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1. Introduction and background

The theory of deformations and degenerations of algebras has its origins in certain formal relations between physical the-
ories and has become a lively subject in algebraic and differential geometry, as well as noncommutative and nonassociative
algebra. It was a very influential precept of Niels Bohr that a new physical theory, which is supposed to ontologically overlap
with a previously accepted theory, should somehow yield the old theory as a limiting or special case [1]. This is a statement
of his “correspondence principle”, which is realized in quantum mechanics via the limit of the Moyal bracket:

[f.gl = {f. g} + o(h?)

as h — 0. Here the bracket {, } = 3'3; — ;3' is the Poisson bracket of classical mechanics, being a sum of commutators
for first-order differential operators. In this way classical mechanics emerges, as a limiting case, from quantum mechanics
for small values of h. This realization motivated the modern deformation theory of algebras, which originated with
Gerstenhaber [2] and others. This theory has powerful applications in the classification of algebraic varieties and the
quantization theory of Poisson manifolds, where the physical meaning of deformation remains especially explicit [3,4]. There
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we have a manifold with tangent space V equipped with a Poisson bivector p € V A V*, and an algebra of observables
f,g € C*®(V). We then define a product of these observables as a power series in a parameter h:
f g 2 k i azf aZg

(F*g)p)=f g+ p,@yﬁ*h P oxkax oxyon,

where we have made use of the summation convention. Defining the bracket
[f, gl = —in""(f xg —g *f),

in the ordinary quantum mechanical case for a single state (i.e. where all differential operators are first-order) we recover
the above limit, relating the Moyal to the Poisson bracket. The full higher-order approach is currently being used in the study
of formal quantum field theory [5,6], a version of Hilbert's 6th problem [7].

For this paper, we consider the case of a finite-dimensional algebra over a closed field k, with k = C being of special focus.
In general, an algebra over k can be considered as an element © € Hom(V®V, V), where V is an n-dimensional k-vector space.
Thus, in the purely abstract deformation theory we consider algebras u, i € V ® k[[t]] related by a formal power series:

[o]
ne =+ Ztigoi where ¢; € Hom(V ® V, V)
i=1

so that in the linear case ;1 = @ + te; we study algebras with multiplication differing by a 2-coboundary.! Kodaira and
Spencer gave the original idea of infinitesimal deformations for complex analytic manifolds [8]. Most notably, they proved
thatinfinitesimal deformations can be parametrized by a related cohomology group. In fact, cohomology detects deformation
at all orders, and it is therefore unsurprising that one can develop the deformation theory in any abelian category [9].

Prior to the development of deformation theory, it had already been realized that the space and time symmetries of
Newtonian mechanics were recovered in the c — oo limit of special relativity, where c is the speed of light. In that case the
Lie algebra of the Poincare group degenerates to the Lie algebra of the Galilean group, an observation first made by inénii and
Wigner in [10]. This is a geometric process, and can be defined purely in terms of the Zariski topology on Hom(V ® V, V).

In the finite-dimensional case over a field of characteristic zero, such degenerations can be described directly in terms of
the singular limit of a linear group action. Let Alg,(k) be the variety of n-dimensional algebras over k, and let A, i € Alg,(k).
Define an action on Alg, (k) by means of

(g % m)(x, ¥) == g(Mg~'(x),g7'(¥)))  where g eGLy(k), x,y €A
which just represents a change of basis for A as an algebra. Thus the orbit of the algebra (A, 1) under this action is given by
Orb(A) := {L € Alg, (k) | L ~ A}.
Definition 1. An algebra (A, 1) is said to degenerate to the algebra (A, ) if Orb(A, u) € Orb(A, A). We write A — u to
denote this degeneration.
In the case k = C, we have that A — u if and only if there is a g € GL,(C(t)) such that Vx, y € A,

ulx,y) = lim g (Mg, %), g7 ).

We call a degeneration A — pu trivial if (A, 1) >~ (A, ), and direct if it is non-trivial, and there is no algebra (A, v) such
that A - v — w.If A — w,then X is a non-trivial deformation of 1, thus it is common to pass from the degeneration theory
to the deformation theory.

It is clear that every non-abelian algebra in Alg,(C) degenerates non-trivially to the abelian algebra ab,, but of course not
all such degenerations will be direct; the distance of an algebra from ab,, in terms of the degeneration theory, is given by its
level.

Definition 2. The level of an algebra A is the maximum length of a chain of direct degenerations to ab,,. We denote the level
of an algebra by lev, ().

Concerning algebras of level one, we have the following result proved by Khudoyberdiyev and Omirov [11].

Theorem 1. Let A be an algebra of level one. Then A is isomorphic to one of the following pairwise non-isomorphic algebras:

p,: eei=e, ee; = —e, 2<is<m
ny @ab,_3: eje;=e3, e = —es3;
A @abpy:  eje; =ey;
vple):  eier=eq, egg=ae, eer=(1—a)y, 2<i<n

The level two case, within the varieties of Lie, Jordan, and associative algebras, has been resolved by Khudoyberdiyev
in [12]. In particular, that paper provides the following theorem.

1 An abstract “Poisson bracket” on an algebra is always available in the case of a linear deformation, since we can define {x, y} := %(um(x, V) — ey, x)).
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Theorem 2. Let G be a Lie algebra of level two. Then G is isomorphic to one of the following pairwise non-isomorphic algebras:

ns51 @ abp_s : eje3 = es, €64 = €5, 2<i<m
Nsp@abys:  ejex = ey, eje3 = es;
r, ®ab,_: eje1 = ey;
gnala): eje; = ey, eie; = e, 3<i<n,aeC/{0,1};
gn2: eep=ey+es,  ee, 3<i<n

It is still desirable to obtain a complete classification of level two algebras. One step is to ask about the existence of level
two algebras in other varieties. Since ns ; and ns , are Lie, we may well ask if there are any non-Lie Leibniz algebras of level
two.

Definition 3 ([13]). A (right) Leibniz algebra is a non-associative algebra such that for all x, y, z € L, the following identity
holds:

xX(yz) = (xy)z — (xz)y.

This is a natural generalization of Lie algebras, in that an antisymmetric Leibniz algebra is Lie. Note that a left Leibniz
algebra is defined by identity (xy)z = x(yz) — y(xz).

Degenerations of Lie and Leibniz algebras were the subject of numerous papers, see for instance [14-18] and references
given therein, and their research continues actively. In particular, in [ 19,20] some irreducible components of Leibniz algebras
are found.

In this paper, we extend Theorem 2 to identify all non-Lie Leibniz algebras of level two; we find that two of these are
nilpotent and one is solvable. We then proceed to classify all n-dimensional nilpotent algebras of level two, and find that
these are all Leibniz.

2. Main results
Our first main result is the classification of Leibniz algebras of level two.

Theorem 3. Let L be a n-dimensional non-Lie Leibniz algebra of level two. Then L is isomorphic one of the following three algebras:

Ly@)®ab,_3: ejeq=e3, ee;=e3,  ee; =aes;
Ls @ab,_3: eje; =e3, eie; = es, exeq = e3;
T : eie; = e, 2<i<n.

Together with the nilpotent Lie algebras of level two identified in [ 12], our other main result identifies these four algebras
as the only nilpotent algebras of level two.

Theorem 4. Any finite-dimensional nilpotent algebra of level two is isomorphic to one of the following algebras:

ns,1 @ ab,_s : ejez3 =es5, €87 = es;

N5, @ab,_s: eje; =e4, eje3 =es;
Ly(a) @ ab,_3: eje =e3, ee; =aes, e1ey =es;
L5 (&) (:lbn_3 . eep =es, e1e; =es, €e1 = es.

It is now natural to ask if any algebra of level two is a direct sum of two level one algebras. The following examples give
us a negative answer to this question.

Example 1. The algebras

ny @Ay = {X1,X2,X3,X4,X5} ©  X1X; = X2, X3Xg4 =X5, X4X3 = —Xs;
A2 @ Ay = {X1,X2, X3, X4} 1 X1X1 = X2, X3X3 = X4,
A ®p; =1{X1,X2,X3, X4, ..., Xn} I X1X1 = X2, XiX3 =Xj, X3x;=—X;, 4<i<n.
via the family of matrices
g (%) =t +x3), B g [(x1) = tx1 +xa),
- X1) = txq, -
g ) = Loa b, | B )= g7 (%) = t(1x +x3),
—1 2 g (x2) =t(x1 +x3), 1 )
g (X3) = t°xa, 2 (xs) = 2x g (x3) =txy,
-1 2 t M3 A2 ~1 1
g (xq) =tx1, g (xa) = t(x2 + Xq), g (x4) = t(xqa + 5%2),
g '(Xs) = t(xs + xp), g '(x) = txi, 5<i<n,

degenerate to the algebras L4(%) @ ab,, Ls @ abq and Ly(4) @ ab,_3 respectively.

1
4
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Since the algebras L4(a) and Ls are not algebras of level one, we deduce that the level of the algebras n; @ A, A, @ A,
and A, @ p, must be greater than two.

Now let L be a n-dimensional complex algebra and {ey, e, ..., e,} be a basis of L. The multiplication on the algebra L is
defined by the products of the basis elements; namely, by the products

n

o, — E k

eiej = Vi j€ks
k=1

where yl-{‘j are the structural constants.
We first prove a very useful lemma, which will allow us to immediately conclude a degeneration to either L4(«) or Ls
based on a multiplication table of a certain form.

Lemma 1. Suppose L is an n-dimensional algebra and let {eq, e,, .. ., ey} be a basis of L. If there exist distinct i, j, k such that

2
Ok W o ) 10,8, —8,0),5. 8. 8, 23} where 5 %0,

then L — Ly(a)or L — Ls.

Proof. Without loss of generality, we may assume i = 1,j = 2, and k = 3. We see that if we take the degeneration

glen)=t"er, gle)=t"es, gle)=t2e; 3<i<n,

then we have following nontrivial products

n

n
_ .3 s .3 s
€161 = ¥1,163 + Z Y1,16s» €16y = yi,63+ Z Y1.26s»

s=4 s=4

n n
_ .3 s _ .3 s
€81 =Yy, 13 + V2.16s> €282 = y;,€3 + V2.26s-
s=4 s=4

Furthermore, if we take the additional degeneration
giler)=t"e;, gie)=t"es, giles)=t""es, gle)=t""e; 4<i<n,
then we have an algebra with the following multiplication
ejep = 71%133, ejey = V13,ze37 ee = )’23_1537 €8 = V23,293~
We see that this algebra is nilpotent and also non-Lie as (y;;.v2,.v5,.v5,) # (0.B.—pB.0). Moreover, since

(V13,1’ yfz, V23,1’ yﬁz) £ (8, B, B, ‘%2), we conclude that L is not isomorphic to the algebra A,. Due to the classification of
three dimensional nilpotent Leibniz algebras [21], we conclude that this algebra is isomorphic to either Ly(«) or Ls. O

2.1. Classification of algebras of level two in the variety of Leibniz algebras

Let L be a Leibniz algebra and let x € L. We define ¢, : L — L to be the linear operator where ¢,(y) = yx + xy. We see
that by applying the Leibniz identity we get the following two equations:

zouy) = z(yx + xy) = z(yx) + z(xy) = (zy)x — (2x)y + (2x)y — (zy)x = 0,
z(xx) = (zx)x — (zx)x = 0.
This proves that both ¢,(y) and xx are in the right annihilator for any x € L.
In this section we will examine the matrix representation of ¢, on a case-by-case basis in order to prove Theorem 3.

Proposition 1. Let L be a n-dimensional non-Lie Leibniz algebra which is not of level one (i.e. L % X, ). Then L degenerates to one
of the following three algebras:

Ly(a) @ ab,_3 : eje; = es, erer = es, €6y = aes;
Ls®ab,_3: ee;=e3,  eje; =e3, exe) = e3;
In: eie; = ej, 2<i<n.

Proof. Since L is a non-Lie Leibniz algebra, we know that there exists an element x € L such that xx # 0. Suppose that
xx = ax for some constant «. Then, by the Leibniz identity, we have that

o?x = axx = x(ax) = x(xx) = (xx)x — (xx)x = 0
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which means that « = 0. This is a contradiction, though, as xx # 0. Thus, it must be that xx is linearly independent from x.
Using this, we can form a basis {eq, e,, ..., e;}, where e; = x and e; = xx.
We define the linear operator ¢ = ¢, and let («; j) be its matrix form. Thus, we have that

0 a1p 13 a@ia ... dyp
2 Olz,z )3 012,4 e Otzqn
0 a3p @33 a3q4 ... O3p
=10 O4) 043 044 ... O4np
0 On2 O{n,3 O[n,4 e Onn

Suppose that oj . # 0 for some 1, j, k distinct and k > 3. This means that we have the following products

n
k
ejeq = ey, eiej = yjjex t Z Vijés:
s=1,s#k

n n
k s k s
e =yiect Y vies  eer=(mr—ridet Y ¥es.
s=1,s#k s=1,s#k

Since y;; = 0and y{; # —(ajx — ¥{;), we can apply Lemma 1 on the indices 1, j, k to see that L — Ly(c) or Ls. Now we
focus the case where o, = 0 for 1, j, k distinct and k > 3. This gives us the following matrix representation of ¢:

0 a1 oa13 @ia ... dip
2 Olz,z o) 3 052,4 e O(ln
0 0 o33 0 e 0
Y = 0 0 0 Q4.4 N 0
0 0 0 0 .. ong

Suppose that o ; # 0 for some i # 1, 2. Without loss of generality, let i = 3. Then if we take the change of basis
e, =ey— ‘;—ge3, we have that

2 2 2
/
p(e3) = pler — ——e3) = p(e1) — —o(e3) = 2e; — —(a1.3€1 + az 32 + @33€3)
3.3 @33 @33
20[1_3 20{3,3 20[13 , 20[]’3 f
=- e — e3 = — e1 —az3(e; —e3) = — — o33 ) e+ o3 36;.
33 23 @33 33

Thus, we may assume that «; 3 = 0. Since i = 3 was arbitrary, we can therefore assume that oy ; = 0 for 3 < i < n. This
means that the matrix representation of ¢ has the form:

0 app a3 a4 Q1n
2 (6 %)) 0 0 0
0 0 033 0 0
¢ = 0 0 0 Q44 0
0 0 0 0 ... am

. Now suppose there exists j > 3 such that o, » # «;;. Then we see that if we take the basis change ej( = e, + ¢j, we have
that

gg(e]’.) = g(ez) + g(e;) = (12 + a1 j)er + oz 82 + aj e
= (@12 +arjler + (@22 — ajj)ex + ajje;

By reapplying our previous argument, we see that it must be that either L — L4(«), Ls or oz » — «jj = 0. Thus, we have that
a=ayy; =0 for3<i<n

Now suppose that « # 0. We can then take the basis change e; = ¢(e;) for 2 < i < n. This means that ey, e3, ..., e, €
Anng(L) and thus that ¢(e;) = ejeq for 2 < i < n. Moreover, if oy ; # 0 for some 2 < i < n, then we would have that

azier = ¢(e;) — ae; € Anng(L)
which is a contradiction to the fact that e;e; = e,. Therefore, we have an algebra L with the following multiplication table:
eieg=e;, eej=ae, (@ #0), 2<i<n

If we then take the basis transformation e} = %(el — %ez), we see that this is exactly the algebra r,.
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Suppose then that @ = 0. Again, we see that if «;; # 0 for some 2 < i < n, then we would have that «; je; = ¢(e;) €
Anng(L), which is a contradiction. This means that ¢ has the following matrix representation:

0 0 0 O 0
2 0 0 0 ... 0
0 0 00 ... O
=10 0 0 O 0
0 0 00 ... O

We now consider following products

n n

2 3 s 2 3 s
eze =0, e3e; =0, eze3=y33e2+ Y5363+ E V5,385, €383 = Y332 + V33€3 + E V3.36s-
s=4 s=4

If there exist y; 5 # 0, for some 4 < s < n, then by Lemma 1, we have that L — L4(«), Ls. Thus, we assume that y25,3 =0
for 4 <'s < n. Therefore, e;e3 = y2,e2 + 5 5e3. If V23 # 0, then we have that y;';es = eses — y; ;e, € Anng(L). This means
that e;e3 = 0, a contradiction as y§3 # 0. Hence, e;e5 = y22’3e2.

Assume that y§3 # 0. If we take the change of basis €, = e, — Aeq, then we have that

eye, = (e, — Aer)(e; — Aeq) = Aleje; = A’e; = Ale; + A%e),

n
eses = (e; — Aej)es = )/22,392 — Aejez = A(V22,3 - V11,3 - Ayﬁ3)e1 + (J/zz,a - AV12,3)9/2 - AZ Y1365,
s=3

n
eseh = es(ey — Aer) = Aeres = A(y)'5 + Avisder +Ayise, +A Y v; e,
s=3

n
1 2 s
e3e3 = ¥33€1 + V3361 + § V3,365
s=3

Since y; 5 # 0, we see that we can always choose A so that y; 5 — y,'; — Ay}; # /3 + Ay{ ;. Hence, using Lemma 1 we
obtain that L — Ly(e), Ls. Thus, it must be that y;?; = 0, which means that e;e; = 0. Since e3 was arbitrary, we may assume
that e;e; = 0 fori # 1, 2 and thus we have that e, € Ann(L).

Therefore, we have the following multiplication table

ele; =6, ee=ee; =0 1<i=<n,

n
e1e; = —eje; = e, 3<i<n
16 = i€1 = Y1,is» =1=n,
s=1

n
e =y yie. 3<ij<n

s=1

Using the Leibniz identity

n n
0 = (eq1e1)e; — (erei)er +erleier) = exe; — <Z V]s,,-es> €1— € <Z V]S,ies> = —21/11,1@2
s=1 s=1

we obtain that y{i = O0for 3 < i < n. Furthermore, if yfi # 0or yf,. # 0 for some 3 < i < n, then by Lemma 1, we have that
L — L4(@), Ls. Therefore, we may assume yﬁi = 0and yfi =0forany3 <i<n.
Moreover, if yfj # 0 for some i, j then taking the basis change e] = e; + ¢;, we obtain that

n n
2
eler=e+ Y (¥ eer=yie+ Y (e
i=3 i=3

n

n
ee; = J/j?iez + Z(*)ei, eie; = Z(*)€i~
i=3

i=3

If we apply Lemma 1 on the indices 1, i, 2, we see that L — L4(«), Ls. Therefore we can suppose yi?j =0forany3 <i,j<n.
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By applying the Leibniz identity once again we see that

n
0 = (eigj)er — (eier)e; — eilejer) = y;ex + Z (*)ei,
i= 1,2

which means that yl-fj =0for3<ij<n.

Therefore, we obtain that any Leibniz algebras L either degenerates to Ly(«), Ls or 1, or is a decomposed algebra with
ideals M; = {ey, ex} and M, = {es, ey, ..., e,}. If My were trivial, then our only nontrivial multiplication would be e1e; = e>.
This is a contradiction, as we assumed that L %% A,. Thus, M, is not trivial, and therefore M, degenerates to an algebra of
level one: X,, n3 or p,. This means that L degenerates to 1, @ X, A, @ n3, or A ® p,. By Example 1, we conclude that L
degenerates to either Ly(a) or Ls. O

Theorem 5. Let L be an n-dimensional Leibniz algebra of level two. Then L is isomorphic to one of the following pairwise non-
isomorphic algebras:

Ly(a)®ab,3, Ls®ab,3, 1, a€C
Proof. Due to Theorem 3, it is sufficient to prove that these algebras do not degenerate to each other. To facilitate this, we
compute the dimensions of right annihilator and derivations of these algebras and we call upon the following table:

dim Anng(Ls) = n — 2, dim Der(L4(0)) = n®> — 3n + 4,
dimAnng(Ly(a)) =n—2, & #0,  dimDer(r,) = (n— 1> =n* —2n+1,
dim Anng(r,) =n — 1.

We first note that L4(«) and Ls cannot degenerate to r,,, as L4(«) and Ls are nilpotent and r, is not. We also see that r,, does not
degenerate to Ly(«) (¢ # 0)or Ls, as dimension of right annihilator of r, is more than dimensions of right annihilators of Ly(cr)
(¢ # 0) and Ls. Additionally, since for n > 4, the dimension of derivations of r,, is more than the dimension of derivations of
L4(0), we have that r,, /4 L4(0). Lastly, we see that Ly(«) / Ls and that Ls 4 L4(«) by the following paper [14]. O

Remark 1. We note that in the context of left Leibniz algebras, the following algebra replaces the algebra r, as a Leibniz
algebra of level two:

by : eie = 6, 2<i<n.
2.2. Nilpotent algebras of level two

Working in the variety of n-dimensional nilpotent algebras Nil,(C) will allow us to exclude certain products from our
multiplication tables, in particular all products of the form xy = x.

Theorem 6. Any n-dimensional (n > 5) nilpotent algebra of level two is isomorphic to one of the following algebras:

Nsq1:. €16 =65, €364 =65, €261 = —€5, €463 = —€5;

Nsp . €18y = €4, €1€3 =¢€s, €261 = —€4, €367 = —€5;
Ly(a) 1 eje; =e3, exe; =ae3, ey = es;
L5 N eje; = es, e1e; = es, ee; = es.

Proof. Our overall strategy is to look separately at antisymmetric and non-antisymmetric cases, and then at the way products
fall into the square of the algebra A2.

Case 1. First, we assume that A € Nil,(C) is non-antisymmetric.
Case 1.1. Assume that dim(A?) = 1, then we assume that A> = {e,,} and have the following multiplication

| eier =ey, eiej=ajje,, 2=<i,j<n-—1,
€18 = oy jen, €je1 = «j 16y, 2 f] <n-—1.

If there exist i such that |a1; — 1| + |eii — agieeiq| # O, then by Lemma 1 we obtain that L degenerates to Ly(«) or Ls.
Now let |a1; — aj1| + |oii — agieeip| = O for 1 < i < n. Making the change of basis

ei=e, e=e+are;, 2<i<n—1
the multiplication of A simply becomes

(%) ejer=e, ee;=ee;=¢ee =0, ee=o4e,, 2=<ij<n-—1
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We consider now the subalgebra M : {e,, ..., e;}. Note that M cannot be abelian, since otherwise () becomes an algebra
X2, which is level one. Thus, we have the following two subcases, which will complete the case dim(A?) = 1.
Case 1.1.1. Assume that M is Lie. Since M is also not abelian, we are free to choose a3 = 1, @32 = —1. Taking the
degeneration

gier) =t 2ey, gi(ey) = 2t7 ey — t2ey,

giles) =tley —t%e,, gi(en) =t es,

gile) =t e, 4<i<n-1,

we obtain that A degenerates to Ly( % ).

Case 1.1.2. Assume that M is non-Lie. Then we may assume e,e; # 0, moreover ee; = e,. Taking the degeneration
gle)=e, gle)=ey, glen)=en, gle)=t"e, 3<i<n-—1,

we obtain that A degenerates to Ls.

Case 1.2. We now assume that dim(A?) > 2.LetA = {ey,...,e,}, and A> = {ei;1, ..., e,}. We consider five logically
exhaustive cases in which the products e;e;, e;e; fall in the square A? in different ways. It is obvious that we may always
assume ejeq = 1.

Case 1.2.1. Assume e;e; € span{ei.1} for 1 <i <k, and let eje; ¢ spanf{ey,1}, so that we have the multiplication:

k+1 .
11 = €k1, €162 = €ki2, €ie1 =V, €kr1, 2 <1<k,

n
eej= Y vie. 2<ij<k
{=k+1
Applying Lemma 1 for the elements (v, 1%, ¥4, 1,12, y,3%) = (0,0, 1, y,'3?) we obtain that A degenerates to Ly(a) or
Ls.

Case 1.2.2. Let there exist i such that eje; ¢ span{ei.1}. Without loss of generality, we may put e;e; = ey, so that our
products are

n
eler=e1, el =eqy,  eer= Y yhe, 3<i<k
i1
n n
ere; = Z yiee, 2<i<k, eiej = Z vijee, 2<i j<k
{=k+1 L=k+1
If y3? # —1, then applying Lemma 1 for the (y12, 3%, 1542, 153%) = (0, 37, 1, 15'3?) we obtain that L degenerates
to Ly(ar) or Ls.
If ylkzz = —1, then taking the change of basis

/ / / >0
e, = e +ney, e, =2 +ner, € =6, 1 <i(i #2,k+2) <n,

we obtain that
n
r A VA k+1y,y Y4
€181 = €k11» €261 = k12> €1 =(2n+ ¥y Jekp1 — €y + E Y1.i€e
t=k+3

n
VA [ /S t .
e = Z Yii€e €16 = Z Y1.i€es 3<i<k,
L=k+1 =k+1

Taking the value of 7 such that y{3"" = 2n+y{3" # 0 we apply the Lemma 1 for the elements (1", yf3", i1V, yi52")

=(1, yl’szrl/, 0, yz’szrz/) and obtain that A degenerates to Ly(«) or Ls.

Case 1.2.3. Now suppose that e;e;, e1e; € spanfex,1} for 1 < i < k and there exist j such that eje; ¢ span{ei1}. In this case
without loss of generality, we may suppose e;e; = ey, so that our multiplication becomes

k+1 k+1 :
€161 = k1, €262 = k42, €i€1 = Vi Ck+1, €16i = V1; €ky1, 2 =1 = k,
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n
ejej = Z yfjeg, 3<i, j<k.
e=k+1
If (k1 ket : kbl k1 kT kly k1 k1 :
Y12 > Y21 ) # (0,0) then applying Lemma 1 for the (y; 7, i3 > v21 » V22 ) = (L ¥y, » V51 »0) we obtain that A
degenerates to L4(«) or Ls.

If y;3" = »,7" = 0, then taking the degeneration

gle)=t""e;, gle)=t""e;, gle)=t"e, 3<i=<n,
we degenerate to the algebra
A2 @ Az i e1€] = exy1, €283 = €ry2.
By Example 1, we obtain that algebra A, & A, degenerates to the algebra Ls.
Case 1.2.4. Now we suppose that e;e;, e1e;, e;e; € span{eyy1} for 1 < i < k. Let there existi,j (2 < i,j < k) such that
eie; ¢ span{eii1}. Without loss of generality we can suppose i = 2,j = 3 moreover, if e;e3 + ese; # 0, then taking

e, = e, + e3, we get that e)e, = e,e, + eye3 + ese; + ese3 ¢ {er1} which have the situation of Case 1.2.3. Therefore, we
may suppose

€161 = €k+1, €162 = A12€k41, €281 = (2 1€k41, €283 = (3 2€k41,

€163 = (¢1,36k+1, €361 = (3,1€)+1, €363 = (*/3,3€)41,

€263 = €j42, €362 = —€k42.
Now applying the degeneration

giler) =t2ey, gley) =t"3ey,
gi(es) =t3es, gilexs1) = t e,
ge)=t"e, 4<i=<n.

we obtain the products
€181 = €41, €263 = €ky2, €362 = —€kq2.

which by Example 1 degenerates to the algebra Ls.

Case 1.2.5. Now we suppose that e;e; € span{ey,1} foralli,j(1 <1i,j < k). Thus we have
€161 = €k+1, €i€j =  j€ri1.

Since dim(A?) > 2, then we have that there existi (2 < i < k), such that e;e;, 1 or eye; is non zero, which we can suppose
as eyyo.

Leti = 1, then we have eje; = eyy1, €1€k+1 = €y2-

If ex11€1 + eiexr1 # 0, then using the Lemma 1 for the basis elements {eq, ey, 1, €x+2} we have that A degenerates to the
algebra Ly(«) or Ls.

If ep1 161 = —eiexr1 = —eyyo then making the change e;(H = €x+1 — €r+2, we have that

€161 = €k+1 + €k+2, €1€k+1 = €k+2, Ek+1€1 = —Ek42-

; : ; : k+2  k+2 k+2 k+2 k+2
Again applying Lemma 1 for the basis elements {e1, €11, et} i€ (V117 Viki1s Vier 1 Yertnen) = (L 1 =1, %7 ) we

have that A degenerates to the algebra Ly(c) or Ls.

Leti # 1, then we can suppose i = 2 and we have eje; = ey, €26x+1 = €xy2-

Similarly to the case i = 1 if ey €2 + ezexr1 7 0, then using Lemma 1 for the basis elements {e5, e+ 1, €12} we have
that A degenerates to the algebra Ly(«) or Ls.

If exr1€2 = —ezery1 = —eyyo then making the change e, ; = exy1 — €12, we have that
€161 = €k+1 + €kt2, €1€k+1 = €kt+2, Ek+1€1 = —€ky2.
. : . . k+2 k+2 k42 k+2 k+2
Again applying Lemma 1 for the basis elements {e1, €11, ext2}, 1€ (V1 17 Vikr1s Yirt1o Yiwdar1) = (L 1L =Ly 1) we

have that A degenerates to the algebra Ly(«) or Ls.

Case 2. Let A € Nil,(C) be antisymmetric. It should be noted that if dim(A?) = 1, then we have that A> = 0. Thus, A is a Lie
algebra. In [12] it is shown that any nilpotent Lie algebra with condition dim(A?) = 1, A> = 0 degenerates to algebra s ;.

Therefore, we consider case dim(A%) > 2. Assume that {e, ey, ..., €, €xt1, - . . , €} be abasis of A, and {e41, €xi2, - - . , €n)
be a basis of A.
Then, without loss of generality, we can assume ee; = €41, €261 = —€x1.

Below, we show that it may always be assumed

€16y = €4, €163 = €5.
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o Let there exists iy such that eje;; ¢ span{x,1). Then taking
/ / / / /
€ =2¢€1, €, =€), €3 = €j,, €4, = €ky1, €5 = €16,
we obtain e}e}, = e}, e\e; = ei.
o Leteqe; € spanf{er,q}forall 3 < i < kand there exists some ip such that e,e;, ¢ span(xi41). Accordingto symmetrically
of e; and e,, similarly to the previous case we can choose a basis {¢}, €, ... ., e} with condition e}e}, = e, e}e} = er.
o Let x1X;, XoX; € span{ei41} forall 3 < i < k. We set eje; = ajer,1 and e;e; = BiXri1. Let ej, and e;j, be generators of A
such that e; e;, ¢ span{er41}. Since dim(A?) > 2 one can assume €iy€jp = €ks2-
Putting
/ / / / /
e, = e1 +Aej, € =e, e3=¢j, e, = (1 —ABj )err1, €5 = Aeria + djperr1
with A(1 — ABj,) # 0, we deduce e}e}, = €, eje} = er.
o Let ejej € spanferyq) forall 1 < i,j < k. Then for some iy we have e; er1 # 0. Without loss of generality, one can
asSUMe €161 = €x42.
- If k > 3, then setting
/ / / / /
e =e1, e, =6y, €3 =e3+ €ky1, €4 = €kt1, €5 = €ky2 + 01,36k+1,
we obtain e\ e, = e}, eje; = eL.
- If k = 2, then we have eje; = e3, eje3 = ey. It is not difficult to obtain that e;e, = es or e;es = es (because of
n > 5). Indeed, taking
7 / / / /
e, =¢€1, 6 =6, 63 =64, €, =€3, €5 =65
in the case of e;e4 = es and
el =—e3, e, =ey, e =€, €, =€, €5 =65
in the case of e;e3 = es, we derive the products eje; = e4, €163 = es.
Thus, there exists a basis {e, e2, e3, ..., e,} of A with the products

€16y = ey, €163 = €s5.

Note that A degenerates to the algebra with multiplication:

€16y = €4, €163 = €5, €263 = Y4X4 + V4Xs5

via the following degeneration:

g giler) =t72%er, gilex) =t"2es, gles) =t "2es,
| siled) =t %es, giles)=ttes, gile)=te, 6<i<n.

From the change of basis €, = e, — yse1, €5 = e3 + y4e1, we obtain that this algebra is isomorphictons, @ ab,_5. O
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