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THREE CONVOLUTION INEQUALITIES ON THE REAL LINE
WITH CONNECTIONS TO ADDITIVE COMBINATORICS

RICHARD C. BARNARD AND STEFAN STEINERBERGER

ABSTRACT. We discuss three convolution inequalities that are connected to
additive combinatorics. Cloninger and the second author showed that for
nonnegative f € L'(—1/4,1/4),

1/4 2
71/%3221/2/]]{]”(15 —z)f(z)dz > 1.28 (/1/4 f(m)dw)

which is related to g—Sidon sets (1.28 cannot be replaced by 1.52). We prove
a dual statement, related to difference bases, and show that for f € L!(R),

min /R F@) o + Bz < 0.42) ]2,

0<t<1

where the constant 1/2 is trivial, 0.42 cannot be replaced by 0.37. This suggests
a natural conjecture about the asymptotic structure of g—difference bases.
Finally, we show for all functions f € L*(R) N L2(R),

/, i /Rf (@)f (@ + tydadt < 0.91||f|| 1]l £l 2

1. INTRODUCTION

We discuss three convolution inequalities on the real line; one is well known, the
other two seem to be new. The common theme is that all of them are fairly trivial
if we do not care about the optimal constant. The optimal constant encapsulates
something difficult in additive combinatorics that is not well understood.

1.1. The first inequality. Our first inequality is valid for f € L'(R) N L?(R).
Recall that Fubini’s theorem shows that

//ﬂww%ﬂMSWMl
RJR

while the Cauchy-Schwarz inequality shows that

améfuﬁ@+ﬂwﬁﬂﬂﬁ

teR

with equality attained for ¢ = 0. We prove a result between these two statements.

Theorem 1. Let f € LY(R) N L?(R). Then

li@fw#u+wwﬁsomwmmmm

Moreover, the constant cannot be replaced by 0.8.
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1.2. Second inequality. The second inequality deals with a fundamental question
in probability theory: if f is a probability density in (—1/4,1/4), then the convo-
lution f * f is a probability density in (—1/2,1/2). This means that the maximal
value of f x f has to exceed 1. How big does it necessarily have to be? Cilleruelo,
Ruzsa & Vinuesa [7] showed that finding the optimal constant ¢ in the inequality

1/4 2
(1) _1/§;%>§1/2/Rf(t— ) f(x)de > ¢ (/_1/4f(:1:)dx> ,

is equivalent to answering an old question in additive combinatorics about the
behavior of g—Sidon sets. A subset A C {1,2,...,n} is called g—Sidon if

[{(a,b) e AxA:a+b=m}|<yg

for every m. The main question is: how large can these g—Sidon sets be for a given
n? Let us denote the answer by
Bg(n):== max |A|.

AcC{1,2,..., N}
A is g-Sidon

Cilleruelo, Ruzsa & Vinuesa [7] have shown that

a(g)v/gn(l = o(1)) < Be(n) < ag)\/gn(1 + o(1)),

where the o(1) is with respect to n and

Jim olg) =c= lim o(g)

for some universal constant ¢ € R which is exactly the sharp constant in (1). Several
arguments have been suggested, in particular

c>1 trivial
>1.151 Cilleruelo, Ruzsa & Trujillo [6]
> 1.178 Green [15]
>1.183 Martin & O’Bryant [18]
> 1.251 Yu [26]
> 1.263 Martin & O’Bryant [19]
>1.274 Matolesi & Vinuesa [21]
>1.28 Cloninger & Steinerberger [5]

Matolesi & Vinuesa [21] also construct an example showing that ¢ < 1.52, one
is perhaps inclined to believe that this upper bound is close to the truth. It is
this fascinating connection between additive combinatorics and real analysis that
motivated us to look for a dual inequality.

1.3. Third inequality. The third inequality is in a similar spirit to (1) and moti-
vated by a problem in additive combinatorics of a similar spirit. It is not difficult
to see (‘half of Fubini’) that for any f € L*(R)

1
/0 / (@) f @+ drdt < 05 ]2,

and the constant is sharp. However, once we replace the average in ¢ with the
minimum, the constant can be universally improved, which is our main result.



Theorem 2. Let f € LY(R). Then

i <
Oréltlgl/f f(z+t)dx < 0.411) f]|2,

and the constant cannot be replaced by 0.37.

This can be understood as the continuous analogue of a nice problem in additive
combinatorics. We say that a set A C Z is a difference basis with respect to n if

{1,...,n} CA—- A

where A— A = {a1 —az: a1 € A,as € A}. A natural question, going back to Redei
& Renyi [23], is to understand the minimal size of A. A trivial estimate is

1A

n=#{1,... 0} <#(A-A)NN) < (';") <

which shows |A| > v/2n. The best known results are, for n large,

V2.435n < |A| < V/2.645n,

where the lower bound was recently found by Bernshteyn & Tait [2] (improving
on a 1955 bound of Leech [17]). The upper bound is a 1972 result of Golay [13].
Golay’s writes that the optimal constant “will, undoubtedly, never be expressed in
closed form”. The book of Bollobas [3] has a nice description of the problem. We
also refer to papers of Erdds & Gal [10], Haselgrove & Leech [16]. The problem
has some importance in engineering, cf. the book of Pott, Kumaran, Helleseth &
Jungnickel [22]. One wonders whether the continuous analogue might also have
applications.

Theorem 2 and its similarity to the g—Sidon sets suggests another natural question.
Let us define a set A C Z to be a g—difference basis with respect to n if, for all
1 < k < n the equation

a;—a; =k has at least g solutions.
The natural question is how small can such a set can be? Let us define

Yg(n) = min |A].
A is g-difference basis

Analogous to the result of Cilleruelo, Ruzsa & Vinuesa [7], we could possibly hope
that

a(9)Vgn(1 —o(1)) < 74(n) < a(g)ygn(l +o(1)),

where the o(1) is with respect to n,
hm o(g) =c= lim o(g),
g—0o0

and c is the optimal constant in the inequality

min/f x+tda:<—||f||L1

0<t<1

It is an open question whether the optimal constant in Theorem 2 can be given in
closed form.



4

1.4. Two related open problems. We conclude by describing two fascinating
open problems that seem to be very related in spirit. The first seems to have been
raised by Martin & O’Bryant [20, Conjecture 5.2.] and asks whether there is a
universal constant ¢ > 0 such that for all nonnegative f € L*(R) N L%(R) there is
an improved Holder inequality

1f % flIZ2 < @ = Of * Fllzallf = fllzee.

They proposed that it might even be true for a rather large value of ¢, they proposed
¢ ~ 0.1174. This was disproven by Matolcsi & Vinuesa [21] who showed that
necessarily ¢ < 0.1107. We believe it to be a rather fascinating question. The
second problem may, at first glance, seem unrelated: we noted the similarity to
Theorem 2 because in both proofs the constant

inf ST L 0217234
zeR X

appears naturally. The question goes back to Bourgain, Clozel & Kahane [4]: If
f:R — R is an even function such that f(0) < 0 and f(0) < 0, then it is not
possible for both f and fto be positive outside an arbitrarily small neighborhood
of the origin. Having f even and real-valued guarantees that fis real-valued and

even. The second condition yields
0=f0 = [ sz ad 0z50= [ Fw

which implies that the quantities
A(f):=inf {r>0: f(z) >0 if x| > r}

A(f):==inf {r>0: fly) > 0if [y| >}
are strictly positive (possibly oo) unless f = 0. There is a dilation symmetry
x — Az having the reciprocal effect y — y/\ on the Fourier side. As a consequence,
the product A(f)A(f) is invariant under this group action and becomes a natural
quantity to consider. They prove that

~

A(f)A(F) > 0.1687,
and 0.1687 cannot be replaced by 0.41. The lower bound here is given by

1 . . sinz

Goncalves, Oliveira e Silva and the second author [14] improved this to

~

A(HA(F) > 0.2025,

and 0.2025 cannot be replaced by 0.353. It was also shown in [14] that the sharp
constant is assumed by a function and that this function has infinitely many double
roots. While this question is still open, a sharp form of the inequality in d = 12
dimensions has been established by Cohn & Goncalves [8] using modular forms.
There is also at least a philosophical similarity to problems related to the 'unavoid-
able geometry of probability distributions’ [1, 9, 11, 12, 24, 25].



2. PROOFS

2.1. Preliminaries. All three proofs are based on the Fourier Analysis and vari-
ants of the Hardy-Littlewood rearrangement inequality. We recall that the Hardy-
Littlewood inequality states that for bounded, positive and decaying functions

fLg:R—=R
/ f(@)g(x)de < / ()" (2)dr
R R

where f*(z) is the symmetric decreasing rearrangement of a function f. If one were
to draw a picture, it would show that the integral is maximized if f is rearranged
in such a way that the ‘big’ parts of f interact with the ‘big’ parts of g and the
‘small’ parts of f interact with the ‘small’ parts of g. Over regions where one of the
functions is negative, the reverse statement is true and integrals are maximized by
matching big contributions of one with small contributions of the other. In terms
of Fourier Analysis, we will make use of the Wiener-Khintchine theorem: using
Plancherel’s identity, we see that

/f f@ + t)de = (f, £+ 1) 12
= (Fef) = [ emafepa

In particular, the auto-correlation cannot look like the characteristic function of a
set (which are the types of functions for which Hoélder’s inequality is sharp) and it
is not hard to see how these types of identities would enter. As a toy example, we
show that the auto-correlation cannot be close to x[_11j-

Proposition. Let f € L*(R) N L3(R). Then
1

T

.I"’t diE— [ 171](t)

Proof. The proof is simple: we use that the Fourier transform is unitary and obtain

that

_ sin (27€)
s

However, one of these functions is pos1t1ve while the other one becomes negative.

So we clearly have at least
sin (27€) 2
> —_— sin (27 d¢ > 0.1.
L2_/R< S )X fgﬁ)gog—

.’I]+td.’II— [11]

HIf

L2

_ sin (27€)

|iFer - =

2.2. Proof of Theorem 1.

Proof. We may assume, without loss of generality, that f > 0 and, using the
invariance under scaling, that

/ /f f(z 4+ t)dzdt = 1.
1
3
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We note that this normalization dictates that

1—/1/Rf(:c) :C+td:c<//f f@ +t)de = |12

We distinguish two cases: the first case is

11117
2[1£1%.

and we have shown the desired inequality since then

>0.88  in which case || f||3: > 1.76]/f||3. > 1.76

Tt

It remains to deal with the case where the fraction is smaller than 0.88 and we will
assume this throughout the subsequent argument. Our main ingredient will be the
Fourier transform which we use in the normalization

7 = / ¢ f (1) i

which is the normaliZation that turns it into a unitary transformation on L?(R).
We estimate

1= / % [ 1@+ awa = [ e fopacar

- / Smf@lﬂs)l%,
R T

We use the Hardy-Littlewood rearrangement inequality
sin (7€) sin (7€) " 4
[ =5 @t < [ max{o P Pae.
R R s
The symmetric decreasmg rearrangement of the sinc function has a particularly
simple form around the origin since

max {0, sinﬂ(;r{) }* = sinﬂ(;f) for €] < 0.88.

We now estimate the rearranged Fourier transform and note that
fiol =| [ = saa] < [ I#@de = £l

We now assume that f(f) is equal to this maximal value over a large interval
centered at the origin (by Hardy—Littlewood this is a bound from above). However,

[ [ st o =1 <112 o5y,

we also have that || f]|r2 = ||fHL2 which means that the Fourier transform f can
only be of size ||f||z1 on an interval of total length J centered at the origin where
Il fII2:J = || f]|35. Therefore, we have

sin (7€) U122 017117 sin (&)
t= /RTW Ofde < /—é|f||§2||f|j 1 de

, %nfnizufn; sin (r¢)
=[£Iz e %
—HIFZ 0002 T




Introducing the special function

sita) = [ =2,

we can rewrite the result of our argument as

ﬂﬂ$.<ﬂﬂm)
1 S
=T 21712, )

or, making use of || f||z1 > 1, and setting z = 2||f||7.7 " and y = || f||3,

2
xSi(g)Zl where x> — and y > 0.
T T

Easy but cumbersome computations show that this implies = -y > 0.78 and this
implies the main result. It remains to provide a lower bound for the constant. If
we set

flz) =e""",
then a computation shows that
1 a
2, o f@) @+ t)dadt (2m) et (%)

Az fllze al/4
which yields 0.793 for a = 7.839. We used this as a start for a local search for
functions of the type f(z) = e=%®" (b+ cz) and found that (a, b, ¢) = (15,0.51,8.55)
results in the value 0.802. O

[¢9)

2.3. Proof of Theorem 2.

Proof. Let f € L*(R) and suppose that for all 0 <t <1

/f flx+t)d

By symmetry, this shows that the function

0= [ F@( -+

satisfies g(t) > 1/2 for all —1 <t < 1. Trivially, [, g(t)dt = | f||7.. We write

N)I»—A

g(t) = %X[—l,l] + h(t) for some h(t) > 0.

Recalling the Wiener-Khintchine theorem (see §2.1.), we have that for any &

0<IFQF = [ e oty

—&mi 1
= / e émit (5)([_171] + h(t)) dt
R

< sin2(j§'§) +/Rh(t)dt.

Optimizing over £ shows that

/h(t)dt > —inf 227
R

x x




and thus .
/ g(t)dt > 1 — inf 227
R x ZT
and therefore
1£1lr (=) > 1/1 — inf 220 ~ 1.10328.

It remains to construct an example. We consider the function
X[—0.5,0.5]
) = ——=.
I@)="——
A computation shows that for all -1 <¢ <1

[r@e iz e |fln =7

R 4 2

However, the autocorrelation is slightly larger for small ¢ which suggests that we
can remove a bit of mass in the middle of the function. Numerically, for

X[-0.5,0.5 1 X[~0.25,0.25
Fa) = Xzos08 1X )

V1—42x2 41— 422

we have
/f(x)f(:z: +t)dz > g while || f|lz: = 1.439
R
which shows that the constant cannot be less than 0.37. O
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