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a b s t r a c t

The multivariate predictions of local reduced-order-models (MP-LROM) methodology,
recently proposed by the authors Moosavi et al. (0000), uses machine learning based
regression methods to predict the errors of reduced-order models. This study consid-
ers two applications of MP-LROM. First, the error model is used in conjunction with a
greedy sampling algorithm to generate decompositions of one dimensional parametric
domains with overlapping regions, such that the associated local reduced-order models
meet the prescribed accuracy requirements. Once a parametric domain decomposition
is constructed, any parametric configuration belongs to (at least) one of the partitions;
the local reduced-order model associated with that partition approximates the full order
model at the given parameters within an accuracy level that is estimated a-priori. The
parameter domain decomposition creates a database of the available local bases, local
reduced-order, and high-fidelity models, and identifies the most accurate solutions for an
arbitrary parametric configuration. Next, this database is used to enhance the accuracy
of the reduced-order models using: (1) Lagrange interpolation of reduced bases in the
matrix space; (2) Lagrange interpolation of reduced bases in the tangent space of the
Grassmann manifold; (3) concatenation of reduced bases followed by a Gram–Schmidt
orthogonalization process; and (4) Lagrange interpolation of high-fidelity model solutions.
Numerical results with a viscous Burgers model illustrate the potential of the MP-LROM
methodology to improve the design of parametric reduced-order models.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Many physical phenomena in science and engineering are investigated today using large-scale computer simulation
models. The ever-increasing complexity of these high-fidelity models poses considerable challenges related to computa-
tional time, memory requirements, and communication overhead in a parallel environment. A popular approach to alleviate
these challenges is to construct inexpensive surrogate (approximate) models that capture the most important dynamical
characteristics of the underlying physical models, but reduce the computational complexity by orders of magnitude.
Examples of surrogates include response surfaces, low resolution models, and reduced-order models.

Reduced-order modeling uses snapshots of high-fidelity model solutions at different times to extract a low-dimensional
subspace that captures most of the high-fidelity solution energy. The reduced-order surrogate is obtained by projecting the
dynamics of the high-fidelity model onto the low-dimensional subspace. This is usually achieved by orthogonal or oblique
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projections coined asGalerkin or Petrov–Galerkinmethodswhere the solution is searched as a linear combination of the basis
vectors. Since the Galerkinmethod is actual an elliptic approach, applying it to hyperbolic models must be done with careful
consideration [1]. The reduced dimension leads to a considerable reduction in computational complexity at the expense
of a decreased solution accuracy. A reduced-order model approximates well the high-fidelity solution at a given point of
operation (e.g., for the model parameter values for which the snapshots have been taken), but becomes less accurate away
from that point (e.g., when the high-fidelity model is run with different parameter values).

To be useful, reduced-order models must accommodate changes over the entire parametric space without losing their
accuracy, simplicity and robustness. Reduced-order model (ROM) accuracy and robustness can be achieved by constructing
a global basis [2,3], but this strategy generates large dimensional bases that may lead to slow reduced-order models.
Moreover, for fluid flows, the Galerkin expansion with global modes presumes synchronized flow dynamics. Whereas this
assumption is true for internal flows, it is not suited for transient shear flows with uni-directional’hyperbolic’ convection of
vortices [4]. Changes in the operational settingsmay lead to deformation of leading flow structures [5] especially if themodel
is characterized by bifurcations and multiple attractors. Approaches such as limiting the operational setting, extending the
mode sets [6] and offline/online set adaptation address the issue of mode deformation.

In localization approaches, the reduced-ordermodels are built offline and one is chosen depending on the current state of
the system. Local approaches have been designed for parametric [7,8] or state spaces generating local bases for both the state
variables [9,10] and non-linear terms [8,11]. Dictionary approaches [12,13] pre-compute offlinemany basis vectors and then
adaptively select a small subset during the online stage. Error bounds for reduced-order approximations of parametrized
parabolic partial differential equations are available in [14].

In this study, we employ machine learning regression models to guide the construction of parametric space decomposi-
tions for solving parametric partial differential equations using accurate local reduced-order models. Whereas the current
methodologies are defined in the sense of Voronoi tessellation and rely on K-means algorithms, our approach delimitates
subregions of the parametric space by applying an Artificial Neural Networks model to estimate the errors of reduced-order
models following a parametric domain sampling algorithm.

Machine learning methodologies have been applied to predict and model the approximation errors of low-fidelity and
surrogate models [15–17]. The multi-fidelity correction (MFC) approach [18–21] has been developed to approximate the
low-fidelity models errors in the context of optimization. The reduced order model error surrogates method (ROMES) [22]
seeks to estimate full errors from indicators such as error bounds and reduced-order residual norms. Both ROMES and MFC
models predict the error of global reduced-order models with fixed dimension using univariate functions.

In contrast, the authors’ multivariate predictions of local reduced-order-model method (MP-LROM) [23] proposes a
multivariate model to compute the error of local reduced-order surrogates. A MP-LROM model based on Artificial Neural
Network and a sampling algorithm are applied here to construct decompositions of the parametric domain for solving
parametric partial differential equations using local reduced-ordermodels that are accurate within an admissible prescribed
threshold. The proposed strategy relies on a greedy algorithm that samples the vicinity of each parameter value used to
generate a local reduced-order model and finds an open ball such that for all the parameters in the ball the error of the
local reduced-order model is less than the desired threshold. The essential ingredient is the MP-LROM error model which
approximates the error of reduced-order model. Then a greedy technique is used to sample the parametric domain and
generates a feasible region where a specific local reduced-order model provides accurate solutions within a prescribed
tolerance. The union of these feasible regions forms a decomposition of the parametric domain. Different thresholds lead
to different domain decompositions. The current methodology is designed for one dimensional parametric spaces and it is
applied to the viscous 1D-Burgersmodel. A decomposition for the viscosity domain is generated for various error thresholds.
Once the decomposition is constructed there is no need to run the high-fidelitymodel again, since for each parameter valueµ

there exists a parameter µp, and the associated reduced-order model (basis and reduced operators), whose solution error is
accurately estimated a-priori. The dimension KPOD of the local basis is usually small since it depends only on one high-fidelity
model trajectory.

The decomposition leads to a database of available bases, local reduced-order models and high fidelity trajectory. This
database can be used to generate more accurate reduced-order models for an arbitrary parametric configuration. Three
different approaches are compared here; i.e., bases interpolation, bases concatenation, and high-fidelity model solutions
combination. For the first method, we perform a Lagrangian interpolation of the bases in the matrix space [24], or linearly
interpolate their projections onto some local coordinate systems [24,25]. The secondmethod follows the idea of the spanning
ROM introduced in [26], where a projection basis is created by concatenating some of the available bases for an arbitrary
parameter. The third method interpolates the associated high-fidelity solutions and then extracts the singular vectors to
generate a new basis and local reduced-order model.

The remainder of the paper is organized as follows. Section 2 reviews the construction of reduced-order surrogates for
parametric high-fidelity models (where the dynamics depends on a set of model parameters). Section 3 introduces the
new methodology for constructing decompositions of the parametric domain using MP-LROM error predictions. Then the
potential of combining the existing information for generating more accurate reduced-order model is discussed. Section 4
presents the applications of the proposedmethodologies to a viscous 1D-Burgers system. Conclusions are drawn in Section 5.
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2. Parametrized reduced-order modeling

Proper Orthogonal Decomposition has been successfully applied in numerous applications such as compressible flow [27]
and computational fluid dynamics [28–30], to mention a few. It can be thought of as a Galerkin approximation in the state
variable built from functions corresponding to the solution of the physical system at specified time instances. In this paper
we consider discrete inner products (Euclidean dot product), though continuous products may be employed as well.

Generally, an unsteady problem can be written in semi-discrete form as an initial value problem; i.e., as a system of
nonlinear ordinary differential equations

dx(µ, t)
dt

= F(x, t, µ), x(µ, 0) = x0 ∈ RNstate , µ ∈ P. (1)

The input-parameterµ typically characterizes the physical properties of the flow. ByP wedenote the input-parameter space.
For a given parameter configuration µp we select an ensemble of Nt time instances of the flow x(µp, t1), . . . , x(µp, tNt ) ∈

RNstate , where Nstate is the total number of discrete model variables, and Nt ∈ N∗. The POD method chooses an orthonormal
basis Uµp = [uµp

1 · · · uµp
KPOD

] ∈ RNstate×KPOD , such that the mean square error between x(µp, ti) and the POD expansion
xpodµp

(ti) = Uµp x̃µp (µ, ti), x̃µp (µ, ti) = UT
µp
x(µp, ti) ∈ RKPOD , is minimized on average. The POD space dimension KPOD ≪ Nstate

is appropriately chosen to capture the dynamics of the flow as described in [23, Algorithm 2, Section 2].
Next, a Galerkin projection of the full model state (1) onto the space X KPOD spanned by the POD basis elements is used to

obtain the reduced-order model
dx̃µp (µ, t)

dt
= UT

µp
F
(
Uµp x̃µp (µ, t), t, µ

)
, x̃µp (µ, 0) = UT

µp
x0. (2)

The notation x̃µp (µ, t) expresses the solution dependence on the varying parameter µ and also on µp the configuration
whose associated high-fidelity trajectory was employed to generate the POD basis. While being accurate for µ = µp, the
reduced model (2) may lose accuracy when moving away from the initial setting. Several strategies have been proposed
to derive a basis that spans the entire parameter space. These include the reduced basis method combined with the use
of error estimates [31,32,3], global POD [33,34], Krylov-based sampling methods [35,36], and greedy techniques [37,38].
The fundamental assumption used by these approaches is that a smooth low-dimensional global manifold characterizes
the model solutions over the entire parameter domain. However, in order to ensure high accuracy of the reduced solution
across the parameter space, the dimension of the reduced basis has to be increased in practice, leading to higher on-line
computational costs. To alleviate this drawback we propose to generate decompositions of the parametric domain with
overlapping feasible regions where local reduced-order models are accurate to within an admissible prescribed threshold.
The decompositions are generated using MP-LROM error models [23] briefly discussed in the next section along with the
proposed approach for generating decompositions.

3. MP-LROM error model and its application to parametric domain decomposition

The MP-LROM models [23] are multivariate input–output maps φ : z ↦→ y that predict different characteristics of local
parametric reduced-order models, such as the error with respect to the high-fidelity model solution or basis dimension.

In this studywe are using theMP-LROMmodel designed to predict the error of local reduced-ordermodels (2) of different
basis dimensions. The model has the following form

φe
MP−LROM : {µ, µp, KPOD} ↦→ log εHF

µ,µp,KPOD . (3)

The input features include the parameter value µ, the parameter value µp associated with the full model run that generated
the basis Uµp and the dimension of the reduced manifold KPOD.

The reduced order model error depends heavily on the parameter µ and basis Uµp . Since the dynamics of the non-linear
models are not homogeneous all over the parameter space, we see a lot of variations in the error of reduced-order model.
The reduced model usually loses accuracy when moving away from µ = µp. Hence it is very important to a-priori estimate
the error of reduced-order model. The target of the mapping is the logarithm of error of the reduced-order model solution
at µ using the basis Uµp and the corresponding reduced operators

log εHF
µ,µp,KPOD =

log

(
∥x(µ, t1) − Uµp x̃µp (µ, t1) x(µ, t2) − Uµp x̃µp (µ, t2) · · · x(µ, tNt ) − Uµp x̃µp (µ, tNt )∥F

)
,

(4)

where ∥ · ∥F denotes the Frobenius norm.
The MP-LROM model employs the logarithm of the error instead of the error since the variability of the error due to the

dynamics of the model along the parameter space is large and using the logarithm of the error decreases the variance in
prediction as shown in the numerical experiments of [23].
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In this paper, we approximate the MP-LROM error model (3) using Artificial Neural Networks. Artificial Neural Networks
(ANN) detect the pattern of data by discovering the input–output relationships. The neurons in ANN are organized in layers.
At least three layers of neurons (an input layer, a hidden layer, and an output layer) are required for construction of a neural
network. In supervised learning the network is provided with samples from which it discovers the relations of inputs and
outputs. In the training process, theANNadjusts theweights of network in order to reproduce the desired outputs. The output
of the network is compared with the true data, and the error is back-propagated through the network. The back propagation
algorithm [39] uses a gradient descent method to adjust the parameters of network such that the error between the desired
output and the output signal of the network is minimized [40]. This process is repeated during several iterations, until the
network output is close to the true data [41].

For our experiments, a neural network with six hidden layers and hyperbolic tangent sigmoid activation function in each
layer is used. The data set has nearly 12 000 samples as follows: 10 and 100 equally distributed values of µp and µ over the
entire parameter region; i.e., µp ∈ {0.1, 0.2, . . . , 1} and µ ∈ {0.01, . . . , 1}, 12 reduced basis dimensions KPOD spanning the
interval {4, 5, . . . , 14, 15} and the reduced-order model logarithm of errors log εHF

µ,µp,KPOD
. Since all 10 parameters µp belong

to the set of all 100 parameters µ, only 100 high-fidelity runs are needed to construct the entire data set of 12 000 samples.
A five-fold cross-validation approach is taken to train and test the ANN [23] and finally the trained error model is used for
domain decomposition as well as better design of reduced order models which is fully discussed in the following.

3.1. Designing the decomposition of the parametric domain

Motivated by the need of fast and accurate simulations along the entire parametric space,we propose an alternative to the
global parametric approach where only a single basis and a single reduced order model is constructed. Our alternative relies
on a series of local reduced bases and reduced order models whose solutions meet prescribed admissible error thresholds
beyond the parametric configurations employed for bases’ construction. A parametric region, where a local reduced order
model constructed using a single high-fidelity model trajectory is accurate to within a prescribed threshold, is called a
feasible region. We delimitate such a region by employing the MP-LROM error model and sampling the neighborhood of the
parametric configuration used to construct the local reduced order model. Our solution consists in designing a reunion of
feasible regions completely covering the entire parametric space. This decomposition of the parametric domainwas obtained
as the solution of the following problem.

Problem 1 (Accurate Local Parametric ROMs). For an arbitrary parameter configuration µ ∈ P construct a reduced-order
model (2) that provides an accurate and efficient approximation of the high-fidelity solution (1)

∥x(µ, t1) − Uµp x̃µp (µ, t1) x(µ, t2) − Uµp x̃µp (µ, t2) · · · x(µ, tNt ) − Uµp x̃µp (µ, tNt )∥F ≤ ε̄, (5)

for some prescribed admissible error level ε̄ > 0. The snapshots used to generate the basis Uµp and reduced operators can
be obtained with any parametric configuration µp ∈ P .

Our methodology proposes to select a finite countable subset I = {µpj , j = 1, . . . ,M} ⊂ P and for each µpj , a
reduced order basis Uµpj

along with the reduced operators are constructed for j = 1, . . . ,M . We denote by U the set of
bases Uµpj

, j = 1, . . . ,M . If for each parameter configuration µpj there exists an open ball B(µpj , rj) ∈ P such that, for all
parameters µ ∈ B(µpj , rj), the reduced order solution x̃µp (µ, t) satisfies (5) for µp = µpj and the parametric domain P is a
subset of the union of all these open balls, we obtain the sought decomposition of the parametric domain.

Next we derive a condition that guarantees the actual reduced-order model error

εHF
µ,µpj ,KPOD

= ∥x(µ, t1) − Uµpj
x̃µpj

(µ, t1) x(µ, t2) − Uµpj
x̃µpj

(µ, t2) · · · x(µ, tNt ) − Uµpj
x̃µpj

(µ, tNt )∥F , (6)

depending on parameter configuration µ, parameter configuration µpj and basis dimension KPOD, satisfies the prescribed
admissible threshold εHF

µ,µpj ,KPOD
≤ ε̄, for any arbitrary parameter configuration µ inside of an open ball.

Theorem 3.1. If limµ→µpj
∥x(µ, t1) − Uµpj

x̃µpj
(µ, t1) x(µ, t2) − Uµpj

x̃µpj
(µ, t2) · · · x(µ, tNt ) − Uµpj

x̃µpj
(µ, tNt )∥F = ε̄∗,

and ε̄∗
≤

ε̄
2 , then there exists rj > 0 such that εHF

µ,µpj ,KPOD
≤ ε̄ is satisfied for all parameters µ inside the ball B(µpj , rj).

Proof. From limµ→µpj
∥x(µ, t1)−Uµpj

x̃µpj
(µ, t1) x(µ, t2)−Uµpj

x̃µpj
(µ, t2) · · · x(µ, tNt )−Uµpj

x̃µpj
(µ, tNt )∥F = ε̄∗, using

the limit definition, we have that for all ε > 0, there exists another real number δ > 0 such that

|∥x(µ, t1) − Uµpj
x̃µpj

(µ, t1) x(µ, t2) − Uµpj
x̃µpj

(µ, t2) · · · x(µ, tNt ) − Uµpj
x̃µpj

(µ, tNt )∥F − ε̄∗
| < ε,

for all µ satisfying d(µ, µpj ) < δ. By taking ε = ε̄∗ and δ = rj we obtain that

εHF
µ,µpj ,KPOD

< 2ε̄∗
≤ ε̄, ∀µ ∈ B(µpj , rj),

which completes the proof. □
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The theoretical result allows to compute the reduced-order model error at µ = µpj at certain parametric configurations
in the proximity ofµp. Moreover, onemay be able to make statements about the degree of smoothness of the solution in the
parametric space, therefore placing a lower limit on ε̄. A particular case is when the reduced solution error is monotonically
decreasing with smaller distances d(µ, µpj ). A small radius rj > 0 then can be simply obtained by sampling and computing
the residuals of the high-fidelity model using the projected reduced-order model solution.

One can also test for linear behavior of the high-fidelity solution x(µ, t) in a small neighborhood of µpj . Another possible
screening test consists in checking the derivatives ∂x

∂µ
(µ, t) at equally distributed parameter values across the neighborhood

of µpj . If the derivatives are small, then the high-fidelity solutions do not vary much inside the open ball and they can be
well approximated in the reduced manifold spanned by Uµpj

.
The decomposition construction process ends as soon as the entire parameter domain P is covered with a union of

overlapping balls B(µpj , rj), j = 1, . . . ,M , corresponding to different reduced order bases and local models

P ⊂

M⋃
j=1

B(µpj , rj), (7)

such that for each j = 1, 2, . . . ,M and ∀µ ∈ B(µpj , rj) ∩ P , the error of the reduced-order model solution (2) satisfies
εHF
µ,µpj ,KPOD

≤ ε̄. The number of ballsM is finite only if the space of all high-fidelity solution over the entire parametric domain
can be approximated with a finite number of low-dimensional linear subspaces. This extends the concept of a single global
low-dimensional manifold [33,34]. The cardinality of I depends on the high-fidelity solution variability along the parameter
space. In theory, less variability should lead to smaller values of M . For our reduced-order models to satisfy the accuracy
threshold for the entire parametric domain, we have to select thresholds ε̄ not smaller than the Kolmogorov KPOD-width [42]
of the so-called solution manifold{x(µ, t), µ ∈ P, t ∈ {ti}

Nt
i=1}.

This approach is inspired from the construction of unsteady local reduced-order models where the time domain is split
in multiple regions [9,11]. In this way the reduced basis dimension is kept small allowing for fast on-line simulations. The
cardinality of I is inversely proportional with the prescribed level of accuracy ε̄. As the desired error threshold ε̄ decreases,
the decomposition changes since usually the radii rj are expected to become smaller, and more balls are required to cover
the parametric domain; i.e.,M is increased.

The construction of the parametric domain decomposition (7) using the local parametric reduced-order models requires
the following ingredients

1. The ability to probe the vicinity of µpj ∈ P and to efficiently estimate the level of error εHF
µ,µpj ,KPOD

(6).

2. The ability to find rj > 0 such that εHF
µ,µpj ,KPOD

≤ ε̄, for all µ ∈ B(µpj , rj) ∩ P .
3. The ability to identify the location of a new µ∗

pℓ
(for the construction of a new local reduced-order model) given the

locations of the previous local parameters µpj , j = 1, . . . , ℓ − 1, so that

B(µ∗

pℓ
, rℓ) ̸⊂

(ℓ−1⋃
i=1

B(µpi , ri)
)

,

B(µ∗

pℓ
, rℓ)

⋂(ℓ−1⋃
i=1

B(µpi , ri)
)

̸= ∅.

(8)

The second condition in (8) assures that the decomposition will have no coverage gap; i.e., Eq. (7) is satisfied.
In practice, an approximated MP-LROM error model is used to sample the vicinity of µpj and predicts the error for each

sample parameter value µ. Based on these error predictions, we construct the ball B(µpj , rj), or perhaps a larger set called
a µpj−feasible region, where the local reduced-order model is accurate to within the prescribed threshold ε̄ according to
the MP-LROM model. Since the approximated MP-LROM model has errors in its predictions, the precision is guaranteed
only if the sum of the true reduced-order model error and approximated MP-LROM model error is smaller than ε̄. For a
one dimensional parametric domain, a greedy algorithm to be described in Section 4.2 is applied to identify the location
of a new parametric configuration µ∗

pℓ
(for the construction of a new basis) depending on the locations of the previous

µpi , i = 1, . . . , ℓ − 1. We seek to impose (8), so the entire parametric domain P satisfies (7) after the decomposition
construction is finished. Again this is not necessarily guaranteed since we employ an approximated MP-LROM error model
for this task.

3.2. Combining available information for accurate local ROMs at arbitrary parametric configurations

We next solve another practical problem: given a collection of local reduced bases and operators and high fidelity
trajectories computed at various locations in the parameter space, construct a hierarchy of the available bases and models
producing the most accurate local parametric reduced-order solutions for an arbitrary viscosity parameter µ∗. For the
parametric domain situated at the intersection of different feasible regions introduced in Section 3.1, we may improve the
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reduced solution accuracy by assigning a new reduced-order model based on the already existing local bases or high-fidelity
simulations. Moreover, if a hierarchy of local reduced bases, local reduced-order, and high-fidelity models is available for
a parametric configuration µ∗, we can employ the top ranked bases and models to generate a new reduced-order model
whose accuracy may be increased. This can be achieved by interpolation or concatenation of the underlying reduced bases
or interpolation of the available high-fidelity solutions.

The POD method produces an orthogonal basis that approximately spans the state solution space of the model for a
specific parameter configuration. Moving away from the initial parametric configuration may require the construction of
new bases and reduced operators since the initial reduced-order model may not be accurate anymore. However, if states
depend continuously on parameters, the POD basis constructed for one parameter configuration may approximately span
the solution space at different parametric settings in a local vicinity.

Several methods to combine the available information to generate more accurate reduced-order models for arbitrary
parameter configurations µ∗ have been proposed in the literature. One is the interpolation of the available reduced-order
bases Uµpj

, j = 1, . . . ,M . The parametric dependence of the bases has been modeled with various linear and nonlinear
spatially-dependent interpolants.

Here we discuss different strategies that involve Lagrange interpolation of bases in the matrix space and in the tangent
space of the Grassmann manifold. In addition we propose to concatenate the available reduced bases followed by an
orthogonalization process, and to interpolate the solutions of the high fidelity model as means to derive the reduced-order
basis for a parameter configuration µ∗.

3.2.1. Basis interpolation
Lagrange interpolation of bases. Assuming the reduced manifold U : P → RNstate×KPOD poses a continuous and linear
dependency with respect to the parametric space, and if M discrete bases Uµpj

= U(µpj ) have been already constructed
for various parametric configurations µpj , j = 1, 2, . . . ,M , then a basis corresponding to the new configuration µ∗ can be
obtained using Lagrange’s interpolation formula

Uµ∗ =

M∑
j=1

Uµpj
Lj(µ∗), Lj(µ∗) =

∏
i̸=j

µ∗
− µpi

µpj − µpi
. (9)

It is worth mentioning that the resulting interpolated basis vectors are not orthogonal. One drawback of this approach is the
lack of linear variation in the angles between pairs of reduced subspaces [24] spanned by the reduced bases Uµpj

. Differential
geometry results can be employed to alleviate these deficiencies.

Grassmann manifold. In the study proposed by Amsallem and Farhat [25], basis (matrix) interpolation was performed in
the tangent space of the Grassmann manifold G at a careful selected point S representing a subspace spanned by one of the
available reduced bases. It has been shown that Grassmannmanifold can be endowedwith a differentiable structure [43,44];
i.e., at each point S of the manifold a tangent space exists. The mapping from the manifold to the tangent space is called the
logarithmic mapping, while the backward projection is referred to as exponential mapping [45]. According to [25], a new
subspace Sµ∗ , and its subsequent basisUµ∗ , associatedwith a newparameterµ∗, can be obtained by interpolating the reduced
subspaces projections into the tangent space of the Grassmann manifold and then projecting back using the exponential
mapping. The reduced subspaces {Sµpi

}
M
i=1 are spanned by the already computed reduced bases Uµpi

, i = 1, . . . ,M . The
steps required by this methodology [25] are described in the Algorithm 1. A graphical description of the method is provided
in Fig. 1.

According to [25], the subspace angle interpolation [24,46] is identical to the interpolation in a tangent space to the
Grassmannmanifold of two reduced-order bases. Consequently the latter methodology can be viewed as a generalization of
the former approach.

3.2.2. Basis concatenation
Basis concatenation idea was introduced in [26] and emerged from the notion of a global basis [33,34]. In the global

strategy, the existing high-fidelity snapshots corresponding to various parameter configurations are collected in a single
snapshot matrix and then a matrix factorization is performed to extract the most energetic singular vectors. This global
basis is then used to build reduced-order models for parameter values not included in the initial snapshots set.

Assuming Xµp1
, Xµp2

, . . . ,XµpM
∈ RNstate×Nt are the snapshots corresponding to M high-fidelity model trajectories, the

following error estimate holds [47, Proposition 2.16]:

X̄ = [Xµp1
· · · XµpM

] = ŪΛV̄
T
(SVD factorization), (10a)

∥X̄ − Ū
d X˜∥

2

F =

Nt∑
i=KPOD+1

λ2
i = O(λ2

KPOD+1), Ū
d
ij = Ū ij, i = 1, 2, . . . ,Nstate, j = 1, 2, . . . , KPOD, (10b)

where λi is the ith singular value of X̄ , and X˜ = [Ū
d
]
T X̄ ∈ RKPOD×(MNt ). In practice, usually Nt < Nstate, so the snapshot

matrices are rank deficient. In this case andwhen the reduced-order bases Uµp1
, . . . ,UµpM

, corresponding to the trajectories
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Algorithm 1 Interpolation in a tangent space to a Grassmann manifold [25]
1: Select a point SµpM

of the manifold to represent the origin point for the interpolation spanned by the basis UµpM
.

2: The tangent space TSµpM
and the subspaces {Sµpi

}
m
i=1 are considered, withm ≤ M −1. Each point Sµpi

sufficiently close to
SµpM

is mapped to a point of TSµpM
, using the logarithm map logSµpM

[45]. The bases spanning the tangent space points
logSµpM

(Sµpi
) are computed by

(I − UµpM
UT

µpM
)Uµpi

(UµpM
Uµpi

)−1
= RiΛiQ T

i (SVD factorization),

Γµpi
= Ri tan−1(Λi)Q T

i .

3: Each entry of the matrix Γµ∗ associated with the target parameter µ∗ is computed by interpolating the corresponding
entries of the matrices Γµpi

∈ RNstate×KPOD associated with the parameter points µpi , i = 1, . . . ,m. A univariate or
multivariate Lagrange interpolation may be chosen similar with the one introduced in (9).

4: The matrix Γµ∗ representing a point in the tangent space TSµpM
is mapped to a subspace Sµ∗ on the Grassmann manifold

spanned by a matrix Uµ∗ using the exponential map [45]

Γµ∗ = R∗Λ∗Q ∗T (SVD factorization),
Uµ∗ = UµpM

Q ∗ cos(Λ∗) + R∗ sin(Λ∗).

Fig. 1. The description of the interpolation of four subspaces in a tangent space to a Grassmann manifold. The origin point of the interpolation is SµpM
and

m = 3.

µp1 , . . . , µpM , are available, we can construct a basis Û by simply concatenating columns of Uµp1
, . . . ,UµpM

such that the
accuracy level in (10) is preserved.

Proposition 3.2. Consider the following SVD of snapshots matrices Xµp1
, . . . ,XµpM

∈ RNstate×Nt

Xµpj
= Uµpj

Λj V T
µpj

, j = 1, 2, . . . ,M, (11)

with Nt < Nstate and rank(Xµpi
) < Nt , i = 1, 2, . . . ,M. Then, there exist positive integers K 1

POD, . . . , K
M
POD, and X̂ ∈

R(
∑M

i=1K
i
POD)×(MNt ), such that X̄ defined in (10) satisfies

∥X̄ − Û X̂∥
2
F ≤ O(λ2

KPOD+1), (12)

where λKPOD+1 is the (KPOD + 1) singular value of snapshots matrix X̄, and Û = [Ud
µp1

· · · Ud
µpM

] ∈ RNstate×(
∑M

i=1K
i
POD), [Ud

µpl
]ij =

[Uµpl
]ij, i = 1, 2, . . . ,Nstate, j = 1, 2, . . . , K i

POD, l = 1, 2, . . . ,M.

Proof. Since Xµp1
, . . . ,XµpM

∈ RNstate×Nt are rank deficient matrices, there exist at least M positive integers K 1
POD, . . . , K

M
POD,

such that the singular values associated with Xµp1
, . . . ,XµpM

satisfy

[λ1
K1
POD+1

]
2, . . . , [λM

KM
POD+1

]
2

≤ [λKPOD+1]
2, ∀KPOD = 0, . . . ,Nt−1. (13)
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From [47, Proposition 2.16] and (11) we have the following estimates

∥Xµpj
− Ud

µpj
X˜µpj

∥
2

F
=

Nt∑
i=K j

POD+1

[λ
j
i]
2

= O([λj

K j
POD+1

]
2) ≤ O([λKPOD+1]

2), (14)

where λ
j
i is the ith singular value of Xµpj

and X˜µpj
= [Ud

µpj
]
TXµpj

∈ RK j
POD×Nt , for j = 1, . . . ,M .

By denoting

X̂ =

⎡⎢⎢⎢⎢⎣
X˜µp1

01 · · · · · · 01

02 X˜µp2
02 · · · 02

...
...

...
...

...

0M · · · · · · 0M X˜µpM

⎤⎥⎥⎥⎥⎦ ,

where the null matrix 0j belongs to RK j
POD×Nt , j = 1, . . . ,M , we have

∥X̄ − Û X̂∥
2
F = ∥[Xµp1

· · · XµpM
] − [Ud

µp1
X˜µp1

· · · Ud
µpM

X˜µpM
]∥

2

F
≤( M∑

i=1

∥Xµpi
− Ud

µpi
X˜µpi

∥F

)2

=

M∑
i=1

M∑
j=1

∥Xµpi
− Ud

µpi
X˜µpi

∥F ·

∥Xµpj
− Ud

µpj
X˜µpi

∥F ≤ O([λKPOD+1]
2). □

By assuming that rank(Xµpi
) < Nt , for all j = 1, . . . ,M , imposes Nt as an upper limit for all the positive integers

K i
POD, j = 1, . . . ,M . This assumption is not unrealistic since typically the snapshots matrix stores correlated data and

therefore contains linearly dependent columns. For linearly independent matrices, the precision is controlled by the spectra
of snapshots matrices Xµpi

, i = 1, . . . ,M , but there is no guarantee that the expansion based on the concatenated basis Û
can provide similar accuracy precision as the expansion based on Ū (10) for all KPOD = 1, 2, . . . ,Nt .

In practice usually
∑M

i=1K
i
POD is larger than KPOD, thus more bases functions are required to form Û to achieve a similar

level of precision as in (10) where Ū is built using a global singular value decomposition. According to [48], the faster
approach to compute the left singular vectors and singular values only is to apply a QR factorization followed by a
R-bidiagonalization [49]. The R-SVD decomposition of a matrix of dimension Nstate × Nt has a computational complexity
of O(4N2

stateNt + 13N3
t ). As such, the decomposition of matrix X̄ requires O(4MN2

stateNt + 13M3N3
t ) operations, whereas

all combined singular value decompositions of matrices Xµpi
, i = 1, . . . ,M, have a computational complexity of

O(4MN2
stateNt + 13MN3

t ). This estimation suggests that the matrix factorization of X̄ is more computationally demanding.
However, the first term 4MN2

stateNt often dominates as Nt ≪ Nstate in practice, leading to almost similar computational
times. The off-line stage of the concatenation method may also include the application of a Gram–Schmidt-type algorithm
to orthogonalize the overall set of vectors in Û .

While the Lagrange interpolation of bases mixes the different energetic singular vectors in an order dictated by the
singular values magnitude, this strategy concatenates the dominant singular vectors for each case and preserves their
structure.

3.2.3. Interpolation of high-fidelity model solutions
Themethod discussed herein assumes that themodel solution depends continuously on the parameters. Thus it is natural

to consider constructing the basis for a parameter configurationµ∗ by interpolating the existing high-fidelitymodel solutions
associated with various parameter settings, and then performing the SVD of the interpolated results. For example, the
Lagrange solution interpolant is given by

Xµ∗ =

M∑
j=1

Xµpj
Lj(µ∗), (15)

where Xµpj
∈ RNstate×Nt is the model solution corresponding to parameter µpj and the interpolation polynomials are defined

in (9).
A new basis is constructed from the interpolated model solution (15) for the new parametric configuration µ∗. From

computational point of view the complexity of the off-line stage of the solution interpolation method (15) is smaller than
in the case of the bases concatenation and interpolation approaches. Only one singular value decomposition is required in
contrast with the multiple factorizations needed in the latter two strategies where the involvedmatrices have the same size
Nstate ×Nt . Having only Nt snapshots the size of the outcome basis should be smaller than in the case of basis concatenation
approach.
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4. Numerical experiments

We illustrate the application of the MP-LROM error model to design decompositions of the parametric domain for a one-
dimensional Burgers model. Moreover, the database of accurate local bases, local reduced-order and high-fidelity models
are used to enhance the accuracy of the reduced-order model for a different parametric configuration µ∗. For each of the
applications introduced in Section 3,we present in detail the proposed solution approaches and the corresponding numerical
results. The 1D-Burgers model proposed herein is characterized by one scalar viscosity parameter.

4.1. One-dimensional Burgers’ equation

Burgers’ equation is an important partial differential equation from fluid mechanics [50]. The evolution of the velocity u
of a fluid evolves according to

∂u
∂t

+ u
∂u
∂x

= µ
∂2u
∂x2

, x ∈ [0, L], t ∈ (0, tf], (16)

with tf = 1 and L = 1. Here µ is the viscosity coefficient.
The model has homogeneous Dirichlet boundary conditions u(0, t) = u(L, t) = 0, t ∈ (0, tf]. For the initial conditions,

we used a seventh order polynomial constructed using the least-square method and the data set {(0, 0); (0.2, 1); (0.4, 0.5);
(0.6, 1); (0.8, 0.2); (0.9, 0.1); (0.95, 0.05); (1, 0)}.

The discretization uses a spatial mesh of Ns equidistant points on [0, L], with ∆x = L/(Ns − 1). A uniform temporal mesh
with Nt points covers the interval [0, tf], with ∆t = tf/(Nt − 1). The discrete velocity vector is u(tj) ≈ [u(xi, tj)]i=1,2,...,Nstate ∈

RNstate , j = 1, 2, . . . ,Nt , where Nstate = Ns − 2 (the known boundaries are removed). The semi-discrete version of the model
(16) is

u′
= −νu ⊙ Axu + µAxxu, (17)

where u′ is the time derivative of u, and Ax, Axx ∈ RNstate×Nstate are the central difference first-order and second-order space
derivative operators, respectively, which take into account the boundary conditions, too. The model is implemented in
Matlab and the backward Eulermethod is employed for time discretization. The nonlinear algebraic systems are solved using
the Newton–Raphson method and the allowed number of Newton iterations per each time step is set to 50. The solution is
considered to have converged when the Euclidean norm of the residual is less then 10−10.

The viscosity parameter space P is set to the interval [0.01, 1]. Smaller values ofµ correspond to sharper gradients in the
solution, and lead to dynamics more difficult to accurately approximate using reduced-order models.

The reduced-order models are constructed using POD method whereas the quadratic nonlinearities are computed via
tensorial POD [51] for efficiency. The online and offline associated CPU times are provided in Fig. 2 of MP-LROM paper [23].

4.2. Designing the decomposition of the parametric domain

In the sequel, we present some of the details associatedwith the construction of ANNmodel approximating theMP-LROM
error model (3). A full description is available in [23]. The whole data set contains 12 000 samples including 10 and 100
equally distributed values of µp and µ over the entire parameter region; i.e., µp ∈ {0.1, 0.2, . . . , 1} and µ ∈ {0.01, . . . , 1},
12 reduced basis dimensions KPOD spanning the interval {4, 5, . . . , 14, 15} and the reduced-order model logarithm of errors
log εHF

µ,µp,KPOD
. The trained models were assessed by the common five-fold cross-validation technique using the Burger’s

model. The reported accuracy was 0.004004 [23, table 3].
The whole data set contains 12 000 samples. It is worth to note that, only one high-fidelity model simulation is required

for computing the reduced solutions errors for the parametric configuration µ using reduced-order models of various KPOD
and various bases and reduced operators constructed at µp. As such, only 100 high-fidelity simulations were needed to
construct the entire data set due also to the fact that the set of parameters µp is a subset of the selected parameters µ.
High-fidelity simulations are used to accurately calculate the errors associated with the existing reduced-order models for
parametric configurations µ.

Next we seek to build a decomposition of the viscosity domain [0.01, 1] for the 1D-Burgers model using the ANN MP-
LROM error model.

As discussed in Section 3, we take the following steps. First we identify ‘‘µp-feasible’’ intervals [dℓ, dr ] in the parameter
space such that local reduced-order model depending only on the high-fidelity trajectory at µp is accurate to within the
prescribed threshold for any µ ∈ [dℓ, dr ]. Second, a greedy algorithm generates the decomposition

[0.01, 1] ⊂

M⋃
i=1

[
diℓ, d

i
r

]
, (18)

by covering the parameter space with a union of µpi feasible intervals, where each µpi-feasible interval is characterized by
an error threshold ε̄i (which can vary from one interval to another). This relaxation is suggested since for intervals associated
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Fig. 2. The average range of parameter µ obtained with MP-LROM models for KPOD = 9 and µp = 0.7. The desired accuracy is ε̄ = 10−2 . The numbers
represent the left and the right edges of the predicted vs the true feasible intervals.

with small parameters µpi , it is difficult to achieve small reduced-order models errors similar to those obtained for larger
parametric configurations.

For the existing reduced basis methods a global reduced-order model depending on multiple high-fidelity trajectories is
usually constructed. In contrast, our approach uses the ANNMP-LROM error model to decompose the parameter space into
smaller regions where the local reduced-order model solutions are accurate to within some tolerance levels. Since the local
bases required for the construction of the local reduced-order models depend on only a single full simulation, the dimension
of the POD subspace is small, leading to lower on-line computational complexity.

Construction of a µp-feasible interval
The ANN MP-LROM error model can accurately estimate log εHF

µ,µp,KPOD
(4) associated with reduced-order models. Thus

we can employ it to establish a range of viscosity parameters around µp such that the reduced-order solutions depending
on Uµp satisfy some desired accuracy level. More precisely, starting from parameter µp, a fixed POD basis dimension and

a tolerance error log ε̄, we are searching for an interval [dl, dr ] such that the estimated prediction l̂og ε
HF
µ,µp,KPOD of the true

error log εHF
µ,µp,KPOD

(4) meets the requirement

l̂og ε
HF
µ,µp,KPOD < log ε̄, ∀µ ∈ [dl, dr ]. (19)

Our proposed strategy makes use of a simply incremental approach by sampling the vicinity of µp to account for the
estimated errors l̂og ε

HF
µ,µp,KPOD forecasted by the ANN MP-LROM error model. A grid of new parameters µ is built around

µp and the error models predict the errors outward ofµp. Once the error models outputs are larger than the prescribed error
log ε̄, the previous µ satisfying the constraint (19) is set as dl, for µ < µp or dr for µ > µp.

Fig. 2 illustrates the range of parameters predicted by the ANNMP-LROMmodel against the true feasible interval and the
results show good agreement. For this experiment we set µp = 0.7, dimension of POD subspace KPOD = 9 and ε̄ = 10−2.
Values ofµ = µp ±0.001 · i, i = 1, 2, . . . are passed to the ANNMP-LROMmodel. The average range of parameters obtained
over five different configurations with ANN is [0.650, 0.780]. We trained the models with 80% random split of the data set
and test it over the fixed test set of Fig. 2. For this design, the true range of parameters is [0.650, 0.785] underlying the
predicting potential of MP-LROMmodel built using ANN technique.

The decomposition of the parametric domain as a union of µp-feasible intervals
A union of different µpk-feasible intervals can be designed to cover a general entire 1D-parametric domain [A, B]. Once

such construction is available, it will allow for reduced-order simulations with a-priori error quantification for any value of
viscosity parameter µ ∈ [A, B].

A greedy strategy based on the ANN MP-LROM error model is described in Algorithm 2 and its output is a collection of
feasible intervals ∪

n
k=1[d

k
l , d

k
r ] ⊃ [A, B]. After each iteration k of the algorithm, a µpk-feasible interval [dkl , d

k
r ] is constructed.

Each interval is associatedwith some accuracy threshold ε̄k. For small viscous parametric valueswe found out that designing
µpk-feasible intervals associated with higher precision levels (very small thresholds ε̄k) is impossible since the dynamics of
parametric 1D-Burgers model solutions change dramatically with smaller viscosity parameters. In consequence we decided
to let ε̄k vary along the parametric domain to accommodate the solution physical behavior. Thus a small threshold ε̄0 will
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(a) Designing the first feasible interval (1) and selecting a new
centered parameter µp1 (2)

(b) Designing a feasible interval (3) and increasing the tolerance level
(4).

Fig. 3. A description of the most important stages of the parameter domain decomposition algorithm. The arrows describe the internal steps for each stage
initiated in the order depicted by the arrows’ indices. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

be initially set and as we will advance charting the parameter domain [A, B] from right to left, the threshold ε̄k will be
increased.

The algorithm starts by selecting the first centered parameterµp0 responsible for basis generation. It can be set toµp0 = B
but may take any value in the proximity of B, µp0 ≤ B. This choice depends on the variability of parametric solutions in this
domain region and by selectingµp0 to differ from the right edge of the domain, the number n of the feasible intervals should
decrease.

The next step is to set the threshold ε̄0 along with the maximum permitted size of the initial feasible interval to be
constructed. This is set to 2 · r0, thus r0 can be referred as the interval radius. Along with the radius, the parameter ∆r will
decide the maximum number of ANNMP-LROMmodel calls employed for the construction of the first µp0-feasible interval.
While the radius is allowed to vary during the algorithm iterations, ∆r is kept constant. Finally the dimension of POD basis
has to be selected together with three parameters β1, β2 and β3 responsible for changes in the threshold and radius and
selecting a new parameter location µpk encountered during the procedure.

Next the algorithm starts the construction of the µp0 feasible interval. The process is described in the top part of Fig. 3(a).
Then we are sampling the vicinity of µp0 for equally distributed parameters µ and compute the ANN MP-LROM model

predictions. The sampling process and the comparison between the predicted errors l̂og ε
HF
µ,µp0 ,KPOD and log ε̄0 are depicted

in Fig. 3(a). A green vertical segment indicates that the estimated error satisfies the threshold; i.e., l̂og ε
HF
µ,µp0 ,KPOD < log ε̄0,

whereas the red segment indicates the opposite. The left limit of the µp0-feasible interval is obtained when either µ >

µp0 − r0 or l̂og ε
HF
µ,µp0 ,KPOD > log ε̄0. The left limit d0l , denoted with a green dashed line in Fig. 3(a), is set equal to the last

parameter µ such that l̂og ε
HF
µ,µp0 ,KPOD ≤ log ε̄0.

The next step searches for a centered parameterµpk+1 and this process is described at the bottomof Fig. 3(a) for k = 0. The
centered parameter µpk+1 is first proposed based on an empirical formula described in line 25 of Algorithm 2. This formula
depends on the current centered parameter µpk , the number of tested parameters µ during the construction of µpk-feasible
interval, parameters ∆r and β3. Next, the algorithm checks if the following constraint is satisfied

[dk+1
l , dk+1

r ]

⋂( k⋃
i=1

[dil, d
i
r ]

)
̸= ∅, (20)

without taking into account the error in the ANNMP-LROMmodel prediction. This is achieved by comparing the errormodel
prediction l̂og ε

HF
dkl ,µpk+1,KPOD

and threshold log ε̄k+1 (see instruction 27 and bottom of Fig. 3(a) for k = 0). If the predicted
error is smaller than the current threshold, assuming a monotonically increasing error with larger distances d(µ, µpk+1 ), the
reduced-order model solutions should satisfy the accuracy threshold for all µ ∈ [µpk+1 , d

k
l ]. In consequence Eq. (20) will be

satisfied for the current µpk+1 , if we set rk+1 = µpk+1 − dkl (see instruction 30). In the case the error estimate is larger than
the present threshold, the centered parameter µpk+1 is updated to the middle point between old µpk+1 and dkl (see also the
bottom of Fig. 3(a)). For the situation where the monotonic property of the error does not hold in practice, a simply safety
net is used at instruction 12.
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The instructions between lines 5 and 21 generate the µpk-feasible interval, for the case when the current centered
parameter µpk ̸= dk−1

l (see top part of Fig. 3(b) for k = 1). Here by int we refer to the integer part of a real number. We used
the Matlab command floor for the implementation. For situation when µpk = dk−1

l (see bottom of Fig. 3(b) for k = 2), the
threshold has to be increased (by setting ε̄k = β1ε̄k at line 23), since the reduced-order model solutions cannot satisfy the
desired precision according to the predicted errors. In consequence, β1 has to be selected larger than 1. The need for relaxing
the threshold suggests that the greedy search is currently operating into a parametric region where only a slight change in
the parameter µ away from µpk leads to predicted ROM errors larger than the current threshold. Relaxing the threshold and
decreasing the radius size (select β2 < 1 in line 23 of Algorithm 2) can be used as a strategy to identify a feasible region for
the current centered parameterµpk . Similarly, relaxing the threshold and expanding the search (β2 > 1) could also represent
a viable strategy. However, expanding the search in a parametric regime with large changes in the model dynamics, even if
the threshold was relaxed, may lead to useless evaluations of the expressions in lines 7 and 18 of the Algorithm 2. Thus β2
should be selected smaller than 1. Once the feasible region is obtained, the radius rk is reset to the initial value r0 (see line 25
of the Algorithm 2). By selecting β3 > 1, the computational complexity of Algorithm 2 is decreased since the first proposal
of the new centered parameter µpk+1 will always be smaller than the left limit dkl of the current feasible interval. The entire
algorithm stops when µpk+1 ≤ A.

For our experiments we set A = 0.01, B = 1, ε̄0 = 10−2, ∆r = 5 × 10−3, r0 = 0.5, KPOD = 9, β1 = 1.2, β2 = 0.9
and β3 = 1.4. We initiate the algorithm by setting µp0 = 0.87, and the first feasible interval [0.7700, 1] is obtained. Next
the algorithm selects µ1 = 0.73 with the associated range of [0.6700, 0.8250] using the same initial threshold level. As we
cover the parametric domain from right to left; i.e., selecting smaller and smaller parametersµpk , the algorithm enlarges the
current threshold ε̄k, otherwise the error model predictions would not satisfy the initial precision. We continue this process
until we get the threshold 6.25 with µ32 = 0.021 and the corresponding feasible interval [0.01, 0.039]. The generated
decomposition is depicted in Fig. 4 where the associated threshold varies with the parameter change.

Algorithm 2 Generation of 1D-parametric domain decomposition for reduced-order models usage. Extension to multi-
dimensional parametric space is subject to future research.
1: Select µp0 as the right edge of the parameter interval, i.e. µp0 = B.
2: Set error threshold ε̂0, step size ∆r for selection of sampling parameters µ, the maximum search radius r0, dimension of

POD basis KPOD and β1, β2 and β3.
3: Set k = 0.
4: WHILE µpk ≥ A Do
5: FOR i = 1 to int( rk

∆r ) + 1
6: Set µ = µpk + i∆r
7: IF (φ(µ, µpk , KPOD) > log ε̄k OR µ > B) THEN
8: Set dkr = µpk + (i − 1)∆r . EXIT.
9: END IF

10: END FOR
11: IF k > 0 THEN
12: IF dkr < dk−1

l THEN

13: µpk =
µpk+dk−1

l
2 . GOTO 5.

14: END IF
15: END IF
16: FOR j = 1 to int( rk

∆r ) + 1
17: Set µ = µpk − j∆r
18: IF (φ(µ, µpk , KPOD) > log ε̄k OR µ < A) THEN
19: Set dkl = µpk − (j − 1)∆r . EXIT.
20: END IF
21: END FOR
22: IF (i = 1) .OR. (j = 1) THEN
23: Set ε̄k = β1 · ε̄k; rk = β2 · rk; GOTO 5.
24: ELSE
25: µpk+1 = µpk − β3(j − 1)∆r; ε̄k+1 = ε̄k; rk+1 = r0.
26: END IF
27: WHILE φ(dkl , µpk+1 , KPOD) > log ε̄k+1 DO

28: µpk+1 =
µpk+1+dkl

2 .
29: ENDWHILE
30: Set rk+1 = µpk+1 − dkl .
31: k = k + 1.
32: ENDWHILE
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Fig. 4. The diffusion parametric domain decomposition defining the local feasible intervals and their corresponding errors. Associated with one feasible
interval there is a centered parameter µp high-fidelity trajectory that guides the construction of a reduced basis and operators such that the subsequent
reduced-order model solutions along this interval are accurate to within the threshold depicted by the Y -axis labels.

4.3. Combining available information for accurate local ROMs at arbitrary parametric configurations

We now use the available database of local bases and reduced-order models resulted from the parameter decomposition
to construct a new POD basis for a different parameter configuration µ∗ leading to more accurate reduced-order model
solution. The numerical experiments described here focus on the construction of a POD basis for µ∗

= 0.35 by combining
the basis data or high fidelity results data available from existing simulations with µp1 = 0.3 and µp2 = 0.4.

The performances of the discussedmethods (bases concatenation, Lagrange interpolation of bases in thematrix space and
in the tangent space of the Grassmann manifold, Lagrange interpolation of high-fidelity solutions) are shown in the case of
threemain experiments: variation in the final time tf , in the non-linear advection coefficient ν and POD basis dimension. The
bases concatenationmethod followed by orthogonalization is referred as Gram–Schmidtwhereas the Lagrange interpolation
of bases and high-fidelity solutions are simply described as ‘‘Lagrange bases’’ and ‘‘Lagrange sol’’ in the legends of Figs. 5
and 6. All the methods employ reduced bases having the same dimension. Only even basis dimensions are utilized and the
concatenationmethod combines half of themodes of each involved bases. This strategy was selected based on the spectra of
the snapshots matrices associated with µp1 = 0.3 and µp2 = 0.4. More precisely, we selected the first KPOD

2 singular vectors
from each of the bases since for all our experiments λ

µp1
KPOD

2

> λ
µp2
KPOD

2 +1
and λ

µp2
KPOD

2

> λ
µp1
KPOD

2 +1
, where λ

µp1
KPOD

2 +1
denotes the

singular value corresponding to the first singular vector associated with trajectory µp1 not taken into account in the POD
expansion. Of course this choice is not optimal. The optimal solution can be obtained by solving a combinatorial optimization
problem, where the searched space has the size of 2KPOD chose KPOD.

The first two experiments scale the time and space and modify the linear and nonlinear characteristics of the model.
For example, in the case of a tiny small final time and advection coefficient, the diffusion linear part represents the main
dynamical engine of themodel thus it behaves linearly. The results are compared against reduced-order models constructed
using Uµp1

and Uµp2
, respectively.

Fig. 5 illustrates the Frobenius norm error between the high fidelity and reduced-order model solutions for the final time
tf = 0.01. Panel (a) presents the accuracy results as a function of the advection coefficient ν. Interpolating the high-fidelity
solutions leads to themost accurate reduced-ordermodel. For large advection coefficients all of themethods suffer accuracy
losses. Among the potential explanations we include the constant dimension of the POD basis and the linear dependence on
the viscosity parameter assumed by all of the methods in various forms. Fig. 5(b)) shows that the basis dimension must be
increased as the advection coefficient decreases to maintain constant error.

Since the Grassmann manifold approach is a generalization of the subspace angle interpolation method we decide to
show only the results corresponding to the former method. While Lagrangian interpolation of the bases is performed in
both matrix space and tangent space of the Grassmann manifold (shown in cyan and green), the later approach performs
better in this scenario. The concatenation of bases using Gram–Schmidt algorithm was successful only for larger advection
coefficients (red curve in Fig. 5(a)), for a POD dimension set to 14.

Increasing the dimension of the basis enhances the so called Gram–Schmidt reduced-order model solution accuracy for
ν = 1 (see Fig. 5(b)). For this case Lagrange interpolation in thematrix space shows better performances in comparisonwith
the output of the Grassmann manifold approach.
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(a) The nonlinearity model variations. (b) Dimension of POD basis variation.

Fig. 5. Strategies comparison for generation of accurate ROMs for a new viscosity parameterµ∗
= 0.35 and tf = 0.01. In panel (a) KPOD is set to 14, whereas

in panel (b) ν is set to 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) The nonlinearity model variations. (b) Dimension of POD basis variation.

Fig. 6. Strategies comparison for generation of accurate ROMs for a new viscosity parameter µ∗
= 0.35 and tf = 1. In panel (a) KPOD is set to 14, whereas

in panel (b) ν is set to 1.

Next we increase the nonlinearity characteristics of the model by setting the final time to tf = 1 and Fig. 6 illustrates the
Frobenius norm errors as a function of the advection coefficient ν and POD dimension. The errors produced by the reduced-
order model derived via Grassmann manifold method are similar with the ones obtained by the surrogate model relying on
a POD basis computed via the Lagrange interpolation of the high-fidelity model solutions.

The Lagrange interpolation of bases in the matrix space is not successful as seen in both panels of Fig. 6. Increasing the
POD dimension to 20, the Gram–Schmidt approach enhances the accuracy of the solution (see Fig. 6(b)), for ν = 1.

5. Conclusions

This study develops a new and efficient methodology for constructing reduced-order surrogates for parametric high-
fidelity models. We demonstrate the value of MP-LROM error model to generate accurate description of the local reduced-
order models errors along the entire parametric domain.

The MP-LROM error prediction and parametric domain sampling are utilized to generate decompositions of the space
of parameters into overlapping sub-regions. For each region an associated local reduced-order basis and operators are
constructed using snapshots from a single representative high-fidelity trajectory. The procedure guarantees that, that for
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all values of the parameters in a region, the high-fidelity model is approximated by the same local reduced-order surrogate
within a feasible prescribed accuracy level. Under specific conditions, we derived a theoretical lower limit for the accuracy
level of a local parametric reduced-order model associated with a parametric sub-region. The novel methodology was
applied to a 1D-Burgersmodel. A decomposition of the viscosity parameter interval into sub-intervals with associated errors
thresholds was performed.

Nextwe employed the hierarchy of local bases, local reduced-order and high-fidelitymodels producing themost accurate
solutions for an arbitrary parameter configuration. Based on this hierarchy, three already existing methods involving bases
interpolation and concatenation and high-fidelity model solutions interpolation were applied to enhance the quality of
the associated reduced-order model solutions. Several experiments were performed by scaling the time and space and
modifying the nonlinear characteristics of the 1D-Burgers model. In most cases, interpolating the already existing high-
fidelity trajectories generated the most accurate reduced-order models for a new viscous parameter revealing that the
solution behavior over the parametric region under study can be linearly approximated. Lagrange interpolation of bases
in the tangent space of the Grassmann manifold and concatenation of bases for larger reduced subspaces also showed good
performances.

This work illustrates the rich potential of machine learning to impact the field of computational science and engineering.
The new methodology ensures that a small number of reduced-order models can approximate well the high-fidelity model
solutions for all parametric configurations. This greatly decreases overall computational costs since reduced-order models
are expensive to construct. In the present work the parametric domain decomposition algorithm is applied to a one-
dimensional parameter space.

As a futurework, we seek to decrease the computational complexity of theMP-LROMerrormodels. Currently the training
data required by the machine learning MP-LROM models relies on many high-fidelity simulations. By employing error
bounds, residual norms [22] and a-posteriori error estimation results [52,38], this dependency can be much decreased. In
addition, we plan to construct machine learning MP-LROMmodels to estimate the errors in quantities of interest computed
with reduced-order models. The predictions of such error models can then be used to speed up the current trust-region
reduced-order framework [53,54] by eliminating the need of high-fidelity simulations for the quality evaluation of the
updated controls.

Moreover, we are investigating the extension of the methodology to multi-dimensional parametric domains based on
multivariate sampling. In order to address the curse of dimensionality, we plan to combine our methodology with the active
subspace method [55] to efficiently design decompositions of high-dimensional parametric problems.

Acknowledgments

This work was supported in part by awards from National Science Foundation CCF-1613905, AFOSR DDDAS 15RT1037,
AFOSR Computational Mathematics (FA9550-17-1-0205), and by the Computational Science Laboratory at Virginia Tech.
Răzvan Ştefănescu thanks Dr. Dan Ştefănescu for his valuable suggestions on the machine learning topic.

References

[1] B. Noack,M. Schlegel,M.Morzynski, G. Tadmor, GalerkinMethod for Nonlinear Dynamics, in: B. Noack,M.Morzynski, G. Tadmor (Eds.), Reduced-Order
Modelling for Flow Control, Vol. 528, Springer, 2011, pp. 111–149.

[2] M. Hinze, S. Volkwein, Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: Error estimates and suboptimal control,
in: Dimension Reduction of Large-Scale Systems, Springer, 2005, pp. 261–306.

[3] C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera, G. Turinici, Reliable real-time solution of parametrized partial differential
equations: Reduced-basis output bound methods, J. Fluids Eng. 124 (1) (2002) 70–80.

[4] B.R. Noack, P. Papas, P.A. Monkewitz, The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows, J. Fluid
Mech. 523 (2005) 339–365.

[5] R. Prabhu, S.S. Collis, Y. Chang, The influence of control on proper orthogonal decomposition of wall-bounded turbulent flows, Phys. Fluids 13 (2)
(2001) 520–537.

[6] B.R. Noack, K. Afanasiev, M.Morzyński, G. Tadmor, F. Thiele, A hierarchy of low-dimensionalmodels for the transient and post-transient cylinderwake,
J. Fluid Mech. 497 (2003) 335–363.

[7] J. Burkardt,M. Gunzburger, H. Lee, POD andCVT-based reduced-ordermodeling ofNavier–Stokes flows, Comput.Methods Appl.Mech. Engrg. 196 (1–3)
(2006) 337–355.

[8] J.L. Eftang, B. Stamm, Parameter multi-domain ‘hp’ empirical interpolation, Internat. J. Numer. Methods Engrg. 90 (4) (2012) 412–428.
[9] M. Rapún, J. Vega, Reduced order models based on local POD plus Galerkin projection, J. Comput. Phys. 229 (8) (2010) 3046–3063.

[10] M. Dihlmann, M. Drohmann, B. Haasdonk, Model reduction of parametrized evolution problems using the reduced basis method with adaptive time-
partitioning, in: Proc. of ADMOS 2011, 2011.

[11] B. Peherstorfer, D. Butnaru, K.Willcox, H.-J. Bungartz, Localized discrete empirical interpolationmethod, SIAM J. Sci. Comput. 36 (1) (2014) A168–A192.
[12] S. Kaulmann, B. Haasdonk, Online greedy reduced basis construction using dictionaries, in: I. Troch, F. Breitenecker (Eds.), Proceedings of 7th Vienna

International Conference on Mathematical Modelling, 2012, pp. 112–117.
[13] Y. Maday, B. Stamm, Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces, SIAM J. Sci. Comput. 35 (6) (2013)

A2417–A2441.
[14] M.A. Grepl, A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations, ESAIM

Math. Model. Numer. Anal. 39 (1) (2005) 157–181.
[15] B. Tracey, K. Duraisamy, J. Alonso, Application of supervised learning to quantify uncertainties in turbulence and combustion modeling, in: 51st AIAA

Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, p. 259.

http://refhub.elsevier.com/S0377-0427(17)30578-2/sb1
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb1
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb1
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb2
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb2
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb2
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb3
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb3
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb3
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb4
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb4
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb4
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb5
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb5
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb5
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb6
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb6
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb6
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb7
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb7
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb7
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb8
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb9
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb11
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb13
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb13
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb13
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb14
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb14
http://refhub.elsevier.com/S0377-0427(17)30578-2/sb14


644 R. Stefanescu et al. / Journal of Computational and Applied Mathematics 340 (2018) 629–644

[16] J. Ling, J. Templeton, Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged navier stokes uncertainty, Phys.
Fluids 27 (8) (2015) 085103.

[17] B.D. Tracey, Machine learning for model uncertainties in turbulencemodels andmonte carlo integral approximation, Ph.D. thesis, Stanford University,
2015.

[18] N.M. Alexandrov, R.M. Lewis, C.R. Gumbert, L.L. Green, P.A. Newman, Approximation and model management in aerodynamic optimization with
variable-fidelity models, J. Aircr. 38 (6) (2001) 1093–1101.

[19] M. Eldred, A. Giunta, S. Collis, N. Alexandrov, R. Lewis, Second-order corrections for surrogate-based optimization with model hierarchies, in:
Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, Aug, 2004, pp. 2013–2014.

[20] S.E. Gano, J.E. Renaud, B. Sanders, Hybrid variable fidelity optimization by using a kriging-based scaling function, AIAA J. 43 (11) (2005) 2422–2433.
[21] D. Huang, T. Allen, W. Notz, R. Miller, Sequential kriging optimization using multiple-fidelity evaluations, Struct. Multidiscip. Optim. 32 (5) (2006)

369–382.
[22] M. Drohmann, K. Carlberg, The ROMES method for statistical modeling of reduced-order-model error, SIAM/ASA J. Uncertain. Quantif. 3 (1) (2015)

116–145.
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