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Abstract. Let µ be a probability measure in C with a continuous and compactly supported

density function, let z1, . . . , zn be independent random variables, zi ∼ µ, and consider the
random polynomial

pn(z) =

n∏
k=1

(z − zk).

We determine the asymptotic distribution of {z ∈ C : pn(z) = pn(0)}. In particular, if µ is radial
around the origin, then those solutions are also distributed according to µ as n→∞. Generally,

the distribution of the solutions will reproduce parts of µ and condense another part on curves.

We use these insights to study the behavior of the Blaschke unwinding series on random data.

1. Introduction and main results

The purpose of this paper is to discuss an interesting phenomenon of solutions of certain random
polynomial equations. In what follows, we will assume that µ is an absolutely continuous (with
respect to the Lebesgue measure) and compactly supported probability measure on C and that pn
denotes the random polynomial

pn(z) =

n∏
k=1

(z − zk),

where the zk are drawn independently from µ and n ∈ N. Our first result is a reproducing property
for radial measures µ when n→∞ (see §2 for the motivation that led us to this result).

Figure 1. Left: roots of 100 polynomials p30(z) − p30(0) with Gaussian dis-
tributed roots are again Gaussian. Right: roots of 100 polynomials p20(z)−p20(0)
with roots uniformly distributed on the boundary of the unit disk.

Theorem 1. Let µ be a compactly supported probability measure on C with a continuous, radial
density function. Then the complex numbers w1, . . . , wn solving pn(wk) = pn(0) satisfy

1

n

n∑
k=1

δwk
→ µ in the sense of distributions as n→∞.
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S.S. is supported by the NSF (DMS-1763179) and the Alfred P. Sloan Foundation. The bulk of this work was

carried out while H.-T. W. was visiting the Yale REU program SUMRY and he is grateful for its hospitality.

1

ar
X

iv
:1

80
7.

05
58

7v
3 

 [m
at

h.
PR

]  
10

 A
pr

 2
01

9



2

Theorem 1 fails for general measures but it is not difficult to construct non-radial measures µ
that have the same property (see Theorem 2). The assumption on µ being compactly supported
is clearly not sharp, our proof immediately transfers to probability measures having a certain
rate of decay at infinity. The result is similar in spirit to a recent result of Kabluchko [9] (prov-
ing a conjecture of Pemantle & Rivin [11]) who showed that the distribution of critical points
{z ∈ C : p′n(z) = 0} reproduces µ for general probability measures µ. If µ is not radial, the situa-
tion is not quite as simple. We introduce two sets A,B ⊂ C (and we will keep using A,B to refer
to those sets throughout the rest of the paper)

A =

{
z ∈ C :

∫
C

log |x− z|dµ(x) >

∫
C

log |x|dµ(x)

}
and

B =

{
z ∈ C :

∫
C

log |x− z|dµ(x) =

∫
C

log |x|dµ(x)

}
.

A simple description of the result for the general case can be stated as follows.

Theorem 2 (Main Result). Let µ be a probability measure on C with a continuous and compactly
supported density function. Then the distribution of {z ∈ C : pn(z) = pn(0)} converges to ν in
distribution, where ν = µ on A and ν has measure 1− µ(A) supported on B, as n→∞.

We illustrate the Theorem with a specific example (the measure is a bit more singular than what
is covered by the result but it is not difficult to see that the proof carries over to this particular
case). We choose µ to be the union of the arclength measure of the boundary of two disks of
radius 1 in the complex plane (one located in the origin and one centered around 2)

µ =
1

4π

(
H1
∣∣
|z|=1

∪H1
∣∣
|z−2|=1

)
,

where H1 is the one-dimensional Hausdorff measure. Theorem 2 implies that the random solutions
of pn(z) = pn(0) will partially follow the original measure µ and partially concentrate along four
new curves. Details behind this example are given after the proof.

Figure 2. Left: the support of limiting measure of solutions of pn(z) = pn(0)
as n → ∞ (bold, the two circles from which roots are drawn are dashed), right:
numerical example for n = 30 with 15 roots chosen randomly from each circle.
A repulsion phenomenon leads to a slight visual discrepancy in the left arc (see
Theorem 3 for a more precise description).

We observe that Theorem 2 does not make any claim about how the solutions of pn(z) = pn(0)
are distributed on B, it only states that their total mass is going to be 1−µ(A). Figure 2 seems to
indicate that there might indeed be parts of B that will not support any part of the new measure
ν, however, this is misleading: there is always, by construction, a root in the origin and a root
repulsion phenomenon. This has the effect of creating a bubble around 0 in which no roots are
found; that bubble shrinks in size as the degree n increases.
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In the generic case, we can give a more precise description of the measure ν on B. Our assumptions
will be that µ is compactly supported and C ⊂ B is a connected subset of B that is bounded away
from the support of µ and satisfies that∥∥∥∥∇∫

C
log |x− z|dµ(x)

∥∥∥∥ is uniformly bounded away from 0 on C.

We note that compactness of the support of µ implies compactness of B and thus C is necessarily
bounded. We recall that B is defined as a level set of the logarithmic integral, the first condition
thus implies that this level set is non-degenerate and thus C is necessarily a curve by the implicit
function theorem. Let γ be an arclength parametrization of the curve C. Since the support of µ
is compact and C is bounded away from the support of µ,

∫
C arg(γ(t)− z)dµ(z) is well defined as

a continuous single-valued function of t. We further impose the assumption that∣∣∣∣ ∂∂t
∫
C

arg(γ(t)− z)dµ(z)

∣∣∣∣ is uniformly bounded away from 0 on C.

Under these assumptions, we can determine the limit structure of the measure ν on the set B
(which we think of as a collection of curves, a level set of the logarithmic integral).

Theorem 3 (Structure of ν on B). Under these assumptions, let γ(t) be an arclength parametriza-
tion of C. The limiting measure of {z ∈ C : pn(z) = pn(0)} is absolutely continuous on C and given
by

(1) ν
∣∣
C

=
1

2π

∣∣∣∣ ∂∂t
∫
C

arg(γ(t)− z)dµ(z)

∣∣∣∣−1 dH1.

Moreover, for degree n sufficiently large, then with high probability the spacing between roots on B
becomes uniform in the sense that two consecutive roots on C have distance ∼ n−1 (up to constants
depending on the density) from each other with the implicit constant determined by the limiting
density.

It is certainly possible to slightly extend the result to cover other cases as well. For example,
here we are not necessarily assuming that µ is absolutely continuous as long as it is compactly
supported and the assumptions hold. However, it certainly already describes the generic situation
fairly accurately: in particular, it allows us to deduce that the behavior on B is actually quite
regular: the roots decompose into evenly spaced points (with spacing roughly ∼ n−1 and an
implicit constant depending on everything).

0

Figure 3. (Left:) the typical distribution of pn(z) = pn(0) for n = 30. (Right:)
a single instance. Even for this rather small degree, the roots are already well-
separated. The fixed root in 0 clears out a uniform area of repulsion.

We emphasize that, in Figure 3, nothing is special about the root z = 0. However, combining
many different numerical examples has the effect of visually removing the repulsion phenomenon
for all roots except the fixed one z = 0 which is common to all numerical samples. We consider
a simple toy example where µ = δ1 is the deterministic measure in 1. Clearly, p2n(z) = (z − 1)2n
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and p2n(0) = 1 implying that solutions of p2n(z) = p2n(0) are given by (z − 1)2n = 1 which are
equally spaced points on |z − 1| = 1. In the framework of Theorem 3, we see that∥∥∥∥∇∫

C
log |x− z|dµ(z)

∥∥∥∥ = 1 on |x− 1| = 1

as well as ∣∣∣∣ ∂∂t
∫
C

arg(γ(t)− z)dµ(z)

∣∣∣∣ = 1

and the limiting measure is clearly (2π)−1H1 coinciding with what is predicted by Theorem 3.
Generically, one expects the set B to be a union of bounded lines (though it can be a disk, see the
proof of Theorem 1). It might be interesting to understand what happens if the measure µ decays
at infinity at a certain rate. However, even for compactly supported measures, there are many
fascinating open questions: whenever two of these lines meet at an angle, then clearly the gradient
of the logarithmic integral vanishes and Theorem 3 does not apply: is it possible to describe the
behavior of solutions of pn(z) = pn(0) in these singular points? Moreover, one would assume that
under some assumptions on the shape of µ that B cannot be comprised of lines of arbitrary length.
How long are these lines? How complicated can their topology be? This is related to classical
questions in potential theory dating back to Maxwell (see, for example, Gabrielov, Novikov &
Shapiro [6]).

2. Application to the Unwinding Series

Unwinding. The above results were originally motivated by a study of a nonlinear analogue of
Fourier series: given a holomorphic function f : C→ C, its Blaschke factorization is given by

f(z) =

 ∏
|α|≤1,f(α)=0

z − α
1− αz

 g(z),

where the Blaschke product ranges over all roots inside the unit disk and g : C→ C is holomorphic
and has no roots inside the unit disk. Writing g(z) = g(0) + (g(z) − g(0)) produces a new
holomorphic function, g(z)− g(0), which has at least one root inside the unit disk. Iterating the
process yields a formal expansion

f(z) = a0B0 + a1B0B1 + a2B0B1B2 + . . .

This process was introduced by Ronald R. Coifman around 1995, described in a PhD thesis
of his student Michel Nahon [8] and followed by several other researchers [12, 13, 14]. It was
independently discovered by T. Qian [15] who also studied, jointly with collaborators, different
versions of the algorithm [16, 17, 18, 19]. There is a different line of investigation concerned with
Blaschke products as a general family of orthogonal functions [4, 5, 7, 10, 21] that we do not
discuss here. Convergence of the algorithm in the Hardy spaces H2 is due to Qian ([15], the proof
is also described in [2]), the convergence in a large family of function spaces (including all Sobolev
spaces) was given by Coifman and the first author [2]. Ways of computing the expansion for
non-analytic signals are due to Coifman and the authors [3]. An extension to Hardy spaces Hp is
due to Coifman and Peyrière [1]. The algorithm seems to have exceptional convergence properties
when applied to real signals, but a full theoretical justification is still open.

Polynomials. If the function f is a polynomial of degree n, then the expansion is exact after n
steps (this was already observed by Nahon [8]). For polynomials, the explicit form of the Blaschke
products allows for the algorithm to be described in a simpler way: given a polynomial fn

(1) define the polynomial gn+1 to be the polynomial having the same roots as fn outside the
unit disk and, additionally, the roots 1/α for all roots α 6= 0 of f inside the unit disk, i.e.

gn+1 = fn(z)

 ∏
|α|≤1,f(α)=0

z − α
1− αz

−1
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Figure4.Thesignalofagravitywave(left),thefirstBlaschkeproductofthe
respectivesignal(middle)andthesecondBlaschkeproduct(right),from[3].

(2)definefn+1(z)=gn+1(z)−gn+1(0)and,iffn+1=0,goto(1)

Themainquestioniswithwhichspeedfnconvergesto0ontheboundaryoftheunitdisk.The
paper[2]showsthatconvergencespeedintheDirichletspacecanbeexplicitlyconnectedtohow
manyrootsinsidetheunitdiskonewouldexpectfntohave. UsingTheorem1ofthispaper,
wecananswerthequestionfrom[3]andconcludethatfortypicalpolynomials(andnlarge),one
cannotexpectmorethano(n)rootsinsidetheunitdisk.

Corollary4(InvarianceofcertainrandompolynomialsunderBlaschkefactorization.).Letpn
bearandompolynomialwithnrootsthatareindependentlyandidenticallydistributedfollowinga

probabilitymeasurethatcanbewrittenasµ=φ( x2+y2)dxdyforsomeφ∈C∞c((1,∞)).For
everysuchpolynomialpn,wemaydeterminetheBlaschke(orinner-outer)Factorization

pn(z)=pn(0)+B·G.

Then,Gisarandompolynomialwhoserootsarealsodistributedaccordingtoµasn→∞.

Moreprecisely,let pnbearandompolynomialcreatedinthewaydescribedataboveforsome
radialprobabilitymeasureµthatiscompactlysupportedoutsideaneighborhoodoftheunitdisk.
ThenTheorem1impliesthattherootsofpn(z)−pn(0)areagaindistributedaccordingtothe
measureµasn→∞.TheproofofTheorem1alsoimpliesthatwithhighprobabilityallsolutions
ofpn(z)=pn(0)exceptthetrivialrootintheoriginareoutsidetheunitdisksincetheyare
exponentiallyclosetothenrootswithhighlikelihood. Weobservethatinthiscase,whenn
issufficientlylarge,theBlasckeunwindingseriesreducestoasimplepowerseriesexpansion. A
similarphenomenonwasalreadyobservedtooccurforfunctionswhosepowerseriesexpansionhas
exponentiallydecayingcoefficientsin[3,Proposition3.2].Itseemslikelythatpolynomialswith
rootsoutsidetheunitdiskexhibitexponentiallydecayingcoefficientsatleastinthegenericcase–
simplepowerseriesexpansionthennaturallyleadstoexponentiallyconvergenceintheunitdisk.

3.Proofs

Westartbyfirstprovingaconcentrationofmeasureargumentthatplaysaroleinallthreeproofs.
WethenproveTheorem2.Theorem1willfollowfromasmallmodificationofthesameargument.
Theorem3followsfromadifferentlineofreasoning.

Thewholeargumentisbasedonestablishingthefactthatifpn(z)=0forsomez∈A,thenwith
highprobabilitythereisasolutionofpn(z)=pn(0)thatisexponentiallyclose(inthedegreen)to
z. Westartfromgivingaheuristicargument,whichwillbemaderigorousinthefollowingproof.
First,foranyfixedz∈Cthedistancetothenearestrootisatscale∼n−1/2inthesensethatit
isnotgoingtobecloser,butitmightbefurtheraway.Notethatifzisnotinthesupportofµ,
thenthisstatementistrivial.Ontheotherhand,byadirectexpansionweexpect

log|pn(z)|∼n
C

log|z−x|dµ(x).



6

Since the entire theorem is invariant under scaling all the roots by (the same) scalar λ ∈ R, we
may assume without loss of generality that this integral is positive. Based on the above two facts,
due to the root separation at scale ∼ n−1/2, since log |pn(z)| =

∑n
k=1 log |z − zk|, in order for a

single root z∗ to substantially contribute to log |pn(z)|, we would require that log |z − z∗| ∼ −n
which requires that z∗ is exponentially close to z.

3.1. Two Concentration Lemmata. In the first lemma, we will actually prove a somewhat
stronger statement; as it turns out, the likelihood of the quantity exceeding the logarithmic integral
is uniformly small.

Lemma 5. Let µ and pn be as above. Let c1 > 0, then, for some c2, c3 > 0,

P
(

sup
z∈C

(
log |pn(z)|

n
−
∫
C

log |z − x|dµ(x)

)
≥ c1

)
≤ c2e−c3n

Proof. Our assumptions on µ imply that for any fixed z ∈ C,
∫
C log |z − x|dµ(x) is well defined,

continuous in z, and finite everywhere (and, as can easily be seen, this would also hold for non-
compactly supported measures that decay with a certain rate). We split the support of µ into
ε × ε squares. Since the support is compact, the total number of squares is finite. Each of these
squares Q receives an expected number of µ(Q)n ± O(

√
n) roots and the likelihood of a square

receiving more than (1 + δ)µ(Q)n roots or less than (1− δ)µ(Q)n roots is exponentially decaying
in n for every δ > 0 (with a constant in the exponential decay depending on µ(Q) and δ). An
application of the union bound then implies that all the squares are exponentially likely to have
at most (1 + δ)n roots. We can now bound log |pn(z)| directly: we assume that there are no roots
in the ε × ε square containing z as well as no roots in the 8 adjacent squares. This introduces
an arbitrarily small error (depending on ε because the logarithmic integral is integrable); for the
remaining squares, we assume that the roots are located in each box as far away from z as possible.
Outside of a neighborhood of z, we can use the continuity of the logarithm to deduce that the
errors are small (depending on δ, ε), in a neighborhood of z we can use that the integral becomes
as small as we wish because it is an integrable singularity. Altogether, we obtain (with uniform
bounds depending only on the distribution of number of roots inside the finitely many squares)

P
(

sup
z∈C

log |pn(z)|
n

−
∫
C

log |z − x|dµ(x) ≥ c1
)
≤ c2e−c3n,

where c2, c3 depend on ε and µ. �

No such universal statement can be true for the corresponding lower bound because pn will have
roots where the logarithm tends to −∞. However, this is the only obstruction to uniform approx-
imation and we will now show that outside the roots, even already exponentially small distances
away, the approximation is again uniform with high probability.

Lemma 6. Let z ∈ C and c1, c2 > 0 be fixed. Then, for any c3 > 0 and all n sufficiently large
(depending on all previous parameters)

P
(

log |pn(z)|
n

−
∫
C

log |z − x|dµ(x) ≤ −c1
∣∣∣ no roots in B

(
z,

c2√
n

))
≤ c3

n
,

where B(z, r) denotes the ball with center z ∈ C and radius r > 0.

Proof. From the proof of Lemma 5 we infer that the only roots that are relevant are those close
to z. This is because for roots that are far away, their number exhibits exponential concentration
in the associated boxes and the logarithm is continuous. Fix 0 < δ < 1 arbitrarily small. We will
now show that the terms coming from roots with distance to z less than δ can be controlled. Take
annuli

Ak = B(z, c2(k + 1)n−1/2) \B(z, c2kn
−1/2).

The contribution to the logarithm of the polynomial depends on the likelihood of roots landing in
these annuli and is given by

Xk :=
n∑
`=1

1x`∈Ak
log |x` − z|.
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Instead of bounding Xk from below, we will bound −Xk from above (purely for simplicity of
exposition). We observe that the annulus Ak has a measure of

|Ak| ≤
πc22(2k + 1)

n

and thus the expectation of points landing in Ak can be bounded in terms of the biggest density
of µ via the Radon-Nikodym derivative dµ/dx

E(−Xk) ≤ log

(√
n

c2k

)
E

n∑
`=1

1x`∈Ak
≤ log

(√
n

c2k

)
|Ak|n

∥∥∥∥dµdx
∥∥∥∥
L∞
.µ log

(√
n

c2k

)
c22k ,

where log (
√
n/(c2k)) in the first bound comes from |z − xk| > c2kn

−1/2 since xk ∈ Ak. We also
compute the variance. Note that we can view 1x`∈Ak

in Xk as a binomial distribution with the
parameters n and p = µ(Ak) ≤ |Ak|‖dµ/dx‖L∞ . By assumption, {1x`∈Ak

}n`=1 are independently
and identically sampled. Thus, using that V(λX) = λ2V(X) as well as that for a binomial
distribution B(n, p) we have VB(n, p) = np(1− p) ≤ np, we see that

V(−Xk) ≤
(

log

(√
n

c2k

))2

V

(
n∑
`=1

1x`∈Ak

)
.µ c

2
2k

(
log

√
n

c2k

)2

.

We will now control the sum over Xk, where k ≤ δ
√
n/c2 (this corresponds to a disk of radius δ

around z) and obtain∑
k≤δ
√
n/c2

E(−Xk) .
∑

k≤δ
√
n/c2

c22k log

(√
n

c2k

)
.
∫ δ
√
n

0

x log

√
n

x
dx . δ2 log

(
1

δ

)
n .

We now want to obtain a similar bound on the variance and proceed as follows

V

 ∑
k≤δ
√
n/c2

−Xk

 = E

 ∑
k≤δ
√
n/c2

Xk − E
∑

k≤δ
√
n/c2

Xk

2

=
∑

k,`≤δ
√
n/c2

E(Xk − EXk)E(X` − E(X`))

The diagonal terms are computed above and correspond to V(−Xk). The off-diagonal terms k 6= `
are easy to deal with: if Xk and X` were uncorrelated, then these terms would simply be 0. They
are not perfectly uncorrelated but exhibit a (very) slight negative correlation: pulling out the
contribution coming from the logarithm, we reduce the problem to studying the following simpler
problem: we are given n points and distribute them in several boxes, what can be said about the
cross-correlation? If one box receives unexpectedly many points, then there are fewer points left
over to distribute over the other boxes and we expect them to get less than their expectation; if
one box receives unexpectedly few points, then the argument reverses. Altogether, we see that
the cross-correlation is negative and thus

V

 ∑
k≤δ
√
n/c2

−Xk

 . ∑
k≤δ
√
n/c2

c22k

(
log

√
n

c2k

)2

. δ2
(

log
1

δ

)2

n.

The bound on the expectation shows that, asymptotically for ε small, we can find δ sufficiently
small so that the contribution to the term of interest is arbitrarily small (this mirrors the fact that
the logarithmic integral is integrable and so are all logarithmic integrals with integer powers on the
logarithm). We now use Chebyshev’s inequality to derive that the likelihood of the contributions
coming from roots that have their distance from z bounded by δ to exceed a constant c1

can be bounded from above by .
δ2
(
log 1

δ

)2
n

c21n
2

.

The roots further away than distance δ can be dealt with by appealing to continuity of the
logarithm outside a neighborhood of z together with the exponential localization of the number
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of roots in boxes akin to the proof of Lemma 5. Since δ can be chosen arbitrarily small, we obtain
the result. �

3.2. Proof of Theorem 2. We start by performing a standard geometric estimate to argue that
few roots have another root nearby, meaning at distance c2n

−1/2, whenever c2 is small. Clearly,
the largest concentration occurs if the measure has constant density ‖dµ/dx‖L∞ in which case

P
(

no roots in B(z, c2n
−1/2)

)
=

(
1−

∥∥∥∥dµdx
∥∥∥∥2 c22n

)n
.

For n large, we can approximate this with the exponential function and conclude that the likeli-
hood scales like exp(−c22‖dµ/dx‖2L∞). In particular, for c2 sufficiently small, an arbitrarily small

proportion of roots has another root nearby (meaning at distance less than c2n
−1/2). For these

roots, the likelihood of deviating from the logarithmic integral is very small and only O(1) of
isolated roots will do so. For the rest, we can use Rouché’s theorem to conclude that each but
O(1) of the isolated roots of pn(z) is exponentially close to a root of pn(z)− pn(0) which leads to
a reproduction of measure.

Proof. The proof is based on understanding the expected size of En−1 log |pn|. For any fixed z ∈ C,

E
log |pn(z)|

n
= E

1

n

n∑
k=1

log |z − zk| =
∫
C

log |z − x|dµ(x).

Let us now assume that z ∈ A. Since µ has an absolutely continuous probability measure associated
with the Lebesgue measure dx with a continuous distribution function, if we subdivide the support
of the measure into finitely many boxes of equal size, we know that for n sufficiently large, each box
contains a number of roots proportional to the measure assigned to that box by µ. By Lemmas 5
and Lemma 6, we have a large deviation principle: for any c > 0 and z ∈ C

(2) P
(∣∣∣∣ log |pn(z)|

n
−
∫
C

log |z − x|dµ(x)

∣∣∣∣ ≥ c) is decaying in n

when there is no root in a sufficiently small neighborhood of z. In particular, the likelihood of
log |pn(z)| being actually bigger than the logarithmic integral are exponentially small, the likeli-
hood of it being smaller is polynomially small assuming one is distance ∼ n−1/2 away from the
roots.

For any given root y ∈ A, we can remove it and write qn(z)(z − y) = pn(z). We now pick c2
in Lemma 6 arbitrarily small and n sufficiently large. By a union bound argument with qn(z),
this guarantees that with high probability all but a small proportion of roots are actually c2n

−1/2

away from a root y. Lemma 5 and Lemma 6 and the definition of A imply that for isolated roots
|qn(z)| & (1 + η)n|pn(0)| for some η > 0 depending on the location of y ∈ A and n for all z
sufficiently close to y. Thus, |pn(z)| = |z − y||qn(z)| & |z − y|(1 + δ)n|pn(0)|. In an exponentially
small (depending on δ) disk of radius δ′ > 0 around the root y, |z− y|(1 + δ)n is sufficiently small
so that |pn(z)| > |pn(0)| for all z on the boundary of B(y, δ′). This bound holds for all but O(1) of
isolated roots. Rouché’s theorem applied in an exponentially small (depending on δ) disk around
the root y then implies that pn(z)−pn(0) has a root in that small disk and this implies the result.

The second part of the statement is much simpler: if z ∈ C \A ∪B, then this means that∫
C

log |x− z|dµ(x) <

∫
C

log |x|dµ(x) = E|pn(0)|1/n.

Lemma 5 shows that the likelihood of the left-hand side exceeding its expectation is exponentially
smart. Lemma 6 implies that the likelihood of the right-hand side being a lot smaller hinges on a
root being nearby. However, as n becomes large, that root would have to be exponentially close 0
to compensate for difference in expectation and that yields the desired statement. �
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3.3. Proof of Theorem 1.

Proof. We use Theorem 2 and compute the sets A and B. We start by showing that for radial
measures µ, the function∫

C
log |z − x| dµ(x) has a global minimum in the origin.

This can be seen rather easily from the elementary observation that

1

2π

∫ 2π

0

log |z − reit|dt =

{
log |z| if |z| > r

log |r| if |z| < r.

Using φ(r) to denote the Radon-Nikodym derivative of µ with respect to the Lebesgue measure,
we can write ∫

C
log |z − x|dµ(x) =

∫ ∞
0

φ(r)r

∫ 2π

0

log |z − reit| dtdr

= 2π

∫ |z|
0

φ(r)r log |z| dr + 2π

∫ ∞
|z|

φ(r)r log r dr

=

∫
C

log |x|dµ(x) + 2π

∫ |z|
0

φ(r)r log
|z|
r
dr.

The second integral is always nonnegative, this shows that there is a global minimum in z = 0. It
also allows us to determine

B =

{
B(0, R) if φ ≡ 0 on (0, R)

{0} otherwise
and A = C \B.

This implies that µ(B) = 0 and Theorem 2 then implies that the density accurately reproduces µ
on A. This implies the result. �

3.4. Proof of Theorem 3.

Proof. Let pn(z) be a random polynomial. The set C will be a natural limit set for the (random)
set Cn associated to a random polynomial pn and defined by

Cn =

{
z ∈ C :

n∑
k=1

log |z − zk| =
n∑
k=1

log |zk|

}
.

Cn is the level set of a superposition of random functions and does a priori look quite complicated.
However, since we will only be studying it away from the support of µ in a neighborhood of C and
recall the deviation principle from the proof of Theorem 2, we see that these objects are rather
rigid. On parts of Cn that are uniformly bounded away from the support of µ, we see that

lim
n→∞

n−1
n∑
k=1

∇ log |z − zk| = ∇
∫
C

log |x− z|dµ(z) in probability.

Moreover, by the same argument this extends to higher derivatives on C since all higher deriva-
tives are uniformly bounded (because C is supported away from the support of µ). This shows
that for n sufficiently large, with high probability Cn is a curve (a segment of which converges
uniformly (together with its derivatives) to C as n→∞). Let us assume that γn is an arclength
parametrization of a segment of Cn on which the assumptions of Theorem 3 apply. γn then
parametrizes a curve on which |pn(z)| = |pn(0)|. It remains to see whether the arguments of the
complex numbers can be matched to produce a solution of the equation. We note that

∂

∂t
arg

n∏
k=1

(γn(t)− zk) = n
∂

∂t

1

n

n∑
k=1

arg(γn(t)− zk).
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For n sufficiently large, this quantity converges to

∂

∂t

1

n

n∑
k=1

arg(γn(t)− zk)→ ∂

∂t

∫
C

arg(γ(t)− z)dµ(z) in probability,

where γ(t) is some curve satisfying γ′(t) = limn→∞ γ′n(t) (this, of course, leads exactly to an
arclength parametrization of C). This shows that the argument is asymptotically moving linearly
in n. Therefore, when n is sufficiently large, with high probability, the argument of pn(γ(t)) hits the
argument pn(0) at a rate given by a continuous function. As a result, we have a regular distribution
of solutions of the equation along the level set: the argument needs to complete a total revolution
of 2π which accounts for the arising pre-factor. Since the linear rate is

∣∣ ∂
∂t

∫
C arg(γ(t)− z)dµ(z)

∣∣,
the associated measure on C is thus described in (1). �

It is not difficult to see that the argument can be extended to the setting where C and the
measure of µ are not disjoint (but µ is still assumed to be absolutely continuous with respect to
the Lebesgue measure): the random curve Cn is only minorly impacted by roots nearby (which
would need to be exponentially close to have an impact which becomes increasingly unlikely), we
leave the details to the interested reader.

3.5. An explicit example. This section is devoted to an explicit computation for what to expect
in the example

µ =
1

4π

(
H1
∣∣
|z|=1

∪H1
∣∣
|z−2|=1

)
(see Fig. 2). Summarizing the proof, we can fix a point z ∈ C and compute

En−1 log |pn(z)| = 1

n

n∑
k=1

log |z − zk| →
∫
C

log |z − x|dµ(x)

because the likelihood of having singularities nearby is small. Moreover, we have

1

2π

∫ 2π

0

log |z − eit|dt =

{
log |z| if |z| > 1

0 if |z| < 1.

Thus, ∫
C

log |z − x|dµ(x) =


1
2 log |z − 2| if |z| < 1
1
2 log |z| if |z − 2| < 1
1
2 log |z|+ 1

2 log |z − 2| otherwise.

This also shows that we expect exponential growth in the origin

En−1 log |pn(0)| = log 2

2
.

It remains to find all points in the complex plane for which the logarithmic integral equals that
quantity and those are displayed in Figure 2.

References

[1] R. Coifman and J. Peyrière, Phase unwinding, or invariant subspace decompositions of Hardy spaces,

arXiv:1707.04844, to appear in J. Fourier Anal. Appl.

[2] R. Coifman and S. Steinerberger, Nonlinear phase unwinding of functions, Journal of Fourier Analysis and
Applications, J. Fourier Anal. Appl. 23 (2017), no. 4, 778–809.

[3] R. Coifman, S. Steinerberger and H.-T. Wu, Carrier frequencies, holomorphy and unwinding, SIAM J. Math.

Anal., 49, 4838–4864, (2017).
[4] T. Eisner, T., and M. Pap, Discrete Orthogonality of the Malmquist Takenaka System of the Upper Half Plane

and Rational Interpolation, J. Fourier Anal. Appl. 20 (2014), 1–16

[5] H. G. Feichtinger, and M. Pap, Hyperbolic wavelets and multiresolution in the Hardy space of the upper half
plane, Blaschke products and their applications, 193–208, Fields Inst. Commun., 65, Springer, New York, 2013.

[6] A. Gabrielov, D. Novikov, and B. Shapiro, Mystery of point charges. Proc. Lond. Math. Soc. (3) 95 (2007), no.
2, 443–472.

[7] F. Malmquist, Sur la determination dune classe de fonctions analytiques par leurs valeurs dans un ensemble

donne de poits, in C.R. 6ieme Cong. Math. Scand. (Kopenhagen, 1925), Copenhagen, 1926, Gjellerups, pp. 253–
259.

http://arxiv.org/abs/1707.04844


11

[8] M. Nahon, Phase Evaluation and Segmentation, Ph.D. Thesis, Yale University, 2000.

[9] Z. Kabluchko, Critical points of random polynomials with independent identically distributed roots. Proc. Amer.

Math. Soc. 143 (2015), no. 2, 695–702.
[10] M. Pap, and F. Schipp, The voice transform on the Blaschke group I. Pure Math. Appl., 17(3-4), (2006),

387–395.

[11] R. Pemantle and I. Rivin, The distribution of zeros of the derivative of a random polynomial. Advances in
combinatorics, 259–273, Springer, Heidelberg, 2013.

[12] N. Saito and J. R. Letelier. Presentation: Amplitude and phase factorization of signals via blaschke product

and its applications. JSIAM, 2009.
[13] D. Healy. Presentation: Multi-resolution phase, modulation, doppler ultrasound velocimetry, and other trendy

stuff. personal communication.

[14] D. Healy. Phase analysis. talk given at the university of maryland. personal communication.
[15] T. Qian, Intrinsic mono-component decomposition of functions: an advance of Fourier theory. Math. Methods

Appl. Sci. 33 (2010), no. 7, 880–891.
[16] T. Qian, L.H. Tan and Y.B. Wang, Adaptive Decomposition by Weighted Inner Functions: A Generalization

of Fourier Series, Journal of Fourier Analysis and Applications, 2011, 17(2): 175-190.

[17] T. Qian and L. Zhang, Mathematical theory of signal analysis vs. complex analysis method of harmonic
analysis, Appl. Math. J. Chinese Univ, 2013, 28(4): 505-530.

[18] T. Qian, L. Zhang and Z. Li, Algorithm of Adaptive Fourier Decomposition, IEEE Transactions on Signal

Processing, Issue Date: Dec. 2011 Volume: 59 Issue:12 On page(s): 5899 - 5906.
[19] T. Qian, I. T. Ho, I. T. Leong and Y. B. Wang, Adaptive decomposition of functions into pieces of non-negative

instantaneous frequencies, International Journal of Wavelets, Multiresolution and Information Processing, 8 (2010),

no. 5, 813-833.
[20] S. Steinerberger, A Stability Version of the Gauss-Lucas Theorem and Applications, arXiv:1805.10454

[21] S. Takenaka, On the orthogonal functions and a new formula of interpolation, Jpn. J. Math. II (1925), 129–145

Department of Mathematics, Yale University, New Haven, CT 06511, USA
E-mail address: stefan.steinerberger@yale.edu

Department of Mathematics and Department of Statistical Science, Duke University, Box 90320, Durham

NC 27708, USA
E-mail address: hauwu@math.duke.edu

http://arxiv.org/abs/1805.10454

	1. Introduction and main results
	2. Application to the Unwinding Series
	3. Proofs
	3.1. Two Concentration Lemmata
	3.2. Proof of Theorem 2
	3.3. Proof of Theorem 1.
	3.4. Proof of Theorem 3.
	3.5. An explicit example.

	References

