grinspun, and Maneesh
Agrawala. 2013. Parsing sewing patterns into 3D garments. ACM Transactions on
Graphics (TOG) 32, 4 (2013), 85.

K.F. Choi and TY. Lo. 2003. An Energy Model of Plain Knitted Fabric. Textile Research
Jour. 73 (2003), 739-748.

K.F. Choi and TY. Lo. 2006. The Shape and Dimensions of Plain Knitted Fabric: A Fabric
Mechanical Model. Textile Research Jour. 76, 10 (2006), 777-786.

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. 2014. Yarn-
level simulation of woven cloth. ACM Transactions on Graphics (2014). https:
//doi.org/10.1145/2661229.2661279

G. Cirio, J. Lopez-Moreno, and M. A. Otaduy. 2017. Yarn-Level Cloth Simulation
with Sliding Persistent Contacts. IEEE Transactions on Visualization and Computer
Graphics 23, 2 (Feb 2017), 1152-1162. https://doi.org/10.1109/TVCG.2016.2592908

A. Demiroz and T. Dias. 2000. A Study of the Graphical Representation of Plain-knitted
Structures Part I: Stitch Model for the Graphical Representation of Plain-knitted
Structures. Journal of the Textile Institute 91 (2000), 463—-480.

T.D. Dinh, O. Weeger, S. Kaijima, and S.-K. Yeung. 2018. Prediction of mechanical
properties of knitted fabrics under tensile and shear loading: Mesoscale analysis
using representative unit cells and its validation. Composites Part B: Engineering
148 (9 2018), 81-92. https://doi.org/10.1016/j.compositesb.2018.04.052

Miro Duhovic and Debes Bhattacharyya. 2006. Simulating the deformation mechanisms
of knitted fabric composites. Composites Part A: Applied Science and Manufacturing
37, 11 (2006), 1897-1915.

Bernhard Eberhardt, Michael Meissner, and Wolfgang Strasser. 2000. Knit Fabrics. In
Cloth Modeling and Animation, Donald House and David Breen (Eds.). A K Peters,
Chapter 5, 123-144.

Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2018. A
Multi-scale Model for Simulating Liquid-fabric Interactions. ACM Trans. Graph. 37,
4, Article 51 (Aug. 2018), 16 pages. https:/doi.org/10.1145/3197517.3201392

O. Goktepe and S. C. Harlock. 2002. Three-Dimensional Computer Modeling of Warp
Knitted Structures. Textile Research Jour. 72 (2002), 266-272.

Simon Green. 2010. Particle Simulation using CUDA. NVIDIA Whitepaper 6 (2010),
121-128.

Mark Harris, John Owens, Shubho Sengupta, Yao Zhang, and Andrew Davidson. 2007.
CUDPP: CUDA data parallel primitives library.

Lejian Huang, Youqi Wang, Yuyang Miao, Daniel Swenson, Ying Ma, and Chian-Fong
Yen. 2013. Dynamic relaxation approach with periodic boundary conditions in
determining the 3-D woven textile micro-geometry. Composite Structures 106 (2013),
417-425.

Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008a. Knitting a 3D model. In
Computer Graphics Forum, Vol. 27. Wiley Online Library, 1737-1743.

Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008b. Knitty: 3D Modeling
of Knitted Animals with a Production Assistant Interface.. In Eurographics (Short
Papers). Citeseer, 17-20.

Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic elastoplasticity
for cloth, knit and hair frictional contact. ACM Transactions on Graphics (TOG) 36, 4
(2017), 152.

Jonathan Kaldor. 2011. Simulating yarn-based cloth. Ph.D. Dissertation. Cornell Univer-
sity.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating Knitted
Cloth at the Yarn Level. ACM T. Graph. (SIGGRAPH’08) 27, 3 (2008), 65.

Jonathan M Kaldor, Doug L James, and Steve Marschner. 2010. Efficient yarn-based
cloth with adaptive contact linearization. In ACM Transactions on Graphics (TOG),
Vol. 29. ACM, 105.

Arif Kurbak. 2009. Geometrical Models for Balanced Rib Knitted Fabrics Part I: Con-
ventionally Knitted 1x1 Rib Fabrics. Textile Research Jour. 79, 5 (2009), 418-435.
Arif Kurbak and Tuba Alpyildiz. 2008. A Geometrical Model for the Double Lacoste

Knits. Textile Research Jour. 78, 3 (2008), 232-247.

Arif Kurbak and Ali Serkan Soydan. 2009. Geometrical Models for Balanced Rib Knitted
Fabrics Part III: 2x2, 3x3, 4x4, and 5x5 Rib Fabrics. Textile Research Jour. 79, 7 (2009),
618-625.

Hua Lin, Martin Sherburn, Jonathan Crookston, Andrew C Long, Mike J Clifford, and
I Arthur Jones. 2008. Finite element modelling of fabric compression. Modelling
and Simulation in Materials Science and Engineering 16, 3 (2008), 035010.

Miles Macklin, Matthias Miiller, Nuttapong Chentanez, and Tae-Yong Kim. 2014. Unified
particle physics for real-time applications. ACM Transactions on Graphics (TOG) 33,
4(2014), 153.

James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer
Mankoff, and Jessica Hodgins. 2016. A compiler for 3D machine knitting. ACM
Transactions on Graphics (TOG) 35, 4 (2016), 49.

Yuyang Miao, Eric Zhou, Youqi Wang, and Bryan A Cheeseman. 2008. Mechanics
of textile composites: Micro-geometry. Composites Science and Technology 68, 7-8
(2008), 1671-1678.

Nalhcib. 2018. "Knitting Stitch Patterns” website. http://www.knittingstitchpatterns.
com/

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

RIGHTSE LI MN iy

Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mccann.
2018. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph. 37, 3, Article
35 (Aug. 2018), 15 pages. https://doi.org/10.1145/3186265

Wilfried Renkens and Yordan Kyosev. 2011. Geometry modelling of warp knitted fabrics
with 3D form. Textile Research Jour. 81, 4 (2011), 437-443.

Martin Sherburn. 2007. Geometric and mechanical modelling of textiles. Ph.D. Disserta-
tion. University of Nottingham.

Huamin Wang. 2018. Rule-Free Sewing Pattern Adjustment with Precision and Effi-
ciency. In ACM Transactions on Graphics (SIGGRAPH), Vol. 37. ACM, 53:1-53:13.

Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch
Meshing. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2018) 37, 4
(2018).

Cem Yuksel, Jonathan M Kaldor, Doug L James, and Steve Marschner. 2012. Stitch
meshes for modeling knitted clothing with yarn-level detail. ACM Transactions on
Graphics (TOG) 31, 4 (2012), 37.

A DERIVATION OF TIME-STEP RESTRICTION

To avoid large motion and pull-through, we restrict the largest
timestep displacement of any point on a yarn curve to be less than a
fraction ¢ € (0, 1] of the yarn radius r. The condition can be written

[[Ayi(s)lla <er, Viel,..,N, Vsel0,1]. 6)

Rewriting the change in position in terms of the new velocity, the
timestep, and the basis matrix for spline i at s, B;(s), we find

IAyi(s)llz = IBi(s) Q" At
IBi(s) At (¢" + AtM™! (=VE +£))llz < er
IBi(s) At q"|l2 + |IB;(s) A2 M~ (-VE + £)) ||z < er
At ||Bi(s) M~ (=VE + £))|l2 + At ||IB;(s) "]l — er < 0

—IBi(s) 4" ll2 + \/IIBi(S) q"1I5 + 4I1B;(s) M~! (=VE + f) |er

Ati(s) =

2|IBi(s) M~ (=VE +)l
By minimizing this value over all spline segments, i, and all Ng
particle samples for s, we obtain the additional global timestep
restriction.

B KALDOR YARN-LEVEL CLOTH MODEL SUMMARY

For convenience we provide a short summary of the model represen-
tation as described in [Kaldor et al. 2008]. A yarn is a collection of
control points, where the curve is represented as a B-spline interpo-
lation of these points. The dynamics of this model representation are
governed by 3 primary energy forces: bending, stretch stiffness, and
contact, and 1 constraint: in-extensibility. In the following equations,
s € [0, 1] parametrizes each spline segment, y;(s) is the position of
the ith spline at parametrized position s.
The bending energy is defined as

1

B = el [s)
where k = W is the unsigned curvature of the spline

segment i. The internal stretch stiffness energy is defined as

2
! lly; ()l
Ell_en = klenf 1- sz() ds (8)
0 i

where ¢; is the rest length of spline i. This term ensures the distri-
bution of mass along the spline‘s parametric curve is uniform. The

https://doi.org/10.1145/2661229.2661279
https://doi.org/10.1145/2661229.2661279
https://doi.org/10.1109/TVCG.2016.2592908
https://doi.org/10.1016/j.compositesb.2018.04.052
https://doi.org/10.1145/3197517.3201392
http://www.knittingstitchpatterns.com/
http://www.knittingstitchpatterns.com/
https://doi.org/10.1145/3186265

contact energy is defined as

1,1 (s) = vi(s’
[peontact _ kcontactfigjf f f llyi(s) = y;(s)ll dsds' (9)
LJ o Jo 2r
where y;(s) is the sample of the ith spline at s, y;(s’) is the sample

of the jth spline at s’, and r is the radius of the yarn.
FHd* -2 ifd<1,

0 otherwise.

£d) = { (10)
As mentioned in their work, only |i — j| > 1 are considered pairs for
the contact energy, which prevents self-collisions of overlapping
sample spheres on the ends of each spline segment. Additionally
there are a number of damping terms, but for the purposes of our
work we review only the mass-proportional damping and collision
damping terms. Mass-proportional damping is defined below:

1
lobal
D = kgiobal fo vi(s)Tvi(s)ds (11)

where kg|opa1 encodes the mass dependence of the velocity damping.
Contact damping is defined below:

1,1
Don = ity [[(kw1 = k= Kan) v s
(12)
where kg; > 0 controls damping in the tangential direction, kq, > 0
controls damping in the normal direction; Av;j = v;(s") — v;(s) is
the relative velocity; 7;; (s, s”) is the normalized value of the collision
direction, njj(s,s’) = y;(s") = yi(s).

C PIPELINE FOR GENERATING ENERGY GRADIENTS

CUDA code can be difficult to write for a typical programmer given
hardware specific complexity. With multiple energy terms, it is diffi-
cult to write gradient or Hessian terms for each energy term to some
degree of accuracy in CUDA. To alleviate this issue, we developed
a pipeline for developing vectorized computations in Mathematica
that can be automatically converted into CUDA code and libraries.
A Mathematica user implements a function, and computes its gra-
dient. This gradient is passed to Mathematica’s C generation tool.
Using some custom scripts in Mathematica and bash, we convert
Wolfram’s generated C into a CUDA compatible code base, and
generate convenient header file descriptions to make calling the
generated functions more streamlined. For reproducability these
generation scripts accompany this paper. The modified generated
code is designed to remove dependencies to Wolfram's libraries to
ensure compatibility with CUDA.

D DERIVATION OF RADIUS SCALING TERMS

We derive each of the transformations in (4). For each term, we
require that the scaled and unscaled energies must be equal (E = E’),
where unprimed values are the physical model and the primed values
are the radius scaled model. We also observe that the scaled model
is related to the physical model via the following transformations:
¢ =y, x’ =x/y,q =q/y,and ¢’ = q/y. For all examples below
we explain the derivation from the primed (radius-scaled) model to
the physical model based on these transformation rules.

The bending stiffness energy of (7) depends on rest length ¢;
and curvature . The integral interior is multiplied by y =2, and the

RIGHTS L1 N Hig

Interactive Design of Periodic Yarn-Level Cloth Patterns « 202:13

exterior is multiplied by y. Therefore k., 4 must be scaled by y to
ensure the radius remains the same.

The contact energy of (9) depends on rest lengths ¢; and ¢;, radius
r, and positions y;(s) and y;(s). Since positions linearly depend on
q, they are multiplied by y, and r is multiplied by y, canceling out
in the interior of the integral. On the exterior, both rest lengths are
scaled by y each, therefore the contact stiffness k¢onrqcr must be
scaled by y~2 to ensure the energy remains the same.

The global damping energy of (11) depends only on the dot prod-
uct of the velocity arrays, which scales by y?, therefore the global
damping term must be scaled by y =2 to ensure the energy remains
the same.

The collision damping energy of (12) depends rest lengths ¢; and
¢;, and velocity deltas Av;;. All of these terms scale by y, so kg, and
k4, must be scaled by y™* to ensure the energy remains the same.

The length constraint energy of (1) and the length stiffness energy
of (8) both depend on the rest length ¢; and curve tangent ;. Both of
these terms are multiplied by y, and cancel each other out. Therefore
no scaling is required for these terms.

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

Leaf,). et al.

114

202

Table 6. Comparison of Simulated Knit Patterns to Reference Images

Reference

Simulated

onOEE s
RG22

Sy

12
PSS
R <<
,ANNNAAA\

\ﬂ\\\

) e CRERE
AA\MAA\ S

%
BTy
el O
NSS7 \.U./////r//

O esss

AEVARAPN N
AV SS

V)

N

Pattern

Alternating Diagonals

Jacquard2

Block1

iamond And Lozenge

Moss D

Stockinette and Garter

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

RIGHTS LI N K}

Interactive Design of Periodic Yarn-Level Cloth Patterns « 202:15

Table 7. Comparison of Simulated Woven Patterns to Reference Images

Pattern - Simulated _ f
Plain
"II”TI”H"ii"l'l"il”ﬂﬂﬂﬁi;%;
u%jn%:n%:n
i1
(l
i
Basket 2x2 3 25
TR | TR,
VLT | MR
] | TR
Gkt _!{'t.- t“.!‘}if‘[Al
(L | RN i
(HAHAERHEHEIEIR | X j’: RN
iR | RO
T e
T | N
suumzxs |] | BASRORATIX
TR ITRRATREITR IR TR Ty
Il | T e
T
il
Ittt
et
gt
[l il
Twill 4x1 “ “ il “l““ll

ACM Trans. Graph., Vol. 37, No. 6, Article 202. Publication date: November 2018.

RIGHTS LI N K}

	Abstract
	1 Introduction
	2 Related Work
	2.1 Yarn-Level Cloth Simulation
	2.2 Yarn-Level Cloth Modeling
	2.3 Interactive Design of Cloth Patterns

	3 GPU Simulation of Yarn-level Cloth
	3.1 Revised Yarn-Level Cloth Model
	3.2 GPU Implementation

	4 Pattern Representation
	5 Periodic Boundary Conditions
	6 Adjusting Yarn Lengths
	6.1 Rest-length scaling for stitch-level yarn control
	6.2 Radius scaling for global yarn-length adjustment

	7 Interactive Pattern Design
	7.1 Pattern Editor
	7.2 User Interface for Yarn Relaxation Tool

	8 Results
	9 Conclusion
	Acknowledgments
	References
	A Derivation of Time-Step Restriction
	B Kaldor Yarn-Level Cloth Model Summary
	C Pipeline for Generating Energy Gradients
	D Derivation of Radius Scaling Terms

