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Abstract A micropolar phase field fracture model is implemented in an open source library FEniCS. This
implementation is based on the theoretical study in Suh et al. (2020) in which the resultant phase field
model exhibits the consistent micropolar size effect in both elastic and damage regions identifiable via in-
verse problems for micropolar continua. By leveraging the automatic code generation technique in FEniCS,
we provide a documentation of the source code expressed in a language very close to the mathematical
expressions without comprising significant efficiency. This combination of generality and interpretability
therefore enables us to provide a detailed walk-through that connects the implementation with the regu-
larized damage theory for micropolar materials. By making the source code open source, the paper will
provide an efficient development and educational tool for third-party verification and validation, as well
as for future development of other higher-order continuum damage models.
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1 Introduction

Materials of internal structures often exhibit size effect in both the path-independent and path-dependent
regimes. These materials could be often designed and manufactured to achieve a specific set of engineering
properties (e.g. foam, granulates, metamaterials (Cosserat and Cosserat, 1909; Diebels and Geringer,
2014; Wang and Sun, 2019) or formed naturally (e.g., sand, silt, polycrystals, sedimentary rock) (Lakes,
1983, 1995; Kim et al., 2016; Wang et al., 2016; Lee et al., 2017; Suh et al., 2017; Na and Sun, 2018).

Since the size effect is stemmed from the microstructures and topological features, the classical phe-
nomenological constitutive laws that rely on the evolution of local internal variables to represent history
may not be sufficient (Fleck et al., 1994; Mota et al., 2013; Miehe et al, 2013; Lin et al., 2015).
Further-more, the size effect also makes the first-order homogenization not suitable, as the corresponding
effective medium does not capture the high-order kinematics (Bryant and Sun, 2019; Na et al., 2019;
Huand Oskay, 2019). From the numerical perspective, rate-independent constitutive laws formulated
atmaterial points may also lead to spurious mesh-dependence when softening and/or damage leads
to strain localization (Bazant et al., 1984; Song et al., 2008; Na and Sun, 2016). Consequently,
regularization procedure is needed to ensure that the boundary value problem remains well-posed
(Belytschko et al.,2013; Sun and Mota,2014).

The phase field or other nonlocal variation of variational fracture models (e.g. eigenfracture [Schmidt
et al., 2009, Wang and Sun, 2017, Qinami et al., 2019] and thick level set [Moés et al., 2011, Cazes and Moés,
2015]) provide an simple treatment to introduce size effect for the damage mechanics. By employing the
smooth implicit function to represent sharp crack interface, this family of models regularize the sharp crack



surfaces by diffusive damage zones and therefore bypass the need to embed strong discontinuities (Bour-
din et al., 2008, Kuhn and Miiller, 2010; Miehe et al., 2010a,b; Hofacker and Miehe, 2013; Choo and
Sun, 2018; Bryant and Sun, 2018). This implicit representation of sharp interface also shows promising
results in simulating crack branching and dynamic fractures (Borden et al., 2012). However, the
introduction of the length scale to regularize the phase field also stimulates debates on the legitimacy
and justification of the length scales and the proper inverse problems for identifying the material
parameters (Lorentz et al., 2012; Wu and Nguyen, 2018; Geelen et al., 2019; Wu et al., 2020). In a recent
work (cf. Suh et al. [2020]), we introduce the phase field theory for cohesive fracture of micro-polar
continua. Our goal of this previous research was to provide a mean to introduce size effect directly
from the higher-order kinematics whileintroducing a mean to decouple the influence of the length scale
parameter of the phase field.

1.1 Why open source?

While technically feasible, the implementation of a phase field model for micropolar continua can be a com-
plex task. Even though the phase field fracture does not require embedding strong discontunities through
remeshing or enriching basis function, it does introduce additional field variables that must be resolved.
This coupled system of equations cannot be updated easily in a monolithic solver and hence different de-
signs of sequential solvers are developed in the last decades (Amor et al., 2009; Ambeati et al., 2015).
Toextend a phase field model for micropolar continua, additional considerations must be given to solve
theinterpolated micro-rotation, displacement and phase field properly.

In this work, our goal is to provide a detailed walk-through of a mixed finite element implementation
of the micropolar phase field model with a code base called FEniCS that enables simulations with limited
programming (Logg et al., 2012; Alnzes et al, 2015; Langtangen et al., 2016). By leveraging a
domain-specific language embedded in Python called unified form language, we specify the finite
element discretization of the variational form of our models and design an sequential solver that
provides incremental solutionsin two-dimensional domains. By making this implementation completely
accessible with an open-source license, we may potentially remove the technical barrier for
practitioners and researchers who are notnecessarily familiar with computer implementation but are
interested at experimenting with the phase field fracture theory for micropoluar continua.
Consequently, this work will benefit users from the many built-in features of the code, including the
many scientific computing tools embedded in FEniCS, while enables them to adapt and extend the
applications of the models to a broader class of problems. More importantly, by making the code
transparent and accessible to public, we provide an opportunity for third- party verification and
validation such that an open standard can be established. By minimizing the waste of time to “reinvent
the wheel”, this open source implementation will also save time and resource. The metadata of the
open sourced program is summarized in Table 1.

Table 1: Code metadata

Current code version v1.0

Permanent link to repository https://github.com/hyoungsuksuh/micropolar_phasefield

Legal code license Creative Commons Attribution 4.0 International Public License
Versioning system used git

Software code languages python

Dependencies FEniCS Project, Version 2019.1.0 and up

As for notations and symbols, bold-faced and blackboard bold-faced letters denote tensors (including
vectors which are rank-one tensors); the symbol ’-” denotes a single contraction of adjacent indices of two
tensors (e.g., a - b = a;b; or ¢ - d = c;jdj;); the symbol “” denotes a double contraction of adjacent indices
of tensor of rank two or higher (e.g., C : & = Cjjj€y); the symbol “®” denotes a juxtaposition of two vectors
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Fig. 1: Flowchart of the phase field method for modeling cohesive fracture in micropolar continua.

(e.g., a®b = a;b)) or two symmetric second order tensors [e.g., (« @ B);jx = &;jBx]. We also define identity
tensors: I = §;;, I = 66j, and I= di16jx, where J;; is the Kronecker delta. As for sign conventions, unless
specified, the directions of the tensile stress and dilative pressure are considered as positive.

2 FEniCS implementation of micropolar phase field model

This section outlines the necessary steps that implements the length-scale-insensitive phase field model for
cohesive fracture in micropolar continua, based on our theoretical [resented in Suh et al. (2020). Our focus
is on how to leverage the Unifed Form Language (UFL), a domain specific language, to implement the
variational form of a boundary value problem such that the information flow of the codes stay close to the
mathematical notation as much as possible.

Throughout this section, we present a step-by-step mathematical derivation, where at each step we
provide the corresponding part of FEniCS implementation. Since the entire scripts we developed is avail-
able online, we only illustrate and explain the code blocks that have direct one-to-one relationship with the
derivation steps.

We start with the kinematic and constitutive relations for size-dependent micro-polar elastic mate-
rial undergoing infinitesimal deformation, followed by the principle of minimum potential energy that
yields the governing equations to be solved. The corresponding variational form is recovered by the stan-
dard procedure while we adopt the Taylor-Hood finite element space for the displacement and micro-
rotation fields that satisfies the Ladyzhenskaya-Babuska—Brezzi (LBB) stability condition (Chapelle and
Bathe, 1993, Babugka and Narasimhan, 1997; Sun et al., 2013, 2017; Sun, 2015; Na and Sun, 2017). The
regularization length insensitive phase field formulation is then extended to the plane micropolar elas-
ticity which enables us to simulate cohesive fracture for the higher-order continua. We also describe the
solution strategy for the micropolar phase field model based on the operator-split, which may potentially
be more efficient and robust compared to monolithic solution scheme.



2.1 Mixed finite element for plane micropolar elasticity

We first present the implementation of the micropolar elasticity problem.

2.1.1 Problem statement

Consider a micropolar elastic solid under plane strain condition that occupies a domain B € R? with the
boundary 90B. Unlike the Cauchy continua, each material point of a micropolar continuum P may expe-
rience both translational in-plane displacement u = [u up]" and out-of-plane micro-rotation 63 (Eringen,
1966 Ehlers and Volk, 1998, Eringen, 2012, Atroshchenko and Bordas, 2015). In this case, micro-rotation
represents the local rotation of the material point itself, which is independent of the spin component of the

velocity gradient. The micropolar straine and micro-curvature ¢ are defined as,
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where E = E;j; is the Levi-Civita permutation tensor. In this 2D setting, the first and second indices (i and
j) of the Levi-Civita tensor take values 1 or 2, while its third index is fixed as k = 3. The non-symmetric
micropolar strain tensor can further be decomposed into symmetric and skew-symmetric parts (i.e., &€ =
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The definitions of micropolar strain & = Y™ + %%V and micro-curvature ¢ can easily be transcribed into

Python code by using mathematical operators in the UFL of FEniCS as follows.

1 # Micropolar strain
2> def epsilon(u, theta):

4 strain = as_tensor ([[u[0].dx(0), ul[l].dx(0) - thetal,
; [uf[0].dx (1) + theta, ull]l.dx(1)]11)
7 return strain

8

9 # Micropolar strain: symmetric part

10 def epsilon_sym(u) :

11

12 strain_sym = as_tensor ([[u[0].dx(0), (1./2.)*(ul
13 [(1./2.)%x(u[0].dx(1l) + u

15 return strainisym
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# Micropolar strain: skew-symmetric part
def epsilon_skew(u, theta):

strain_skew = as_tensor ([[0.0, (1./2.)x(u[l].dx(0) - u[0].dx(1l)) - thetal,
[(1./2.)*(u[0].dx (1) - uf[l].dx(0)) + theta, 0.0]1])

return strain_skew

5 # Micro-curvature

def phi(theta):

curvature = as_vector ([theta.dx(0),
theta.dx (1) 1)

return curvature

Listing 1: Definition of the micropolar strain and micro-curvature.

Compared to Egs. (1)-(4), one can easily notice that the variables u and theta in Listing 1 correspond
tothe in-plane displacement # and out-of-plane micro-rotationy vhile . dx (i) denote the spatial derivative
0/0x;. Also, we use as_vector () or as_tensor (), which are the operators for scalar to vector/tensor
conversion, in order to specify the return value types of the functions [Alnzes, 2012, Alnees et al., 2014]. We
then consider the following linear micropolar elastic stored energy density . (g, ¢):

_ 1 1. _
lpe(é,¢):§é:C:§+§¢-D~¢. (5)

We consider the cases where both elastic moduli mathbbC and D are positive definite such that it is neces-
sary to put work into the elastic body to deform it from an unloaded equilibrium configuration. In addition,
we consider that the material is isotropic such that elastic moduli C and D can be defined as,

C=AI®I) + (u+x)+ul; D=1I, ©6)

where A, p, x, and <y are the material constants, that are related to the following engineering material
parameters (Diegele et al., 2004; Li and Lee, 2009; Atroshchenko and Bordas, 2015):

_ 2u+tx
2
A

Ve 2A+2u+x

@)
I=,] m characteristic length in bending,

2(p+x)

G shear modulus,

Poisson’s ratio,

coupling number, N € [0,1].

For a two-dimensional linear elastic isotropic body composed of micro-polar continua, at least four elastic-
ity parameters are needed to characterize the elastic constitutive responses. In our implementation, we use
the material parameters G, v, [, and N as inputs. The characteristic length I quantifies the range of couple
stress which implies the size-dependent elastic behavior related to the high-order kinematics. On the other
hand, the coupling number N indicates the degree of micropolarity of the material. For example, if N =0,
the micropolar elasticity reduces to the classical elasticity, while N = 1 corresponds to the couple-stress
theory (Mindlin, 1962; Mindlin and Tiersten, 1962; McGregor and Wheel, 2014).

Based on the strain decomposition in Egs. (3) and (4), our previous study [Suh et al., 2020] decomposed
the strain energy density in Eq. (5) into three different parts: (1) the Boltzmann part 1/Jf (85Y™); (2) the micro-
continuum coupling part S (25%¥); and (3) the pure micro-rotational part (). Since we will further
incorporate the phase field model to simulate cohesive fracture in micropolar material later in Section
2.2, this energy-split strategy enables us to provide a platform that is capable of exploring the effects of
distinctdegradation on different energy-conjugated pairs. The strain-energy-splitting reads,

Pe(®, &) = 7 (BY™) + 9 (85Y) + 9 (), ®)



where the partitioned energy densities can be written as:
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The strain energy densities in Egs. (9)-(11) are used to define force stress¢ and couple stress mR, by taking
the derivatives with respect to the micropolar strain and micro-curvature, respectively:

= alzbt? _ 0 B Cy =Sym =Sym =skew
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R
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A

In Eq. (12), we can also decompose force stress into the Boltzmann part &8 and the micro-continuum
coupling part &€, such that (&8, z¥™), (€, 2%%), and (@R, $) become distinct energy-conjugated pairs.
The partitioned strain energy densities can thus be recovered as follows:

=
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Similar to Listing 1, our FEniCS code transcribes the force and couple stresses defined in Egs. (12) and
(13)as follows.

1 # Force stress: the Boltzmann part
> def sigma_B(u):

A eps_sym = epsilon_sym(u)
stress_B = lamdaxtr (eps_sym)xIdentity (2) + (2.xmutkappa)*eps_sym
7 return stress_B
9 # Force stress: the micro-continuum coupling part
10 def sigma_C(u, theta):
11
12 eps_skew = epsilon_skew (u, theta)
13 stress_C = kappaxeps_skew
14
15 return stress_C
16
17 # Force stress
18 def sigma(u, theta):
19
20 stress = sigma_B(u) + sigma_C(u, theta)
21
22 return stress
24 # Couple stress
25 def m_R(theta):
27 curvature = phi (theta)
28 couple = gammaxcurvature
29

30 return couple

Listing 2: Definition of the force and couple stresses.



In Listing 2, t r denotes the trace of a given tensor; Identity (2) corresponds to the second-order
identity tensor I for this two-dimensional setting; 1amda, mu, kappa, and gamma are the material
parameters which correspond to A, y, k, and +y, respectively.

Based on the fundamental lemma of calculus of variations, seeking the stationary point of the Lagrange
functional yields the Euler-Lagrange equation to be solved. Therefore, assuming no body forces or body
couples, and by taking the first variations of Eq. (5) with respect to the field variables (# and 6;), we
finally obtain the following set of coupled field equations (Neff, 2006; Li and Lee, 2009; Eringen,
2012; Atroshchenko and Bordas, 2015):

V-od=0 balance of linear momentum, (15)

3
V-mR+E:6=0 balance of angular momentum. 16
g

We are now equipped with all the necessary ingredients for finite element analysis for the plane micropolar
elasticity. Starting from Egs. (15) and (16), the mixed finite element formulation and the
corresponding FEniCS code blocks will be presented in the following subsection.

2.1.2 Mixed finite element formulation

The variational formulation starts with specifying the boundary conditions appropriately. Since the do-
main boundary 08 = 9B, UdB;, = 9By UdB;, is composed of Dirichlet (displacement 9B, and micro-
rotation 0Bp) and Neumann boundaries (traction 93;, and moment 08;,), we can specify the boundary
conditions as follows:

u=1i ondB,,

9 :é aB 7

_3 3 . on 0 (17)
c-n=t, on db;,,

_R

n="H, ondBy,

where n is the outward unit normal on the boundary surface; i, @3, t,, and f,, are the prescribed displace-
ment, micro-rotation, traction, and moment, respectively. For the purposes of the finite element implemen-
tation, we define the trial spaces for the solution variables V;, and Vj as,

Vi={u:B—R|uc[H(B)P, uly, =i}, (18)
Vo={6::B R |65 € H'(B), 5]y, = b5}, (19)

where H* denotes the Sobolev space of order w. The trial spaces in Eqs. (18) and (19) indicate that we
employ the Taylor-Hood finite element space to ensure numerical stability (Bathe, 2001; Brezzi and
Fortin,2012). Similarly, the corresponding test function spaces are defined as:

Vy={n:B Ry e [HB)P, 15, =0}, (20)
Ve={g:B=R|¢ € H'(B), &los, =0} (21)

Finally, the standard weighted residual procedure yields the weak statement for Egs. (15) and (16),
whichis to fingd}{&, V;, x V, such that for all {5,{} € V; x V¢,

(/B &0, &) : o (u,05) dV — ./am 7t dA =0, 22)

/Bq;(g)-mR(93)dV—/B§-%:frC(u,eg,)dV—/ ¢ fndA =0, (23)

tm

where Eq. (22) is the weak statement of the balance of linear momentum, and Eq. (23) is the weak
statmentof the balance of angular momentum, respectively.



Equipped with Listings 1 and 2, our FEniCS implementation follows the similar procedure described
in Egs. (17)-(23). The corresponding code block starts with defining the finite element function space as
illustrated in Listing 3.

# Define mixed finite element

2 u_elem = VectorElement ('CG’, mesh.ufl_cell(), 2)
3 theta_elem = FiniteElement ('CG’, mesh.ufl_cell (), 1)
mixedUT = u_elemxtheta_elem

SIS

» # Define finite element function space
7 V = FunctionSpace (mesh, mixedUT)

Listing 3: Definition of the finite element function space by using mixed element.

Here, we use VectorElement and FiniteElement to specify the elements. The first argument ' CG’
denotes the element type, implying that we adopt the standard Lagrange elements. The second argu-
ment mesh.ufl_cell () indicates the unit cell of the discretized domain mesh, and the third argu-
ment specifies the degree of the element. Then, the operator % constructs the mixed finite element (i.e.,
the Taylor-Hood element in this case), while the corresponding function space can be defined by using
FunctionSpace. Based on the function space V that we defined, we specify the trial and test functions
[cf. Egs. (18)-(21)] as follows.

# Define test & trial spaces
> u, theta = TrialFunctions (V)
3 eta, zeta = TestFunctions (V)

Listing 4: Definition of trial and test functions.

Finally, assuming that the problem domain boundary is moment-free, we define the variational form [cf.
Egs. (22) and (23)] by using the predefined trial and test functions in Listing 4. As FEniCS is capable
of defining the coupled partial differential equations into one compound system, we directly define the
com-pound variational form as follows.

1 # Variational form

a = inner (epsilon(eta,zeta), sigma(u, theta)) x dx \
3 + inner (phi(zeta), m_R(theta)) * dx \
4 - inner(zeta, E3_sigma_C(u, theta)) * dx
6 L = dot (eta, traction) =* ds (1)

Listing 5: Plane micropolar elasticity in variational form.

Here, a is a direct transcription of the bilinear form where the expression inner followed by «dx denotes
the inner product, and L is the linear form in which «ds (1) indicates the surface integration over the
predefined Neumann boundary. As one may have noticed, the close correspondence between the mathe-
matical formulas in Egs. (1)-(23) and Listings 1-5 highlights the key strength of FEniCS; the capability of
directly translating the mathematical model into the similar Python code (Logg et al., 2012; Alnees et
al.,2015; Langtangen et al., 2016).

Once the variational form and Dirichlet boundary conditions (e.g., BC in Listing 6) are properly
defined, the only remaining step is to ask FEniCS to compute the solution. This can also be done within
few lines of code as follows.

# Solution
> x_h = Function (V)

\ # Define variational problem & solver
5 problem = LinearVariationalProblem(a, L, x_h, BC)
6 solver = LinearVariationalSolver (problem)

s # Solve system
9 solver.solve ()
10 u_h, theta_h = x_h.split ()

Listing 6: Solution scheme for a given linear variational problem.



By defining a Function object x_h that represents the solution, LinearVariationalProblemdefinesa
linear variational problem and LinearVariationalSolver constructs a linear solver. Our FEniCS code
computes the finite element solution x_h by executing solver.solve (), while x_h.split () splits the
solution into displacement (u_h) and micro-rotation (theta_h) fields.

2.2 Extension to micropolar phase field fracture

Using the FEniCS implementation of a two-field mixed FEM for plane micropolar elasticity as our starting
point, we now describe the procedure to extend this code to simulate the cohesive fracture in micropolar
continua in a phase field framework. We design a code that requires minimal intervention to extend the
model, while introducing a modular design that makes it easy to modify the code with different driving
force and degradation function for the phase field fracture models.

2.2.1 Phase field approximation for damaged micropolar continua

Phase field fracture models employ an implicit density function I'; (d,V d) to indicate the locations of
evolving sharp cracks I' represented by regularized domain (Bourdin et al., 2008, 2012; Miehe et al.,
2010a), i.e.,

/r dT ~ /B T, (d,Vd)dv, (24)

where d € [0,1] is the phase field or damage variable that varies from d = 0 in undamaged regions to
d = 1 in completely damaged regions. In this study, we consider the following general form of the surface
density functional (Lorentz et al., 2012; Geelen et al., 2019):

1
T, (d,Vd) = % [%w(d) Y1 (Vd- Vd)} ;o= 4/0 Jw(s) ds, (25)
where I is the regularization length that controls the size of the diffusive zone, and w(d) is the local dissi-
pation function which governs the shape of the regularized profile (Clayton and Knap, 2011, Mesgarnejad
et al., 2015, Wu and Nguyen, 2018, Wu et al., 2020]. While the quadratic local dissipation w(d) = d? has
become the standard in modeling brittle fracture, previous studies have pointed out that the linear local
dissipation w(d) = d allows to recover the pure elastic phase until the stored energy reaches a certain
threshold, which is independent to the regularization length I, (Lorentz et al., 2012; Wu and Nguyen,
2018; Bleyer and Alessi, 2018; Geelen et al,, 2019). In order to take advantage of the regularization
length in-dependent cohesive response, our previous work (Suh et al., 2020) adopted the linear local
dissipation function so that Eq. (25) can be simplified into,

3 3l
—8lcd+ 3 (Vd-vd). (26)

Phase field approximation in Eq. (24) indicates that evolution of the damage variable within a body B
corresponds to the generation of new crack surfaces. Therefore, the total potential energy of a damaged
micropolar material ¥ is composed of the strain energy [Eq. (5)], and the surface energy that contributes
tothe crack growth:

Ty (d,Vd)

= /BgB(d)%“(éSym) +gc(d)yg (85Y) + gr(A)Ye (@) + 9.~ (V™) +G Ty (4, V d) dV,  (27)

= YPpuk (BY™, 25KV, B, d)

where G, is critical energy release rate, and ¥k is the degrading bulk energy of the material. Here, in
order to account for a tension-compression asymmetry, we decompose the Boltzmann energy into positive
and negative parts (i.e., P2 = B+ + ¢pB-):

3
[A (trey™2 4 (2u 4 x) ™ éftym} ;e =Y <éf,ym>i (n, @my), (28)

N =

B+ _
e =



where (o), = (o = |e|) /2 is the Macaulay bracket operator; &' and 1, denote the principal Boltzmann
strain and its corresponding direction, respectively. In Eq. (27), g;(d) denote the distinct degradation for
the corresponding fictitious undamaged energy densities ¢, (i = B, C, R), i.e.,

g(d) ified
i(d) = ; DUU={B,C,R} ; DNU=0Q, 29
8i(d) {1 ficy { h (29)
where we assume that the strain energy density parts can either be degraded (i € ) or remain completely
undamaged (i € ). In order to replicate the cohesive fracture response, we adopt a special degradation

function g(d) that has an associated upper bound on the regularization length scale (Lorentz et al.,
2012;Geelen et al., 2019), i.e.,

(1—d)? 3G,

;e < ’ 30
(1—d)* 4 md (1+ pd) <8(P+2)t/}cm 30)

g(d) =

where m > 1is a constant, p > 1 is a shape parameter that affects the material response by controlling the
size of the fracture process zone, and it is the threshold energy density that restricts the crack growth to
initiate above this value. From our previous study (Suh et al., 2020), we require that:

3G
8lcchrit.

It is noted that our choice of degradation function g(d) with a specific m parameter plays an important
role in phase field approximation of cohesive fracture. However, we omit the justification for these choices
for brevity. Interested readers are referred to (Lorentz et al., 2012; Geelen et al., 2019; Suh et al., 2020)
forfurther information.

Up to this point, we prepared the essential parts to extend our FEniCS code presented in Section 2.1
into a phase field model for cohesive fracture in micropolar material. Here, in addition to the micropolar
material parameters G, v, [, and N, we require four more input parameters: G, I¢, Pcrit, and p. As we already
defined the stress and strain measures in Listings 1-2, we additionally implement the essential components
for the extension as follows.

@1

1 # Boltzmann energy (positive part)
> def psi_B(u):

4 eps_sym = epsilon_sym(u)

6 epsl = (1./2.)xtr(eps_sym) + sqgrt((l./4.)«(tr(eps_sym)**2) — det (eps_sym))
7 eps2 = (1./2.)xtr(eps_sym) — sqgrt((l./4.)«(tr(eps_sym)~**2) - det (eps_sym))
8

9 tr_eps_plus = (1./2.)*(tr(eps_sym) + abs(tr(eps_sym)))

10 eps_plus_doubledot_eps_plus = \
11 ((1./2.)x(epsl + abs(epsl)))*x*2 + ((1./2.)*(eps2 + abs(eps2)))**2

13 energy_B = (1./2.)*lamdax (tr_eps_plus**2) + (mu+(kappa/2.))*eps_plus_doubledot_eps_plus
15 return energy_B

17 # Micro-continuum coupling energy
18 def psi_C(u, theta):

20 eps_skew = epsilon_skew (u, theta)

22 eps_skew_doubledot_eps_skew = \
eps_skew[0,0]**2 + eps_skew[0,1]**2 + eps_skew[1l,0]*%x2 + eps_skew[l,1]*x2

25 energy_C = (1./2.)~*kappa*eps_skew_doubledot_eps_skew
27 return energy_C

29 # Micro-rotational energy



def psi_R(theta):
curvature = phi (theta)
curvature_dot_curvature = curvature[0]**2 + curvature[l]*x2
energy_R = (1./2.)*gamma*curvature_dot_curvature
return energy_R

# Bulk energy
def psi(u, theta):

if degradation == 'B’:

energy = psi_B(u)
elif degradation == 'B+C’:

energy = psi_B(u) + psi_C(u, theta)
elif degradation == 'B+R’:

energy = psi_B(u) + psi_R(theta)
elif degradation == 'B+C+R’:

energy = psi_B(u) + psi_C(u, theta) + psi_R(theta)
return energy

# Degradation function, g(d)

def g_d(d):
numerator = (1.-d)*=*2
denominator = (1l.-d)**2 + mxdx (1.+p=*d)
g_d_val = numerator/denominator

return g_d_val

# Derivative of g(d)

5 def g_d_prime(d) :

numerator = (d=-1.)x(d*x(2.%p+l.) + 1.)*m
denominator = ((d**2)* (mxp+l.) + d*x(m-2.) + 1.)*%x2
g_d_prime_val = numerator/denominator

return g_d_prime_val

Listing 7: Definition of the partitioned energy densities and degradation function.

Observe that the energy density parts defined in Listing 7 directly inherit the predefined functions de-
scribed in Listing 1. In this code block, we aim to specify the bulk energy subjected to the degradation
(i.e., Yico ) through the i f statement with a predefined variable degradat ion which is equivalent to
the set © in Eq. (29). We also define the degradation function g(d) and its derivative [i.e.,, g_d (d) and
g_d_prime (d)] where m and p correspond to the parameters m and p in Eq. (30).

By assuming no body forces or body couples, we finally arrive at the set of Euler-Lagrange equations
to be solved, which can be obtained by taking the first variations of the energy functional ¥ with respect
to three field variables (u, 63, and d):

V. {gg (d)oB + gc(d)&c} =0 balance of linear momentum, (32)
3
V- [gR(d)ﬁzR} +E: [gc(d)ﬁ'c} =0 balance of angular momentum, (33)
/ i 3gc 22 o . .
g | Y vl + Sl (1 -2V d) =0 damage evolution equation. (34)
i€® ¢

Following the treatment used in (Miehe et al., 2015; Bryant and Sun, 2018), we ensure the crack
irreversibil- ity by introducing a history function H. In particular, we define H as a pseudo-temporal

maximum of the



degrading strain energy density and at the same time as a variable that restricts the crack growth to initiate
above a threshold i to approximate the cohesive response. Based on this treatment, Eq. (34) becomes:

g(dH + ?é—% (1 — ZICZVZd) =0; H = max {wcm + <Z l/Jé — zpcrit> }, (35)
¢ +

TE [O,f] ic®

where the definition of the history variable H can be transcribed into a simple Python code block as follows.

1 # History variable
2 def H(u_old, theta_old, u_new, theta_new, H_old):

4 psi_i_new = psi(u_new,theta_new) - psi_cr

5 psi_i_old = psi(u_old,theta_old) - psi_cr

6

7 psi_new = psi_cr + (1./2.)*(psi_i_new + abs(psi_i_new))
8 psi_old = psi_cr + (1./2.)*(psi_i_old + abs(psi_i_old))

10 return conditional (1t (psi_old, psi_new), psi_new, H_old)

Listing 8: Definition of the history variable.

As illustrated in Listing 8, function H is designed to return a pseudo-temporal maximum bulk energy by
comparing the current bulk energy with the previous history variable through the UFL operator conditional
(Alnaes, 2012; Alnees et al., 2014).
We now collected all the additional components to extend our FEniCS code for plane micropolar elastic-
ity presented in Section 2.1. Also starting from the Euler-Lagrange equations in Egs. (32), (33), and (35), the
variational formulation and the corresponding FEniCS implementation will be presented in the following
subsection.

2.2.2 Variational formulation

Recall Section 2.1.2 that the domain boundary can be decomposed into Dirichlet (05, and 9/35) and Neu-
mann (0B;, and 0B;,) boundaries, we thus prescribe the boundary conditions as follows:

u=1 ondB,,
63 = 93 on 839,
[85(@)® + gc(d)oC| -n=t, ondB,, (36)
[gR(d)mR} n =ty on 9B,
Vd-n=0 on dB.
The initial conditions are imposed as,
u=1ugp, 93: 93|0. (37)
Since we now have three field variables (i.e., u, 63, and d), total three trial spaces should be defined, i.e.,
V= {u :B - R |u € [H(B)?, ulys, = u} (38)
ng{93:8—>]R|93€H1(B), 93|339:é3}, (39)
Vd:{d:B—>lR|deH1(B)}. (40)
The corresponding test function spaces read,
Vy = {n:B R |y e [HB)P, 1]y, =0}, (41)
Ve={¢:B=R|¢€ H'(B), Elos, =0}, (42)

Vg:{@:B—HR\CeHl(B)}. (43)



Egs. (38)-(43) imply that we employ the Taylor-Hood finite element space for u# and &, while the phase
field d is discretized via linear finite elements. By adopting similar process employed to obtain Egs. (22)
and (23), we get the weak statement for the Euler-Lagrange equations in Egs. (32), (33), and (35), that is:
find {u, 03,d} € Vi, x Vg x Vg such that for all {#,&,{} € Vy x Ve x Vg,

G, =Gg=G;=0. (44)

Here, G, — R is the weak statement of the balance of linear momentum:
Gu= [ 28): [0(@)o® (W) + gc(@)o (w,69)] av— [ y-trda=o, )
. JoB,,

Gp — R is the weak statement of the balance of angular momentum:
- 3 A
Go= [ () gr@m @) av — [ ¢-E: [sc@o(won)] av— [ ¢-tan=0, s
tm

and G; — R is the weak statement of the damage evolution equation:

3Gc
81,

Gd:/Bg-g’(d)HdV—l- [/Bg+zz§(vg-w) dv} —o0. 47)

The corresponding FEniCS transcription again starts with defining the finite element function spaces.
Since we already defined the Taylor-Hood finite element function space for the displacement and micro-
rotation fields in Listing 3, we additionally define the function spaces for the phase field and the
historyvariable as follows.

# Define function spaces
> W = FunctionSpace (mesh, ’'CG’, 1) # phase field
3 WW FunctionSpace (mesh, ’'DG’, 0) # history variable

Listing 9: Definition of the function spaces for the phase field and the history variable.

Here, ' CG’ and ' DG’ in the second argument of FunctionSpace denote the standard Lagrange element,
and discontinuous Lagrange element families, respectively. Once we define the function space appropri-
ately, the next step is to define trial and test functions. Since the damage evolution equation in Eq. (47) is
nonlinear due to the degradation function [Eq. (30)], this nonlinearity, in addition to our definition of H in

Eq. (35), requires us to replace Listing 4 with the following set of test and trial spaces.

# Define test functions
> eta, xi = TestFunctions (V)
3 zeta = TestFunction (W)

5 # Define trial functions
6 del_x = TrialFunction (V)
7 del_d = TrialFunction (W)

9 # Define solution variables and history variable
10 X_new = Function (V)

11 u_new, theta_new = split (x_new)

12

13 Xx_old = Function (V)

14 u_old, theta_old = split (x_old)

15

16 d_new
17 d_old
18

19 H_old = Function (W)

Function (W)
Function (W)

Listing 10: Definition of trial and test functions for the micropolar phase field model.
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In this case, we express the variational form in Eqgs. (45)-(47) by using the solution variables (i.e., x_old,
x_new, d_old, and d_new) instead of using trial functions defined in Listing 10. Assuming that the prob-
lem domain is traction- and moment-free, we replace Listing 5 with the following code block that defines
the variational form [cf. Egs. (45)-(47)].

# Weak form: balance equations

if degradation == ’"B’:
G_ut = g_d(d_new) x inner (epsilon(eta, xi), sigma_B(u_new)) x dx \
4 inner (epsilon(eta, xi), sigma_C (u_new, theta_new)) = dx \
+ inner (phi(xi), m_R(theta_new)) % dx \
= inner (xi, E3_sigma_C (u_new, theta_new)) * dx
elif degradation == ’'B+C’:
G_ut = g_d(d_new) x inner (epsilon(eta, xi), sigma_B(u_new)) x dx \
+ g_d(d_new) x inner (epsilon(eta, xi), sigma_C (u_new, theta_new)) x dx \
4 inner (phi(xi), m_R(theta_new)) x dx \

- g_d(d_new) * inner(xi, E3_sigma_C (u_new, theta_new)) * dx

elif degradation == ’'B+R’:
G_ut = g_d(d_new) * inner (epsilon(eta, xi), sigma_B(u_new)) * dx \
+ inner (epsilon(eta, xi), sigma_C(u_new, theta_new)) x dx \
+ g_d(d_new) * inner (phi(xi), m_R(theta_new)) % dx \
= inner (xi, E3_sigma_C (u_new, theta_new)) * dx
elif degradation == ’'B+C+R’:
G_ut = g_d(d_new) x inner (epsilon(eta, xi), sigma_B(u_new)) x dx \
+ g_d(d_new) x inner (epsilon(eta, xi), sigma_C (u_new, theta_new)) x dx \
+ g_d(d_new) * inner (phi(xi), m_R(theta_new)) = dx \
- g_d(d_new) * inner(xi, E3_sigma_C (u_new, theta_new)) * dx
J_ut = derivative(G_ut, x_new, del_x) # jacobian

# Weak form: phase-field equation

G_d = H(u_old, theta_old, u_new, theta_new, H_old)+inner(zeta, g_d_prime (d_new)) x dx \
+ (3.xGc/ (8.x1lc)) *= (zeta + (2.%1lc*x2)xinner (grad(zeta), grad(d_new))) x dx

J_d = derivative(G_d, d_new, del_d) # jacobian

# Problem definition

35 p_ut = NonlinearVariationalProblem(G_ut, x_new, BC, J_ut)

p_d = NonlinearVariationalProblem(G_d, d_new, BC_d, J_d)

Listing 11: Variational form of the micropolar phase field model.

As we later employ a solution scheme based on the operator splitting (which will be described in Section
2.2.3), we intentionally define two variational problems that are decoupled. Unlike the linear
variational problem in Listing 6, each system requires us to define the Jacobian matrices to specify the
problem throughNonlinearVariationalProblem. However, one of the the strengths with FEniCS is
that it is capable of symbolically deriving the Jacobian matrix by using the operator derivative as
illustrated in Listing 11,so that there is no need for differentiations to derive the Jacobian matrix
explicitly.

2.2.3 Operator-split solution scheme

We now describe an efficient solution procedure and its FEniCS implementation based on the operator-
split solution scheme, which is also known as the staggered scheme. As previously hinted by Listing

11, the main idea in this approach is to algorithmically decouple the system and successively update the
field variables (Miehe et al., 2010a; Na and Sun, 2018; Bryant and Sun, 2018; Geelen et al., 2019). In the
first partof this operator-split setting, we update the phase field while the displacement and
micro-rotation fieldsare held fixed. Since the damage evolution equation in Eq. (35) is nonlinear, the
phase field is obtainediteratively once the nonlinear solver converges within a predefined tolerance.
The second part then advances the displacement and micro-rotation fields with a new damage field
being fixed. Compared to themonolithic approach, this operator splitting may potentially be more
efficient and robust as pointed out inMiehe et al. (2010a).
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As we described above, the staggered scheme requires us to adopt two different solvers for each system.
Thus, a necessary preprocessing step for the solution scheme in FEniCS is to specify the solvers as follows.

# Set constraints for the phase field

d_min = interpolate (Constant (DOLFIN_EPS), W) # lower bound
d_max = interpolate (Constant(1.0), W) # upper bound
p_d.set_bounds (d_min, d_max) # set bounds for the phase field

# Construct solvers
solver_ut = NonlinearVariationalSolver (p_ut)

solver_d = NonlinearVariationalSolver (p_d)

# Set nonlinear solver parameters

newton_prm = solver_ut.parameters|[’newton_solver’]

newton_prm[’relative_tolerance’] = newton_Rtol

newton_prm[’absolute_tolerance’] = newton_Atol

newton_prm[’maximum_iterations’] = newton_maxiter

5 newton_prm[’error_on_nonconvergence’] = False
snes_prm = {"nonlinear_solver": "snes",
"snes_solver" : { "method": "vinewtonssls",

"line_search": "basic",
"maximum_iterations": snes_maxiter,
"relative_tolerance": snes_Rtol,
"absolute_tolerance": snes_Atol,
"error_on_nonconvergence": False,

+}

25 solver_d.parameters.update (snes_prm)

Listing 12: Preprocessing step for operator-split solution scheme.

We employ the Newton-Raphson method to advance the displacement and micro-rotation fields, while
the Scalable Nonlinear Equations Solvers (SNES) from the open-source toolkit PETSc is adopted to solve
the damage evolution equation since the phase field possesses lower and upper bounds (Balay et al., 2001,
2019). One can also tune the solvers by specifying the solver parameters as illustrated in Listing 12.

Now we have arrived at our final destination: the FEniCS implementation of the operator-split solution
scheme. Unlike Listing 6, this solution scheme should be programmed explicitly. As illustrated in Listing
13, the most outer loop corresponds to the increasing sequence of discrete times from t_1i to t_f. At each
time step, we prescribe the displacement-driven incremental load on the specified region, followed by the
staggered loop. The staggered iteration solves the phase field equation through solver_d.solve () to
update the phase field, and then solves the balance equations to advance the displacement and micro-
rotation by solver_ut.solve (). This process is repeated until the residual reaches the predefined tol-
erance staggered_tol or the number of iteration reaches the specified staggered_maxiter.

# Staggered scheme
t = t_i

; while t <= t_f£:

20

21

t += dt
presLoad.t = txdisp_rate

iter = 0
err =1

while err > staggered_tol:
iter += 1

# Solve phase field equation
solver_d.solve ()

# Solve balance equations
solver_ut.solve ()

# Split x into u and theta



u_new, theta_new = x_new.split ()
u_old, theta_old = x_old.split ()

# Update fields
x_old.assign (x_new)
d_old.assign (d_new)

(

H_old.assign (project ( \
conditional ( \
1t (H_old, \

psi_cr+(1./2.)* (psi(u_new,theta_new)-psi_cr+abs (psi (u_new,theta_new)-psi_cr))), \
psi_cr+(1./2.) % (psi(u_new,theta_new)-psi_cr+abs (psi (u_new,theta_new)-psi_cr)), \
H_old \
), WW))

# Check convergence

err_u = errornorm(u_new, u_old, norm_type = ’"12’, mesh = None)
err_theta = errornorm(theta_new, theta_old, norm_type = "12’, mesh = None)
err_d = errornorm(d_new, d_old, norm_type = ’"12’, mesh = None)
err = max (err_u, err_theta, err_d)

if err < staggered_tol or iter >= staggered _maxiter:
break

Listing 13: Operator-split solution scheme.

In this section, we derived a phase field model for cohesive fracture in micropolar continua step by
step, and provided their counterparting FEniCS code blocks at each step. Since we only described the
partitioned code blocks throughout Section 2.2, we complete this section by providing a flow chart that
summarizes the entire code structure. As illustrated in Fig. 1, the very first step to solve a boundary
value problem is to specify all the input parameters (i.e., material properties G, v,[, N, G, I, Yorit, and p, as
well as solver parameters) and importing the mesh. Having defined the boundary conditions on domain
boundaries properly, the program defines the internal variables as we previously described in Listings 1,
2,7, and 8. Once the variational form is defined, our implementation then solves the system of equations
by adopting operator-split approach discussed in Section 2.2.3.

3 Numerical examples

The purpose of this section is to verify the implementation with available benchmarks and demonstrate
the capability of the FEniCS implementation of a phase field fracture model for micropolar continua. Our
first numerical example examines the classical problem of stress concentration around the hole. As a ver-
ification exercise, we compute the stress concentration factors and the stress field inside the domain with
different coupling numbers N and compare with the analytical solutions. Second example aims to show-
case the performance of the code by studying crack propagation in double notched micropolar elastic
specimen subjected to combined tensile and shear loads. All the numerical examples rely on meshes that
are sufficiently refined at the regions of interests, in order to properly capture the nonlocal nature of the
regularized fields.

3.1 Verification exercise: a circular hole in an infinite plate

If an infinite plate (composed of non-polar continua) with a circular hole is subjected to remote uniaxial
tension, the tangential stress reaches a value three times the applied stress at two points on the edge of the
hole perpendicular to the loading axis (Green, 1940). This factor is often referred as stress concentration
factor. Ariman (1967) has extended this stress analysis to micropolar elasticity material and find that this
stress concentration factor may vary depending on the micropolar effect for micropolar continua. Our first
numerical example serves as a benchmark problem for verifying the numerical implementation of the
mixed finite element code for micropolar elastic material introduced in Section 2. In particular, we would
like to verify whether we can recover the stress concentration factors obtained from analytical solutions in
the literature.



Fig. 2: A quarter-plate with a circular hole.

We consider an rectangular plate under pure tension oy that has a circular hole with diameter D at
the center. By symmetry, the problem domain is modeled as a finite quarter-plate of size 5D x 5D instead,
which is assumed to be sufficiently large enough to neglect any possible boundary effects (Fig. 2). As for the
boundary conditions, left and bottom boundaries are supported by rollers with fixed micro-rotation, while
we prescribe a uniform tension o on the right boundary. All other boundaries are maintained traction- and
moment-free during the simulation. Also, we choose the following material parameters for this example:
shear modulus G = 50 GPa, Poisson’s ratio v = 0.3 and bending characteristic length I = D. Within this
problem domain, we investigate the effect of micropolar effect on the stress concentration factors SCF (i.e.,
the ratio between the highest force stress to the applied stress 0p) and the distribution of the stress fields
by considering different coupling numbers N = 0.1, 0.25, 0.5, 0.75, and 0.9.

Figure 3 shows the exemplary distribution of normalized stress fields within the domain when the
coupling number is set to be N = 0.9. As expected, the maximum stress occurs on the edge of the hole
perpendicular to the loading direction, corroborated by other analytical and numerical observations
(Anderson, 1991; Yang et al., 2008; Eringen, 2012; Atroshchenko and Bordas, 2015).

N=010 N=025 N=050 N=075 N=090

Numerical result, SCFrpm 3.0531 2.9083 2.5649 2.2453 2.0907
Analytical solution, SCFnalytical 2.9728 2.8484 2.5490 2.2739 2.1416
Relative error, e 0.0270 0.0210 0.0062 0.0125 0.0237

Table 2: Stress concentration factors for a micropolar plate with a circular hole.

Table 2 summarizes the numerically computed stress concentration factor (SCFgn) compared to the
analytical solution (SCFnalytica) given in Eringen (2012). Here, we define the relative error (e) as,

_ |SCFFEM - SCPanalytica1|

48
SCF, analytical )

The overall results in Table 2 demonstrate that the stress concentration factor for the plate with a circular
hole can successfully be reproduced by our FEniCS implementation within 2.7% of relative error. The
numerical and analytical results also indicate that the maximum force stress become smaller as the coupling
number N increases, while the stress concentration factor reduces to the value obtained in the classical
elasticity (i.e., SCFanalytical = 3) when the coupling number approaches N — 0.
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Fig. 3: Normalized force stress fields within the problem domain with N = 0.9.
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By revisiting Section 2.1.1, notice that the definition of micropolar strain in Eq. (1) and force stress in
Eq. (12) imply that normal stresses are equivalent to those in the classical approach, whereas the shear
stresses depends on the micro-rotation. We therefore compare the analytically and numerically obtained
shear stress distributions along OA in Fig. 2, where the shear stress components in polar coordinates (i.e.,
0,9 and 0y,) are extreme. Fig. 4 shows the distribution of the normalized shear stress components along
OA (i.e., 8 = 45° in polar coordinates), where the solid curves with symbols indicate the numerical results
obtained from our FEniCS implementation, while the transparent curves denote the analytical solutions
from Eringen (2012). Since we set the bending characteristic length I = D to be small compared to the
size of the domain (5D x 5D), all the results tend to asymptotically converge towards the value of -0.5 as
r increases regardless of the degree of micropolarity. Furthermore, in the region where r < [, the degree
of skewness in force stress tensor (i.e., the difference between shear stress components) tend to increase as
N increases, which implies that the coupling number N directly controls the degree of asymmetry of the
model. The numerical results in good agreement with the analytical solution verify the correctness of the
FEniCS implementation of mixed finite element method for micropolar elasticity that we developed in this
study.

3.2 Double-edge-notched test

Since the detailed investigation on the micropolar phase field model (including regularization length insen-
sitive material response, partial degradation, and micropolarity effects on the crack pattern) can be found
in our previous study (Suh et al., 2020), this numerical example showcases the capability of our FEniCS
implementation for capturing crack nucleation, propagation, and coalescence in micropolar material.
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Fig. 4: Distribution of normalized shear stress components in polar coordinates along 6 = 45°.

Consider a 100 mm wide and 100 mm long square plate with two 25 mm long edge notches as illus-
trated in Fig. 5. The problem domain is subjected to combined tensile and shear loads, by prescribing the
displacement # along the top boundary at an angle of 45° with Au; = Aup = 5.0 x 10~* mm, while bottom
boundary is held fixed. By assuming that all the energy density parts can be degraded (i.e., ® = {B,C, R}
and i = @), the material parameters for this example are chosen as follows: shear modulus G = 12.5 GPa,
Poisson’s ratio v = 0.2, bending characteristic length | = 30.0 mm, coupling number N = 0.5, critical
energy release rate G, = 0.1 N/mm, threshold energy density it = 0.1 kJ/m, and the shape parameter
p = 10.

50 mm

50 mm

100 mm

Fig. 5: Square plate with double notches under combined tensile and shear loads.

Fig. 6 illustrates the evolution of the phase field at several load increments, while Fig. 7 shows the global
response of the structure during the simulation. Recall Egs. (26) and (30) that our choices of the local dissi-
pation function w(d) and the degradation function g(d) are the main components in reproducing cohesive
fracture response. In this case, unlike standard phase field model for brittle fracture that adopts w(d) =d >
and g(d) = (1 —d)?, the crack is expected to propagate even without complete separation, since our model
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Fig. 6: Crack patterns for double edge notched test at several load increments.

0.08

0.06

0.04

Shear force [kN]

0.02 -

0 0.01 0.02 0.03 0.04 0.05
Displacement, @y [mm)|

Fig. 7: The force-displacement curves from the double edge notched test.

is capable of considerably elongating the length of the fracture process zone by controlling the parameter
p. As expected, we observe the partially damaged region (i.e., 0 < d < 1) in Fig. 6, where complete failure
may eventually take place herein. The crack starts to nucleate at notch tips as the stored energy density
exceeds the predefined threshold tfsit. Then, the phase field starts to propagate at 7; = 7, ~ 0.01 mm,
where the material enters the softening deformation stage (Fig. 7). Compared to the results in (Bocca et al.,
1991; Wang and Sun, 2017) where neighboring two cracks do not coalesce, in this example, two cracks
kinktowards the adjacent notch and eventually coalescence with each other. As Yavari et al. (2001)
pointed out, crack propagation in micropolar materials requires additional effort on breaking the
micro-rotational bond. Since cracks generally tend to propagate in the direction that maximizes the
dissipation (i.e., minimizing



the additional bond-breaking effort in this case), the observed crack trajectories are consistent with this
interpretation. The results underscore that introducing size-dependent constitutive model itself may affect
the crack trajectory, while we also highlight that our FEniCS codes are capable of capturing the micropolar
effects on both elastic and damaged regimes.

4 Conclusion

We provide a detailed account of an implementation of phase field fracture models for micropolar ma-
terials via FEniCS. By revisiting the theory established in Suh et al. (2020), this study presented a brief
step-by-step overview of the mathematical model and at the same time provided a detailed description on
the design and implementation of the models. We first presented the procedure to implement the mixed
FEM for plane micropolar elasticity. We then extended this platform into a phase field code that simulates
cohesive fracture therein by explicitly programming the staggered solution scheme. We also provide nu-
merical examples to verify the correctness and showcase the capability of our program. The key strength
of this implementation is the minimal approach enabled by the FEniCS libraries and the corresponding
Application Programming Interfaces (API), which enables us to write Python code with expressions eas-
ily understood by end-users without comprising significantly on efficiency. By making the source code
available in a repository, this work will enable third-part verification and validation and therefore promote
transparency and collaborations.
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