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This paper is devoted to the description of complex finite-dimensional algebras of level
two. We obtain the classification of algebras of level two in the variety of Leibniz algebras.
It is shown that, up to isomorphism, there exist three Leibniz algebras of level two, one of
which is solvable, and two of which are nilpotent. Moreover, we describe all algebras of
level two in the variety of nilpotent algebras.
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1. Introduction and background

The theory of deformations and degenerations of algebras has its origins in certain formal relations between physical the-
ories and has become a lively subject in algebraic and differential geometry, as well as noncommutative and nonassociative
algebra. It was a very influential precept of Niels Bohr that a new physical theory, which is supposed to ontologically overlap
with a previously accepted theory, should somehow yield the old theory as a limiting or special case [1]. This is a statement
of his ‘‘correspondence principle’’, which is realized in quantum mechanics via the limit of the Moyal bracket:

[f , g] = {f , g} + O(h̄2)

as h̄ → 0. Here the bracket { , } = ∂ i∂i − ∂i∂
i is the Poisson bracket of classical mechanics, being a sum of commutators

for first-order differential operators. In this way classical mechanics emerges, as a limiting case, from quantum mechanics
for small values of h̄. This realization motivated the modern deformation theory of algebras, which originated with
Gerstenhaber [2] and others. This theory has powerful applications in the classification of algebraic varieties and the
quantization theory of Poissonmanifolds, where the physicalmeaning of deformation remains especially explicit [3,4]. There
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we have a manifold with tangent space V equipped with a Poisson bivector p ∈ V ∧ V ∗, and an algebra of observables
f , g ∈ C∞(V ). We then define a product of these observables as a power series in a parameter h̄:

(f ⋆ g)(p) := f · g + h̄pij
∂ f
∂xi

∂g
∂xj

+
1
2
h̄2pkℓp

i
j

∂2f
∂xk∂xi

∂2g
∂xℓ∂xj

+ · · ·

where we have made use of the summation convention. Defining the bracket

[f , g] := −ih̄−1(f ⋆ g − g ⋆ f ),

in the ordinary quantum mechanical case for a single state (i.e. where all differential operators are first-order) we recover
the above limit, relating theMoyal to the Poisson bracket. The full higher-order approach is currently being used in the study
of formal quantum field theory [5,6], a version of Hilbert’s 6th problem [7].

For this paper, we consider the case of a finite-dimensional algebra over a closed field k, with k = C being of special focus.
In general, an algebra over k canbe considered as an elementµ ∈ Hom(V⊗V , V ),whereV is ann-dimensional k-vector space.
Thus, in the purely abstract deformation theory we consider algebras µ, µt ∈ V ⊗ k[[t]] related by a formal power series:

µt = µ +

∞∑
i=1

t iϕi where ϕi ∈ Hom(V ⊗ V , V )

so that in the linear case µt,1 = µ + tϕ1 we study algebras with multiplication differing by a 2-coboundary.1 Kodaira and
Spencer gave the original idea of infinitesimal deformations for complex analytic manifolds [8]. Most notably, they proved
that infinitesimal deformations can beparametrized by a related cohomology group. In fact, cohomologydetects deformation
at all orders, and it is therefore unsurprising that one can develop the deformation theory in any abelian category [9].

Prior to the development of deformation theory, it had already been realized that the space and time symmetries of
Newtonian mechanics were recovered in the c → ∞ limit of special relativity, where c is the speed of light. In that case the
Lie algebra of the Poincare group degenerates to the Lie algebra of the Galilean group, an observation first made by İnönü and
Wigner in [10]. This is a geometric process, and can be defined purely in terms of the Zariski topology on Hom(V ⊗ V , V ).

In the finite-dimensional case over a field of characteristic zero, such degenerations can be described directly in terms of
the singular limit of a linear group action. Let Algn(k) be the variety of n-dimensional algebras over k, and let λ, µ ∈ Algn(k).
Define an action on Algn(k) by means of

(g ∗ µ)(x, y) := g(λ(g−1(x), g−1(y))) where g ∈ GLn(k), x, y ∈ A

which just represents a change of basis for A as an algebra. Thus the orbit of the algebra (A, λ) under this action is given by

Orb(A) := {L ∈ Algn(k) | L ≃ A}.

Definition 1. An algebra (A, λ) is said to degenerate to the algebra (A, µ) if Orb(A, µ) ⊆ Orb(A, λ). We write λ → µ to
denote this degeneration.

In the case k = C, we have that λ → µ if and only if there is a gt ∈ GLn(C(t)) such that ∀x, y ∈ A,

µ(x, y) = lim
t→0

gt (λ(g−1
t (x), g−1

t (y))).

We call a degeneration λ → µ trivial if (A, λ) ≃ (A, µ), and direct if it is non-trivial, and there is no algebra (A, ν) such
that λ → ν → µ. If λ → µ, then λ is a non-trivial deformation ofµ, thus it is common to pass from the degeneration theory
to the deformation theory.

It is clear that every non-abelian algebra in Algn(C) degenerates non-trivially to the abelian algebra abn, but of course not
all such degenerations will be direct; the distance of an algebra from abn, in terms of the degeneration theory, is given by its
level.

Definition 2. The level of an algebra λ is the maximum length of a chain of direct degenerations to abn. We denote the level
of an algebra by levn(λ).

Concerning algebras of level one, we have the following result proved by Khudoyberdiyev and Omirov [11].

Theorem 1. Let A be an algebra of level one. Then A is isomorphic to one of the following pairwise non-isomorphic algebras:

p−

n : e1ei = ei, eie1 = −ei, 2 ≤ i ≤ n;
n−

3 ⊕ abn−3 : e1e2 = e3, e2e1 = −e3;
λ2 ⊕ abn−2 : e1e1 = e2;

νn(α) : e1e1 = e1, e1ei = αei, eie1 = (1 − α)ei, 2 ≤ i ≤ n.

The level two case, within the varieties of Lie, Jordan, and associative algebras, has been resolved by Khudoyberdiyev
in [12]. In particular, that paper provides the following theorem.

1 An abstract ‘‘Poisson bracket’’ on an algebra is always available in the case of a linear deformation, sincewe can define {x, y} :=
1
2 (µt,1(x, y)−µt,1(y, x)).



144 J. Francese et al. / Journal of Geometry and Physics 134 (2018) 142–152

Theorem 2. Let G be a Lie algebra of level two. Then G is isomorphic to one of the following pairwise non-isomorphic algebras:

n5,1 ⊕ abn−5 : e1e3 = e5, e2e4 = e5, 2 ≤ i ≤ n;
n5,2 ⊕ abn−5 : e1e2 = e4, e1e3 = e5;
r2 ⊕ abn−2 : e1e1 = e2;

gn,1(α) : e1e2 = αe2, e1ei = ei, 3 ≤ i ≤ n, α ∈ C/{0, 1};
gn,2 : e1e2 = e2 + e3, e1ei, 3 ≤ i ≤ n.

It is still desirable to obtain a complete classification of level two algebras. One step is to ask about the existence of level
two algebras in other varieties. Since n5,1 and n5,2 are Lie, we may well ask if there are any non-Lie Leibniz algebras of level
two.

Definition 3 ([13]). A (right) Leibniz algebra is a non-associative algebra such that for all x, y, z ∈ L, the following identity
holds:

x(yz) = (xy)z − (xz)y.

This is a natural generalization of Lie algebras, in that an antisymmetric Leibniz algebra is Lie. Note that a left Leibniz
algebra is defined by identity (xy)z = x(yz) − y(xz).

Degenerations of Lie and Leibniz algebras were the subject of numerous papers, see for instance [14–18] and references
given therein, and their research continues actively. In particular, in [19,20] some irreducible components of Leibniz algebras
are found.

In this paper, we extend Theorem 2 to identify all non-Lie Leibniz algebras of level two; we find that two of these are
nilpotent and one is solvable. We then proceed to classify all n-dimensional nilpotent algebras of level two, and find that
these are all Leibniz.

2. Main results

Our first main result is the classification of Leibniz algebras of level two.

Theorem3. Let L be a n-dimensional non-Lie Leibniz algebra of level two. Then L is isomorphic one of the following three algebras:

L4(α) ⊕ abn−3 : e1e1 = e3, e2e1 = e3, e2e2 = αe3;
L5 ⊕ abn−3 : e1e1 = e3, e1e2 = e3, e2e1 = e3;

rn : eie1 = ei, 2 ≤ i ≤ n.

Together with the nilpotent Lie algebras of level two identified in [12], our othermain result identifies these four algebras
as the only nilpotent algebras of level two.

Theorem 4. Any finite-dimensional nilpotent algebra of level two is isomorphic to one of the following algebras:

n5,1 ⊕ abn−5 : e1e3 = e5, e2e1 = e5;
n5,2 ⊕ abn−5 : e1e2 = e4, e1e3 = e5;

L4(α) ⊕ abn−3 : e1e1 = e3, e2e2 = αe3, e1e2 = e3;
L5 ⊕ abn−3 : e1e1 = e3, e1e2 = e3, e2e1 = e3.

It is now natural to ask if any algebra of level two is a direct sum of two level one algebras. The following examples give
us a negative answer to this question.

Example 1. The algebras

n−

3 ⊕ λ2 = {x1, x2, x3, x4, x5} : x1x1 = x2, x3x4 = x5, x4x3 = −x5;
λ2 ⊕ λ2 = {x1, x2, x3, x4} : x1x1 = x2, x3x3 = x4;

λ2 ⊕ p−
n = {x1, x2, x3, x4, . . . , xn} : x1x1 = x2, xix3 = xi, x3xi = −xi, 4 ≤ i ≤ n.

via the family of matrices⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g−1
t (x1) = t(x1 + x3),

g−1
t (x2) =

t
2 (x1 + x4),

g−1
t (x3) = t2x2,

g−1
t (x4) = t2x1,

g−1
t (x5) = t(x5 + x2),

⎧⎪⎪⎨⎪⎪⎩
g−1
t (x1) = tx1,

g−1
t (x2) = t(x1 + x3),

g−1
t (x3) = t2x2,

g−1
t (x4) = t(x2 + x4),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g−1
t (x1) = t(x1 + x4),

g−1
t (x2) = t( 12x1 + x3),

g−1
t (x3) = t2x2,

g−1
t (x4) = t(x4 +

1
2x2),

g−1
t (xi) = txi, 5 ≤ i ≤ n,

degenerate to the algebras L4( 14 ) ⊕ ab2, L5 ⊕ ab1 and L4( 14 ) ⊕ abn−3 respectively.
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Since the algebras L4(α) and L5 are not algebras of level one, we deduce that the level of the algebras n−

3 ⊕ λ2, λ2 ⊕ λ2
and λ2 ⊕ p−

n must be greater than two.
Now let L be a n-dimensional complex algebra and {e1, e2, . . . , en} be a basis of L. The multiplication on the algebra L is

defined by the products of the basis elements; namely, by the products

eiej =

n∑
k=1

γ k
i,jek,

where γ k
i,j are the structural constants.

We first prove a very useful lemma, which will allow us to immediately conclude a degeneration to either L4(α) or L5
based on a multiplication table of a certain form.

Lemma 1. Suppose L is an n-dimensional algebra and let {e1, e2, . . . , en} be a basis of L. If there exist distinct i, j, k such that

(γ k
i,i, γ

k
i,j, γ

k
j,i, γ

k
j,j) /∈ {(0, β,−β, 0), (δ, β, β,

β2

δ
)} where δ ̸= 0,

then L → L4(α) or L → L5.

Proof. Without loss of generality, we may assume i = 1, j = 2, and k = 3. We see that if we take the degeneration

gt (e1) = t−1e1, gt (e2) = t−1e2, gt (ei) = t−2ei 3 ≤ i ≤ n,

then we have following nontrivial products

e1e1 = γ 3
1,1e3 +

n∑
s=4

γ s
1,1es, e1e2 = γ 3

1,2e3 +

n∑
s=4

γ s
1,2es,

e2e1 = γ 3
2,1e3 +

n∑
s=4

γ s
2,1es, e2e2 = γ 3

2,2e3 +

n∑
s=4

γ s
2,2es.

Furthermore, if we take the additional degeneration

gt (e1) = t−1e1, gt (e2) = t−1e2, gt (e3) = t−2e3, gt (ei) = t−1ei 4 ≤ i ≤ n,

then we have an algebra with the following multiplication

e1e1 = γ 3
1,1e3, e1e2 = γ 3

1,2e3, e2e1 = γ 3
2,1e3, e2e2 = γ 3

2,2e3.

We see that this algebra is nilpotent and also non-Lie as (γ 3
1,1, γ

3
1,2, γ

3
2,1, γ

3
2,2) ̸= (0, β,−β, 0). Moreover, since

(γ 3
1,1, γ

3
1,2, γ

3
2,1, γ

3
2,2) ̸= (δ, β, β,

β2

δ
), we conclude that L is not isomorphic to the algebra λ2. Due to the classification of

three dimensional nilpotent Leibniz algebras [21], we conclude that this algebra is isomorphic to either L4(α) or L5. □

2.1. Classification of algebras of level two in the variety of Leibniz algebras

Let L be a Leibniz algebra and let x ∈ L. We define ϕx : L → L to be the linear operator where ϕx(y) = yx + xy. We see
that by applying the Leibniz identity we get the following two equations:

zϕx(y) = z(yx + xy) = z(yx) + z(xy) = (zy)x − (zx)y + (zx)y − (zy)x = 0,
z(xx) = (zx)x − (zx)x = 0.

This proves that both ϕx(y) and xx are in the right annihilator for any x ∈ L.
In this section we will examine the matrix representation of ϕx on a case-by-case basis in order to prove Theorem 3.

Proposition 1. Let L be a n-dimensional non-Lie Leibniz algebra which is not of level one (i.e. L ̸≃ λ2). Then L degenerates to one
of the following three algebras:

L4(α) ⊕ abn−3 : e1e1 = e3, e2e1 = e3, e2e2 = αe3;
L5 ⊕ abn−3 : e1e1 = e3, e1e2 = e3, e2e1 = e3;

rn : eie1 = ei, 2 ≤ i ≤ n.

Proof. Since L is a non-Lie Leibniz algebra, we know that there exists an element x ∈ L such that xx ̸= 0. Suppose that
xx = αx for some constant α. Then, by the Leibniz identity, we have that

α2x = αxx = x(αx) = x(xx) = (xx)x − (xx)x = 0



146 J. Francese et al. / Journal of Geometry and Physics 134 (2018) 142–152

which means that α = 0. This is a contradiction, though, as xx ̸= 0. Thus, it must be that xx is linearly independent from x.
Using this, we can form a basis {e1, e2, . . . , en}, where e1 = x and e2 = xx.

We define the linear operator ϕ = ϕx and let (αi,j) be its matrix form. Thus, we have that

ϕ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 α1,2 α1,3 α1,4 . . . α1,n
2 α2,2 α2,3 α2,4 . . . α2,n
0 α3,2 α3,3 α3,4 . . . α3,n
0 α4,2 α4,3 α4,4 . . . α4,n
...

...
...

...
. . .

...

0 αn,2 αn,3 αn,4 . . . αn,n

⎤⎥⎥⎥⎥⎥⎥⎦
Suppose that αj,k ̸= 0 for some 1, j, k distinct and k ≥ 3. This means that we have the following products

e1e1 = e2, ejej = γ k
j,jek +

n∑
s=1,s̸=k

γ s
j,jes,

e1ej = γ k
1,jek +

n∑
s=1,s̸=k

γ s
1,jes, eje1 = (αj,k − γ k

1,j)ek +

n∑
s=1,s̸=k

γ s
j,1es.

Since γ k
1,1 = 0 and γ k

1,j ̸= −(αj,k − γ k
1,j), we can apply Lemma 1 on the indices 1, j, k to see that L → L4(α) or L5. Now we

focus the case where αj,k = 0 for 1, j, k distinct and k ≥ 3 . This gives us the following matrix representation of ϕ:

ϕ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 α1,2 α1,3 α1,4 . . . α1,n
2 α2,2 α2,3 α2,4 . . . α2,n
0 0 α3,3 0 . . . 0
0 0 0 α4,4 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . αn,n

⎤⎥⎥⎥⎥⎥⎥⎦
Suppose that α2,i ̸= 0 for some i ̸= 1, 2. Without loss of generality, let i = 3. Then if we take the change of basis

e′

3 = e1 −
2

α2,3
e3, we have that

ϕ(e′

3) = ϕ(e1 −
2

α2,3
e3) = ϕ(e1) −

2
α2,3

ϕ(e3) = 2e2 −
2

α2,3
(α1,3e1 + α2,3e2 + α3,3e3)

= −
2α1,3

α2,3
e1 −

2α3,3

α2,3
e3 = −

2α1,3

α2,3
e1 − α3,3(e1 − e′

3) = −

(
2α1,3

α2,3
− α3,3

)
e1 + α3,3e′

3.

Thus, we may assume that α2,3 = 0. Since i = 3 was arbitrary, we can therefore assume that α2,i = 0 for 3 ≤ i ≤ n. This
means that the matrix representation of ϕ has the form:

ϕ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 α12 α13 α14 . . . α1n
2 α22 0 0 . . . 0
0 0 α33 0 . . . 0
0 0 0 α44 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . αnn

⎤⎥⎥⎥⎥⎥⎥⎦
Now suppose there exists j ≥ 3 such that α2,2 ̸= αj,j. Then we see that if we take the basis change e′

j = e2 + ej, we have
that

ϕ(e′

j) = ϕ(e2) + ϕ(ej) = (α1,2 + α1,j)e1 + α2,2e2 + αj,jej
= (α1,2 + α1,j)e1 + (α2,2 − αj,j)e2 + αj,je′

j

By reapplying our previous argument, we see that it must be that either L → L4(α), L5 or α2,2 − αj,j = 0. Thus, we have that
α = α2,2 = αi,i for 3 ≤ i ≤ n.

Now suppose that α ̸= 0. We can then take the basis change e′

i = ϕ(ei) for 2 ≤ i ≤ n. This means that e2, e3, . . . , en ∈

AnnR(L) and thus that ϕ(ei) = eie1 for 2 ≤ i ≤ n. Moreover, if α1,i ̸= 0 for some 2 ≤ i ≤ n, then we would have that

α1ie1 = ϕ(ei) − αei ∈ AnnR(L)

which is a contradiction to the fact that e1e1 = e2. Therefore, we have an algebra Lwith the following multiplication table:

e1e1 = e2, eie1 = αei, (α ̸= 0), 2 ≤ i ≤ n.

If we then take the basis transformation e′

1 =
1
α
(e1 −

1
α
e2), we see that this is exactly the algebra rn.
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Suppose then that α = 0. Again, we see that if α1,i ̸= 0 for some 2 ≤ i ≤ n, then we would have that α1,ie1 = ϕ(ei) ∈

AnnR(L), which is a contradiction. This means that ϕ has the following matrix representation:

ϕ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0
2 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦
We now consider following products

e2e2 = 0, e3e2 = 0, e2e3 = γ 2
2,3e2 + γ 3

2,3e3 +

n∑
s=4

γ s
2,3es, e3e3 = γ 2

3,3e2 + γ 3
3,3e3 +

n∑
s=4

γ s
3,3es.

If there exist γ s
2,3 ̸= 0, for some 4 ≤ s ≤ n, then by Lemma 1, we have that L → L4(α), L5. Thus, we assume that γ s

2,3 = 0
for 4 ≤ s ≤ n. Therefore, e2e3 = γ 2

2,3e2 + γ 3
2,3e3. If γ

3
2,3 ̸= 0, then we have that γ 3

2,3e3 = e2e3 − γ 2
2,3e2 ∈ AnnR(L). This means

that e2e3 = 0, a contradiction as γ 3
2,3 ̸= 0. Hence, e2e3 = γ 2

2,3e2.
Assume that γ 2

2,3 ̸= 0. If we take the change of basis e′

2 = e2 − Ae1, then we have that

e′

2e
′

2 = (e2 − Ae1)(e2 − Ae1) = A2e1e1 = A2e2 = A3e1 + A2e′

2,

e′

2e3 = (e2 − Ae1)e3 = γ 2
2,3e2 − Ae1e3 = A(γ 2

2,3 − γ 1
1,3 − Aγ 2

1,3)e1 + (γ 2
2,3 − Aγ 2

1,3)e
′

2 − A
n∑

s=3

γ s
1,3es,

e3e′

2 = e3(e2 − Ae1) = Ae1e3 = A(γ 1
1,3 + Aγ 2

1,3)e1 + Aγ 2
1,3e

′

2 + A
n∑

s=3

γ s
1,3es,

e3e3 = γ 1
3,3e1 + γ 2

3,3e1 +

n∑
s=3

γ s
3,3es.

Since γ 2
2,3 ̸= 0, we see that we can always choose A so that γ 2

2,3 − γ 1
1,3 − Aγ 2

1,3 ̸= γ 1
1,3 + Aγ 2

1,3. Hence, using Lemma 1 we
obtain that L → L4(α), L5. Thus, it must be that γ 2

2,3 = 0, which means that e2e3 = 0. Since e3 was arbitrary, we may assume
that e2ei = 0 for i ̸= 1, 2 and thus we have that e2 ∈ Ann(L).

Therefore, we have the following multiplication table

e1e1 = e2, e2ei = eie2 = 0, 1 ≤ i ≤ n,

e1ei = −eie1 =

n∑
s=1

γ s
1,ies, 3 ≤ i ≤ n,

eiej =

n∑
s=1

γ s
i,jes, 3 ≤ i, j ≤ n.

Using the Leibniz identity

0 = (e1e1)ei − (e1ei)e1 + e1(eie1) = e2ei −

(
n∑

s=1

γ s
1,ies

)
e1 − e1

(
n∑

s=1

γ s
1,ies

)
= −2γ 1

1,ie2

we obtain that γ 1
1,i = 0 for 3 ≤ i ≤ n. Furthermore, if γ 2

1,i ̸= 0 or γ 2
i,i ̸= 0 for some 3 ≤ i ≤ n, then by Lemma 1, we have that

L → L4(α), L5. Therefore, we may assume γ 2
1,i = 0 and γ 2

i,i = 0 for any 3 ≤ i ≤ n.
Moreover, if γ 2

i,j ̸= 0 for some i, j then taking the basis change e′

1 = e1 + ej, we obtain that

e1e1 = e2 +

n∑
i=3

(∗)ei, eie1 = γ 2
i,je2 +

n∑
i=3

(∗)ei,

eie1 = γ 2
j,ie2 +

n∑
i=3

(∗)ei, eiei =

n∑
i=3

(∗)ei.

If we apply Lemma 1 on the indices 1, i, 2, we see that L → L4(α), L5. Therefore we can suppose γ 2
i,j = 0 for any 3 ≤ i, j ≤ n.
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By applying the Leibniz identity once again we see that

0 = (eiej)e1 − (eie1)ej − ei(eje1) = γ 1
i,je2 +

n∑
i=1,i̸=2

(∗)ei,

which means that γ 1
i,j = 0 for 3 ≤ i, j ≤ n.

Therefore, we obtain that any Leibniz algebras L either degenerates to L4(α), L5 or rn or is a decomposed algebra with
idealsM1 = {e1, e2} andM2 = {e3, e4, . . . , en}. IfM2 were trivial, then our only nontrivial multiplication would be e1e1 = e2.
This is a contradiction, as we assumed that L ̸≃ λ2. Thus, M2 is not trivial, and therefore M2 degenerates to an algebra of
level one: λ2, n−

3 or p−
n . This means that L degenerates to λ2 ⊕ λ2, λ2 ⊕ n−

3 , or λ2 ⊕ p−
n . By Example 1, we conclude that L

degenerates to either L4(α) or L5. □

Theorem 5. Let L be an n-dimensional Leibniz algebra of level two. Then L is isomorphic to one of the following pairwise non-
isomorphic algebras:

L4(α) ⊕ abn−3, L5 ⊕ abn−3, rn, α ∈ C

Proof. Due to Theorem 3, it is sufficient to prove that these algebras do not degenerate to each other. To facilitate this, we
compute the dimensions of right annihilator and derivations of these algebras and we call upon the following table:

dimAnnR(L5) = n − 2, dimDer(L4(0)) = n2
− 3n + 4,

dimAnnR(L4(α)) = n − 2, α ̸= 0, dimDer(rn) = (n − 1)2 = n2
− 2n + 1,

dimAnnR(rn) = n − 1.

We first note that L4(α) and L5 cannot degenerate to rn, as L4(α) and L5 are nilpotent and rn is not.We also see that rn does not
degenerate to L4(α) (α ̸= 0) or L5, as dimension of right annihilator of rn ismore than dimensions of right annihilators of L4(α)
(α ̸= 0) and L5. Additionally, since for n ≥ 4, the dimension of derivations of rn is more than the dimension of derivations of
L4(0), we have that rn ̸→ L4(0). Lastly, we see that L4(α) ̸→ L5 and that L5 ̸→ L4(α) by the following paper [14]. □

Remark 1. We note that in the context of left Leibniz algebras, the following algebra replaces the algebra rn as a Leibniz
algebra of level two:

ℓn : e1ei = ei, 2 ≤ i ≤ n.

2.2. Nilpotent algebras of level two

Working in the variety of n-dimensional nilpotent algebras Niln(C) will allow us to exclude certain products from our
multiplication tables, in particular all products of the form xy = x.

Theorem 6. Any n-dimensional (n ≥ 5) nilpotent algebra of level two is isomorphic to one of the following algebras:

n5,1 : e1e2 = e5, e3e4 = e5, e2e1 = −e5, e4e3 = −e5;
n5,2 : e1e2 = e4, e1e3 = e5, e2e1 = −e4, e3e1 = −e5;

L4(α) : e1e1 = e3, e2e2 = αe3, e1e2 = e3;
L5 : e1e1 = e3, e1e2 = e3, e2e1 = e3.

Proof. Our overall strategy is to look separately at antisymmetric andnon-antisymmetric cases, and then at thewayproducts
fall into the square of the algebra A2.

Case 1. First, we assume that A ∈ Niln(C) is non-antisymmetric.

Case 1.1. Assume that dim(A2) = 1, then we assume that A2
= {en} and have the following multiplication

A :

{
e1e1 = en, eiej = αi,jen, 2 ≤ i, j ≤ n − 1,
e1ej = α1,jen, eje1 = αj,1en, 2 ≤ j ≤ n − 1.

If there exist i such that |α1i − αi1| + |αii − α1iαi1| ̸= 0, then by Lemma 1 we obtain that L degenerates to L4(α) or L5.
Now let |α1i − αi1| + |αii − α1iαi1| = 0 for 1 ≤ i ≤ n. Making the change of basis

e′

1 = e1, e′

i = ei + α1,ie1, 2 ≤ i ≤ n − 1

the multiplication of A simply becomes

(∗) e1e1 = en, e1ei = eie1 = eiei = 0, eiej = αijen, 2 ≤ i, j ≤ n − 1.
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We consider now the subalgebra M : {e2, . . . , en}. Note that M cannot be abelian, since otherwise (∗) becomes an algebra
λ2, which is level one. Thus, we have the following two subcases, which will complete the case dim(A2) = 1.

Case 1.1.1. Assume that M is Lie. Since M is also not abelian, we are free to choose α2,3 = 1, α3,2 = −1. Taking the
degeneration⎧⎨⎩

gt (e1) = t−2en, gt (e2) = 2t−1e2 − t−2en,
gt (e3) = t−1e1 − t−2en, gt (en) = t−2e3,
gt (ei) = t−2ei, 4 ≤ i ≤ n − 1,

we obtain that A degenerates to L4( 14 ).

Case 1.1.2. Assume thatM is non-Lie. Then we may assume e2e2 ̸= 0, moreover e2e2 = en. Taking the degeneration

gt (e1) = e1, gt (e2) = e2, gt (en) = en, gt (ei) = t−1ei, 3 ≤ i ≤ n − 1,

we obtain that A degenerates to L5.

Case 1.2. We now assume that dim(A2) ≥ 2. Let A = {e1, . . . , en}, and A2
= {ek+1, . . . , en}. We consider five logically

exhaustive cases in which the products eie1, e1ei fall in the square A2 in different ways. It is obvious that we may always
assume e1e1 = ek+1.

Case 1.2.1. Assume eie1 ∈ span{ek+1} for 1 ≤ i ≤ k, and let e1e2 /∈ span{ek+1}, so that we have the multiplication:

e1e1 = ek+1, e1e2 = ek+2, eie1 = γ k+1
i,1 ek+1, 2 ≤ i ≤ k,

eiej =

n∑
ℓ=k+1

γ ℓ
i,jeℓ, 2 ≤ i, j ≤ k.

Applying Lemma 1 for the elements (γ k+2
1,1 , γ k+2

1,2 , γ k+2
2,1 , γ k+2

2,2 ) = (0, 0, 1, γ k+2
2,2 ) we obtain that A degenerates to L4(α) or

L5.

Case 1.2.2. Let there exist i such that eie1 /∈ span{ek+1}. Without loss of generality, we may put e2e1 = ek+2, so that our
products are

e1e1 = ek+1, e2e1 = ek+2, eie1 =

n∑
ℓ=k+1

γ ℓ
i,1eℓ, 3 ≤ i ≤ k,

e1ei =

n∑
ℓ=k+1

γ ℓ
1,ieℓ, 2 ≤ i ≤ k, eiej =

n∑
ℓ=k+1

γ ℓ
i,jeℓ, 2 ≤ i, j ≤ k.

If γ k+2
1,2 ̸= −1, then applying Lemma 1 for the (γ k+2

1,1 , γ k+2
1,2 , γ k+2

2,1 , γ k+2
2,2 ) = (0, γ k+2

1,2 , 1, γ k+2
2,2 ) we obtain that L degenerates

to L4(α) or L5.
If γ k+2

1,2 = −1, then taking the change of basis

e′

2 = e2 + ηe1, e′

k+2 = ek+2 + ηek+1, e′

i = ei, 1 ≤ i(i ̸= 2, k + 2) ≤ n,

we obtain that

e′

1e
′

1 = e′

k+1, e′

2e
′

1 = e′

k+2, e′

1e
′

2 = (2η + γ k+1
1,2 )e′

k+1 − e′

k+2 +

n∑
ℓ=k+3

γ ℓ
1,ieℓ,

e′

ie
′

1 =

n∑
ℓ=k+1

γ ℓ
i,1e

′

ℓ, e′

1e
′

i =

n∑
ℓ=k+1

γ ℓ
1,ie

′

ℓ, 3 ≤ i ≤ k,

e′

ie
′

j =

n∑
ℓ=k+1

γ ℓ
i,je

′

ℓ 2 ≤ i, j ≤ k.

Taking the value of η such that γ k+1
1,2

′
= 2η+γ k+1

1,2 ̸= 0we apply the Lemma 1 for the elements (γ k+1
1,1

′
, γ k+1

1,2 , γ k+1
2,1

′
, γ k+2

2,2
′
)

= (1, γ k+1
1,2

′
, 0, γ k+2

2,2
′
) and obtain that A degenerates to L4(α) or L5.

Case 1.2.3. Now suppose that eie1, e1ei ∈ span{ek+1} for 1 ≤ i ≤ k and there exist j such that ejej /∈ span{ek+1}. In this case
without loss of generality, we may suppose e2e2 = ek+2, so that our multiplication becomes

e1e1 = ek+1, e2e2 = ek+2, eie1 = γ k+1
i,1 ek+1, e1ei = γ k+1

1,i ek+1, 2 ≤ i ≤ k,
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eiej =

n∑
ℓ=k+1

γ ℓ
i,jeℓ, 3 ≤ i, j ≤ k.

If (γ k+1
1,2 , γ k+1

2,1 ) ̸= (0, 0) then applying Lemma 1 for the (γ k+1
1,1 , γ k+1

1,2 , γ k+1
2,1 , γ k+1

2,2 ) = (1, γ k+1
1,2 , γ k+1

2,1 , 0) we obtain that A
degenerates to L4(α) or L5.

If γ k+1
1,2 = γ k+1

2,1 = 0, then taking the degeneration

gt (e1) = t−1e1, gt (e2) = t−1e2, gt (ei) = t−2ei, 3 ≤ i ≤ n,

we degenerate to the algebra

λ2 ⊕ λ2 : e1e1 = ek+1, e2e2 = ek+2.

By Example 1, we obtain that algebra λ2 ⊕ λ2 degenerates to the algebra L5.

Case 1.2.4. Now we suppose that eiei, e1ei, eie1 ∈ span{ek+1} for 1 ≤ i ≤ k. Let there exist i, j (2 ≤ i, j ≤ k) such that
eiej /∈ span{ek+1}. Without loss of generality we can suppose i = 2, j = 3 moreover, if e2e3 + e3e2 ̸= 0, then taking
e′

2 = e2 + e3, we get that e′

2e
′

2 = e2e2 + e2e3 + e3e2 + e3e3 /∈ {ek+1} which have the situation of Case 1.2.3. Therefore, we
may suppose

e1e1 = ek+1, e1e2 = α1,2ek+1, e2e1 = α2,1ek+1, e2e2 = α2,2ek+1,

e1e3 = α1,3ek+1, e3e1 = α3,1ek+1, e3e3 = α3,3ek+1,

e2e3 = ek+2, e3e2 = −ek+2.

Now applying the degeneration⎧⎨⎩
gt (e1) = t−2e1, gt (e2) = t−3e2,
gt (e3) = t−3e3, gt (ek+1) = t−4ek+1,

gt (ei) = t−5ei, 4 ≤ i ≤ n.

we obtain the products

e1e1 = ek+1, e2e3 = ek+2, e3e2 = −ek+2.

which by Example 1 degenerates to the algebra L5.

Case 1.2.5. Now we suppose that eiej ∈ span{ek+1} for all i, j (1 ≤ i, j ≤ k). Thus we have

e1e1 = ek+1, eiej = αi,jek+1.

Since dim(A2) ≥ 2, then we have that there exist i (2 ≤ i ≤ k), such that eiek+1 or ek+1ei is non zero, which we can suppose
as ek+2.

Let i = 1, then we have e1e1 = ek+1 , e1ek+1 = ek+2.
If ek+1e1 + e1ek+1 ̸= 0, then using the Lemma 1 for the basis elements {e1, ek+1, ek+2} we have that A degenerates to the

algebra L4(α) or L5.
If ek+1e1 = −e1ek+1 = −ek+2 then making the change e′

k+1 = ek+1 − ek+2, we have that

e1e1 = ek+1 + ek+2, e1ek+1 = ek+2, ek+1e1 = −ek+2.

Again applying Lemma 1 for the basis elements {e1, ek+1, ek+2}, i.e. (γ k+2
1,1 , γ k+2

1,k+1, γ
k+2
k+1,1, γ

k+2
k+1,k+1) = (1, 1, −1, γ k+2

k+1,k+1) we
have that A degenerates to the algebra L4(α) or L5.

Let i ̸= 1, then we can suppose i = 2 and we have e1e1 = ek+1 , e2ek+1 = ek+2.
Similarly to the case i = 1 if ek+1e2 + e2ek+1 ̸= 0, then using Lemma 1 for the basis elements {e2, ek+1, ek+2} we have

that A degenerates to the algebra L4(α) or L5.
If ek+1e2 = −e2ek+1 = −ek+2 then making the change e′

k+1 = ek+1 − ek+2, we have that

e1e1 = ek+1 + ek+2, e1ek+1 = ek+2, ek+1e1 = −ek+2.

Again applying Lemma 1 for the basis elements {e1, ek+1, ek+2}, i.e. (γ k+2
1,1 , γ k+2

1,k+1, γ
k+2
k+1,1, γ

k+2
k+1,k+1) = (1, 1, −1, γ k+2

k+1,k+1) we
have that A degenerates to the algebra L4(α) or L5.

Case 2. Let A ∈ Niln(C) be antisymmetric. It should be noted that if dim(A2) = 1, then we have that A3
= 0. Thus, A is a Lie

algebra. In [12] it is shown that any nilpotent Lie algebra with condition dim(A2) = 1, A3
= 0 degenerates to algebra n5,1.

Therefore,we consider case dim(A2) ≥ 2. Assume that {e1, e2, . . . , ek, ek+1, . . . , en} be a basis ofA, and {ek+1, ek+2, . . . , en}
be a basis of A2.

Then, without loss of generality, we can assume e1e2 = ek+1, e2e1 = −ek+1.
Below, we show that it may always be assumed

e1e2 = e4, e1e3 = e5.
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• Let there exists i0 such that e1ei0 /∈ span⟨xk+1⟩. Then taking

e′

1 = e1, e′

2 = e2, e′

3 = ei0 , e′

4 = ek+1, e′

5 = e1ei0
we obtain e′

1e
′

2 = e′

4, e′

1e
′

3 = e′

5.
• Let e1ei ∈ span{ek+1} for all 3 ≤ i ≤ k and there exists some i0 such that e2ei0 /∈ span⟨xk+1⟩.According to symmetrically

of e1 and e2, similarly to the previous case we can choose a basis {e′

1, e
′

2, . . . , e
′
n} with condition e′

1e
′

2 = e′

4, e′

1e
′

3 = e′

5.
• Let x1xi, x2xi ∈ span{ek+1} for all 3 ≤ i ≤ k. We set e1ei = αiek+1 and e2ei = βixk+1. Let ei0 and ej0 be generators of A

such that ei0ej0 /∈ span{ek+1}. Since dim(A2) ≥ 2 one can assume ei0ej0 = ek+2.
Putting

e′

1 = e1 + Aei0 , e′

2 = e2, e′

3 = ej0 , e′

4 = (1 − Aβi0 )ek+1, e′

5 = Aek+2 + αi0ek+1

with A(1 − Aβi0 ) ̸= 0, we deduce e′

1e
′

2 = e′

4, e′

1e
′

3 = e′

5.
• Let eiej ∈ span{ek+1} for all 1 ≤ i, j ≤ k. Then for some i0 we have ei0ek+1 ̸= 0. Without loss of generality, one can

assume e1ek+1 = ek+2.

– If k ≥ 3, then setting

e′

1 = e1, e′

2 = e2, e′

3 = e3 + ek+1, e′

4 = ek+1, e′

5 = ek+2 + α1,3ek+1,

we obtain e′

1e
′

2 = e′

4, e′

1e
′

3 = e′

5.
– If k = 2, then we have e1e2 = e3, e1e3 = e4. It is not difficult to obtain that e1e4 = e5 or e2e3 = e5 (because of

n ≥ 5). Indeed, taking

e′

1 = e1, e′

2 = e2, e′

3 = e4, e′

4 = e3, e′

5 = e5

in the case of e1e4 = e5 and

e′

1 = −e3, e′

2 = e1, e′

3 = e4, e′

4 = e2, e′

5 = e5

in the case of e2e3 = e5, we derive the products e1e2 = e4, e1e3 = e5.

Thus, there exists a basis {e1, e2, e3, . . . , en} of Awith the products

e1e2 = e4, e1e3 = e5.

Note that A degenerates to the algebra with multiplication:

e1e2 = e4, e1e3 = e5, e2e3 = γ4x4 + γ4x5

via the following degeneration:

gt :

{
gt (e1) = t−2e1, gt (e2) = t−2e2, gt (e3) = t−2e3,
gt (e4) = t−4e4, gt (e5) = t−4e5, gt (ei) = t−3ei, 6 ≤ i ≤ n.

From the change of basis e′

2 = e2 − γ5e1, e′

3 = e3 + γ4e1, we obtain that this algebra is isomorphic to n5,2 ⊕ abn−5 . □
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