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Abstract Arctic land ice is melting, sea ice is decreasing, and permafrost is thawing. Changes in these
Arctic elements are interconnected, and most interactions accelerate the rate of change. The changes
affect infrastructure, economics, and cultures of people inside and outside of the Arctic, including in
temperate and tropical regions, through sea level rise, worsening storm and hurricane impacts, and
enhanced warming. Coastal communities worldwide are already experiencing more regular flooding,
drinking water contamination, and coastal erosion. We describe and summarize the nature of change for
Arctic permafrost, land ice, and sea ice, and its influences on lower latitudes, particularly the United States.
We emphasize that impacts will worsen in the future unless individuals, businesses, communities, and
policy makers proactively engage in mitigation and adaptation activities to reduce the effects of Arctic
changes and safeguard people and society.

1. Introduction

Popular media articles commonly refer to the Arctic as a disappearing physical environment, using words
like shrinking, melting, dissolving, thawing, and collapsing. These descriptors give the impression that the
Arctic, which already feels distant to most people, is fading away and becoming a relic. It is easy then to con-
sider these far-off events as only a scientific curiosity, with negligible influence on global environments and
economies. But in fact, as permafrost, land ice, and sea ice in the Arctic (Figure 1) rapidly thaw, melt, and
shrink, the Arctic has an increasing impact on societies and infrastructure across the globe. The effects show
up as amplified climate change, rising sea level, coastal flooding and erosion, and more devastating storms
(Figure 2; e.g., AMAP, 2017). As we will discuss here, the global footprint of influence from Arctic change is
growing, not shrinking. Reducing future risk requires reducing greenhouse gas emissions and mitigating the
drivers of global climate change.

2. Rapid Arctic Cryosphere Change
2.1. Thawing Permafrost

Permafrost is a defining environmental characteristic of the far north. Approximately 20-25% of the
Northern Hemisphere land surface is underlain by permafrost, ground that remains frozen for 2 years or
more (Brown et al., 1998; Gruber, 2012). Arctic warming is causing widespread thawing of permafrost areas
(Romanovsky et al., 2018) leading to infrastructure damage to buildings, roads, and utilities in northern
communities as ice subsides and the ground becomes waterlogged. Alaska infrastructure damage over
2015-2099 is estimated at $5.5 billion under the Intergovernmental Panel on Climate Change RCP8.5 “busi-
ness as usual” emission scenario, with almost half of that cost due directly to permafrost thaw (Melvin et al.,
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Figure 1. Land ice, summer sea ice, and permafrost in the Northern
Hemisphere. Image modified from National Aeronautics and Space
Administration/Goddard Space Flight Center Scientific Visualization Studio
(https://svs.gsfc.nasa.gov/3885).

2017). The impact of permafrost thaw goes beyond the Arctic because the
large amount of biomass carbon contained in permafrost is beginning to
decompose and release carbon dioxide and methane to the atmosphere
(Schuur et al., 2008). These added greenhouse gases further heat the
atmosphere, setting up a self-reinforcing cycle, or feedback, of thawing
and heating. Data analyses of permafrost soils up to 3-m depth estimate
the potential carbon pool to be as much as 1,035 + 150 Pg (1 Pg = 1 Gt;
Hugelius et al., 2014; Schuur et al., 2015), with another 425-565 Pg C
contained in permafrost deeper than 3 m (Strauss et al., 2017). This pool
is climate sensitive and large; soils in all other biomes combined are
thought to comprise ~2,050 Pg C in the top 3 m. The total permafrost
carbon pool (1,460-1,600 Pg C) contains about twice as much carbon as
the Earth's current atmosphere (Schuur et al., 2018). A release of 10% of
the permafrost carbon pool as carbon dioxide and methane would be of
similar magnitude as emissions from land use change (currently
13 + 0.7 Pg C/year) thereby providing a substantial contribution to
future greenhouse gas release (Le Quéré et al., 2018).

Earth system models mainly represent top-down thaw of permafrost as a
result of a warming climate, which is only one process that influences per-
mafrost and carbon emissions. Global dynamic models generally show
potential release of permafrost carbon ranging from tens to hundreds of
petagrams of carbon into the atmosphere by 2100 under the RCP 8.5
warming trajectory. The newest model simulations show similar perma-
frost carbon losses but also the potential for stimulated plant growth to

Figure 2. Flooding and storm damage in the United States are connected to rapid Arctic change. (a) South Ponte Vedra
Beach, Florida; (b) Black Creek area near Jacksonville, Florida; (c) Charleston, South Carolina; and (d) Lumberton,
North Carolina. Images: James Balog/Earth Vision Institute.

MOON ET AL.

213



~
AGU

100

Amde
auim sehci NS

Earth's Future 10.1029/2018EF001088

offset some or all of these losses (McGuire et al., 2018). Even so, these new model results suggest that plant
offsets will be overwhelmed by soil carbon losses, leading eventually to the same permafrost carbon-climate
warming feedback. Other recent research also indicates that permafrost feedbacks respond quickly even
with a relatively small magnitude of global warming, meaning that large impacts occur even if we limit glo-
bal warming to 1 .5 °C (Burke et al., 2018: Comyn-Platt et al., 2018; IPCC, 2018).

2.2. Melting Land Ice

Land ice forms when winter snowfall exceeds summer snowmelt over decades to millennia. Arctic land ice
includes the Greenland Ice Sheet and smaller ice caps and glaciers across the Greenland perimeter, Alaska,
Canada, Russia, Svalbard, Iceland, and other Nordic countries. Roughly 8% of the world's freshwater is con-
tained in Northern Hemisphere glaciers and ice sheets, and Arctic land ice comprises over 2 X 10° km? (RGI
Consortium, 2017). This area is diminishing rapidly due to warming air and ocean temperatures.
Widespread retreat of glaciers and ice caps is well documented across the Arctic (e.g., Carr et al,, 2017;
Howat & Eddy, 2011), and long-term records of glaciers across the globe confirm that retreat has accelerated
in the 21st century as a result of human-caused climate change (Roe et al., 2016). The speed and magnitude
of change is unprecedented. For example, dating of tundra plants exposed at the edges of shrinking glaciers
in the Eastern Canadian Arctic suggests that summer warmth of the past century now exceeds any century
in at least 40,000 years and likely any century since the end of the last interglaciation, ~115,000 years ago
(Pendleton et al., 2019). The effects of this warming are apparent in current rapid rates of Arctic ice loss
(e.g., Fisher et al., 2012).

Ice retreat is not the only change. Most areas of land ice are also thinning, primarily due to surface melt
(Kjeldsen et al., 2015). Loss of ice volume has tripled over the satellite observational era (since the early
1990s; Shepherd et al., 2012). Annual ice loss from Greenland and the Arctic glaciers and ice caps contributed
~1.2 mm of sea level rise to the world ocean each year from 2003 to 2015, and land ice overall has contributed
~60% of total sea level rise since 1972 (with the Arctic alone contributing 31% since 1992), exceeding the con-
tribution from ocean thermal expansion (AMAP, 2017; Box et al., 2018). Computer simulations show that the
rapid loss of land ice observed over the most recent decades will continue if current warming trajectories are
maintained. Arcticland ice losswill be the major contributor to the projected average sea level rise of roughly
one half to 1 m by 2100 (IPCC, 2013; note that some estimates of global totals include much higher values
based on potential ice loss mechanisms particularly applicable in Antarctica; DeConto & Pollard, 2016).

2.3. Diminishing Sea Ice

Sea ice, formed from and sitting atop ocean water, covers roughly 3.5 x10° to 16 x10° km” of the Arctic
Ocean, depending on the season (Fetterer et al., 2017). Persistent declines in Arctic sea ice extent began in
the mid-1990s, with the lowest sea ice minimum to date in September 2012 and the reduction in
September ice cover currently exceeding 13% per decade (Stroeve et al., 2012). Perhaps of even higher con-
sequence is the substantial decline in sea ice thickness. More than 60% of sea ice volume was lost in only
30 years (Lindsay & Schweiger, 2015). In comparison to thicker multiyear sea ice, thinner sea ice is more sus-
ceptible to complete melt each summer and is more easily moved and fractured by winds and currents. Sea
ice shelters the Arctic coast, and its loss has caused intense acceleration of coastal erosion in Siberia and
Alaska (Barnhart et al., 2014; Fritz et al., 2017; Overeem et al., 2011). Sea ice loss has global consequences
because sea ice helps to regulate the Earth's climate. The bright surface of sea ice reflects much of the incom-
ing solar radiation back into space, preventing that energy from warming the planet (Euskirchen et al,,
2013). As sea ice coverage declines, the exposed darker ocean water absorbs upward of 9 times more solar
radiation in summer. That additional energy raises Arctic air temperatures as it is released in fall and winter.
The decrease in surface reflectivity is one of the primary reasons that global warming is amplified in the
Arctic (Manabe & Stouffer, 1980; Pithan & Mauritsen, 2014).

The character and behavior of Arctic sea ice is now fundamentally different than it was in the twentieth cen-
tury, and there is no expectation of return to previous conditions. Instead, if fossil fuel use and greenhouse
gas emissions are not considerably reduced (i.e., if we continue to follow a trajectory like RCP8.5), climate
models predict that sea ice will cover Arctic coastal regions for only half of the year by 2070 and frequent
ice-free conditions will prevail throughout the entire Arctic Ocean by 2100 (Barnhart et al., 2015;
Jahn, 2018).
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3. Connections Across the Arctic System

Permafrost, land ice, and sea ice are commonly discussed as separate features of the Arctic environment,
although in fact they are closely interconnected. First, they are responding to common climate forcing across
the Arctic, and second, each component is influencing changes in the other components. For example, sea
ice loss is projected to continue, including periods of especially rapid change (e.g., Holland et al., 2006; rapid
declines already occurred in 2007 and 2012; Stroeve et al., 2012). Rapid sea ice loss not only heightens atmo-
spheric warming, but also early loss of sea ice locally near the Greenland Ice Sheet may increase heat transfer
from the ocean to the atmosphere above the ice sheet and result in increased ice sheet melt (Stroeve et al,,
2017). Rapid sea ice loss also has a significant effect on temperatures over land with implications for perma-
frost thaw (Lawrence et al., 2008), and increased wave activity due to sea ice loss can also lead to stronger
permafrost coastal erosion, further exacerbated by sea level rise from land ice loss (Fritz et al., 2017).
Changes in permafrost, land ice, and sea ice also affect all other elements of the Arctic system. For example,
permafrost thaw contributes to an intensification of the Arctic terrestrial hydrological cycle, and Arctic river
runoff has significantly increased over the last decades (Overeem & Syvitski, 2010). The Arctic marine eco-
system is also influenced by land ice, sea ice, and permafrost reductions via changes in nutrient cycles, the
marine light environment, stratification, benthic-pelagic connections, and changing wind and ocean
current patterns.

4. Impacts of Arctic Change on Low Latitudes and Midlatitudes

Rapid changes across the Arctic are increasingly influencing people and economies across the low latitudes
and midlatitudes. The permafrost carbon feedback is a direct-effect example, where thawing permafrost
releases additional greenhouse gases to the global atmosphere with consequential warming impacting the
entire world population. Other effects are particularly apparent for coastal regions and communities where
rapid Arctic change is contributing to rising ocean levels (AMAP, 2017; Box et al., 2018) and heightening the
damage caused by storms and hurricanes (Lin et al., 2012; UNISDR, 2017). Even sheltered inland regions are
connected to coastal areas economically and socially and will be vulnerable to the knock-on effects of Arctic-
induced coastal change.

Worldwide 625 million people lived in the low-elevation coastal zone (<10-m elevation) in 2000, and future
migration tends to be directed toward the coast, with an expected coastal zone population of 939 million by
2030 (Neumann et al., 2015). Fourteen of the world's 17 largest cities are located on coasts, including Tokyo,
Shanghai, Jakarta, and New York City. Arctic changes contribute to coastal impacts like flooding, freshwater
contamination by salty ocean water, coastal erosion, and higher storm surges. Looking at the United States,
wetland and coastal erosion are already displacing rural communitiesin Louisiana, drinking water problems
are affecting Monterrey, Ventura, and Los Angeles counties in California (Barlow & Reichard, 2010), sea cliff
retreat is dramatic and impacting infrastructure along the West Coast (Limber et al., 2018), and Miami and
many other areas of the Gulf Coast and Eastern Seaboard now have increased regular flooding (Wdowinski
et al., 2016). Similar impacts are occurring worldwide (e.g., Nurse et al., 2014; Wong et al., 2014); all exam-
ples of ways in which Arctic change affects economics and security globally.

Sea level rise across the globe is also worsening the impacts of all coastal storm and flood events by raising
the baseline. Hurricane Sandy along the U.S. Eastern Seaboard and Hurricane Harvey along the Texas coast
both were more damaging due to sea level rise. And sea level rise between 1950 and 2012 increased the like-
lihood of Hurricane Sandy-level events by one to two thirds depending on East Coast location (Sweet et al.,
2013). Because glacial ice mass loss changes the Earth's gravitational potential, sea level rise from Arctic ice
melt is also disproportionally higher at faraway low latitude coasts, such as the U.S. Gulf Coast and Asian
coasts (Larour et al., 2017). More rapid sea level rise also reduces the engineered design safety margins of
protective sea walls and levees, putting them at risk during storm surges now riding on top of a higher base
sea level (e.g., Jonkman et al., 2013).

Arctic changes may also be transforming the character of storms and extreme weather events—including
snow storms and droughts—experienced in midlatitudes across the Northern Hemisphere. An area of active
research, one leading hypothesis, is that an Arctic-induced change in the jet stream is intensifying extreme
weather events that are now more frequent in the United States, Canada, Europe, and Asia (Mann et al.,
2018; Rahmstorf & Coumou, 2011; Screen & Simmonds, 2014). As the Arctic warms more quickly than lower
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latitudes, the temperature gradient from the North Pole to the Equator is declining, weakening west-to-east
jet stream winds, and contributing to a wavier jet stream (Francis & Vavrus, 2012). This derives in part from
diminishing Arctic sea ice. Diminished sea ice allows the ocean north of Alaska to take up more summer
heat. In autumn, the heat is released into the atmosphere causing stronger northward swings, or ridges,
in the jet stream. This type of Arctic warming may have strengthened the atmospheric ridge that was largely
responsible for California's recent extreme drought (Swain et al., 2016). The downstream effect of this north-
ern ridge is also an intensified south-dipping trough, which brought extreme cold to eastern U.S. states dur-
ing the 2013/2014 and 2014/2015 winters. These large jet stream waves are more likely to remain in one
place, bringing locally persistent warm and dry or cold and stormy weather (e.g., Mann et al., 2018).

As the flattest, most low-lying U S. state, Florida is a stark example of the negative influence Arctic change is
having and will have in lower latitudes. Key West has already experienced a threefold increase in coastal
flooding since 1990, and St. Petersburg has seen a 40% increase. Future increases in sea level and storm
damage will negatively affect major infrastructure. Across the state, ~5,500 km” of land lie less than 1 m
above the high tide line. This includes 300,000 homes, 35 public schools, 4,112 km of road, and 978 U.S.
Environmental Protection Agency-listed hazardous waste dumps or sewage plants (Strauss et al., 2014).
Within 2 m above high tide, the land area affected almost doubles, and overall property value rises from
$145 billion (at 1 m) to $544 billion, including 14 power plants and 1.4 million homes. Within just the next
30 years, floods that rise up to 60 cm above the high tide line could occur every 1 to 5 years depending on
location. Around the world, other low-lying regions are experiencing similarly severe effects. Assuming glo-
bal mean sea level rises of 0.5-2.0 m by 2100, 72 to 187 million people will be displaced if no protections are
put into place (Wong et al., 2014). Some communities, for example, on the Torres Islands, Vanuatu, have
already been displaced (Nurse et al., 2014).

5. Conclusions and a Call to Action

Unprecedented changes underway in Arctic permafrost, land ice, and sea ice have direct and indirect effects
on the Continental United States and other temperate and tropical countries. The recent Intergovernmental
Panel on Climate Change 2018 report on “Global Warming of 1.5 °C” underscores that every additional level
of warming has far reaching consequences. With a global mean surface temperature change of 1.5 °C or
more above preindustrial levels, relative to the 1.0 °C rise that we have already seen, the change in the
Arctic, the occurrence of extreme events, and the interconnectedness of global impacts increase substantially
(IPCC, 2018). Businesses, municipalities, state, and national decision makers must weigh the choice of redu-
cing greenhouse gas emissions against spiraling upward costs of reactive adaptation and mitigation. At the
same time, concerted planning efforts are needed to prepare for the impacts that are already inevitable due to
current greenhouse gas emissions (Solomon et al., 2009). Developing resilience to upcoming and known
coastal changes is key to protecting people, economies, infrastructure, and biodiversity. We emphasize that
many actions are available. Essentially anything and everything that reduces greenhouse gases (e.g.,
Hawken, 2017) helps to curb rapid Arctic change and reduce impacts in the United States and globally.
Since the Arctic cryosphere is highly interconnected and changes there have far-reaching consequences in
other geographies, thoughtful actions are needed, including constructive social activism, informed legisla-
tion, business practice reform, and supporting multilevel action addressing climate change.
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