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Abstract. Physics-based computer models, such as fluid flow simulations, seek to

approximate the behavior of a real system based on the physical equations that govern

the evolution of that system. The model approximation of reality, however, is imperfect

because it is subject to uncertainties coming from different sources: finite model

resolution, uncertainty in model parameter values, uncertainty in input data such as

external forgings, and uncertainty in the structure of the model itself. Many studies to

date have considered the effects of parameter and data uncertainty on model outputs,

and have offered solutions to obtain the best fitted parameter values for a model.

However, much less effort has been devoted to the study of structural uncertainty,

which is caused by our incomplete knowledge about the true physical processes, and

manifests itself as missing dynamics in the model. This paper seeks to understand

structural uncertainty by studying the observable errors, i.e., the discrepancies between

the model solutions and measurements of the physical system. The dynamics of these

errors is modeled using a state-space approach, which enables to identify the source

of uncertainty and to recognize the missing dynamics inside model. Furthermore, the

model solution can be improved by correcting it with the error predicted by the state-

space approach. The proposed methodology is applied to two test problems, Lorenz-96

and a stratospheric chemistry model.
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1. Introduction

First-principles models encapsulate our knowledge about the physical processes that

govern the evolution of a natural system. The solutions of such models approximate

the evolution of the physical system under consideration. However, models are

imperfect since they are subject to multiple uncertainties associated with the input

data, external forcings, parameters, and the structure of the model. The process

of uncertainty quantification includes the identification, characterization, propagation,

analysis, and finally the reduction of these uncertainties [1]. The identification of sources

of uncertainty considers parameter uncertainty, structural uncertainty, algorithmic

uncertainty, experimental uncertainty and interpolation uncertainty [2]. In forward

uncertainty propagation various uncertainties are run through the model to assess

the total uncertainty in the outputs. In inverse uncertainty propagation the values
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of uncertain parameters are estimated using the discrepancy between the model and

observations [3].

Structural uncertainty, also named model-form uncertainty, is due to insufficient

knowledge of the true physics and therefore to an incomplete representation of reality

by the model [4, 5]. While uncertainties due to data and parameter values have been

studied extensively, comparatively little work has been devoted to date to studying

structural uncertainties. Two approaches have been employed to resolve the structural

uncertainty: model averaging and discrepancy modeling (or model calibration). Model

averaging considers weighted averages of the outputs of different models, with the

weights obtained from a metric of model adequacy, e.g., likelihood with respect to the

data. The limitations of this approach are that it requires the use of multiple models,

and that the models may not be independent. Discrepancy modeling assesses the model

based on the discrepancy between model outputs and the real data [6].

In [7] a Gaussian Process is used to model the discrepancy between the model

outputs and reality, and then a Markov Chain Monte Carlo (MCMC) is employed to

sample the posterior distribution of the discrepancy. In [2] a Bayesian approach is taken

to quantify different aspects of model uncertainty such as uncertainty in parameters,

parametric variability, residual variability, observation error, code uncertainty, and

model inadequacy. The model inadequacy is defined as the difference between the

true mean value of the physical quantity of interest and the model output for the

true values of the inputs. The posterior distribution over the parameters is sampled

by MCMC to obtain the calibrated values of parameters. In [6] a distinction is

drawn between external discrepancies that correspond to the entire model inadequacies,

and internal discrepancies corresponding to individual sub-functions that compose the

model. Internal discrepancies are defined with respect to the output of each sub-function

when given the true input values. A joint distribution over internal discrepancies

and the input data is specified. The sensitivity of the model output to each of the

internal discrepancies is determined in order to assess the relative importance of the

structural uncertainty within each sub-model. If the output is insensitive to all internal

discrepancies then the full model is considered sufficiently accurate. However, large

impacts of internal discrepancies mean that there is considerable prediction uncertainty

arising from uncertain model structure, that this uncertainty should be reduced.

The Integrated Bayesian Uncertainty Estimator (IBUNE) discussed in [8] considers

uncertainties coming from parameters, inputs, and model structure. IBUNE combines

Bayesian model averaging (BMA) to reduces the structural uncertainties of individual

sub-models with the Shuffled Complex Evolution Metropolis (SCEM) algorithm for

probabilistic parameter estimation to the input and parameter uncertainties.

This study seeks to identify the missing dynamics in models that leads to

the discrepancy between the model outputs and the measurements of the physical

world. Our approach is to represent the dynamics of the structural uncertainty using

linear state-space models, and to identify the parameters of these models from the

known model states and model-observations discrepancies. The predicted structural
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uncertainties can be used to correct the model solutions, and therefore to improve

the model. Previous work that has applied the theory of linear dynamical systems

to structural uncertainty includes the use of an extended Kalman filter for system

identification of seismic model errors [9], and the use of an ensemble Kalman filter

to manage the structural uncertainties in reservoir models [10].

The reminder of this paper is organized as follows, Section 2 describes the proposed

methodology for analysis of structural uncertainty. Numerical results are presented in

Section 3. Section 4 summarizes the findings of this work and draws the conclusions.

2. Structural uncertainty

Consider a physical process with internal state vt at the discrete time t ∈ N, evolving

according to the dynamic equation:

vt = P (vt−1) + ηt, t = 1, · · · , T. (1)

The exact physics P and the physical state vt are not known exactly. We take

measurements of a finite number of observables yt ∈ Rm of the physical process:

yt = h(vt) + εt, εt ∼ N (0,Rt), t = 1, · · · , T, (2)

where εt is the observation error, assumed to be normally distributed.

A computer model M evolves the model state xt ∈ Rn from one discrete time (t)

to the next (t + 1):

xt =M
(
xt−1, θ̂

)
, t = 1, · · · , T. (3a)

Without loss of generality we assume that the parameters of the model θ ∈ R` take

the best-fitting values θ̂ and we don’t have any parameter uncertainty. The observation

operatorH maps the model state onto the observation space; the model-predicted values

zt ∈ Rm of the observations (2) are:

zt = H(xt), t = 1, · · · , T. (3b)

The computer modelM seeks to approximate the true physical process; specifically,

the model state approximates the physical state,

xt ≈ ξ(vt), t = 1, · · · , T, (4)

where the operator ξ can represent, for example, the sampling of a continuous

temperature field onto a finite dimensional computational grid. The model dynamics

(3a) approximates the dynamics of the physical system (1). If we initialize the model

at time t with an idealized value (a projection of the real state), the model prediction

at time t+ 1 will differ from the reality:

ξ(vt) =M
(
ξ(vt−1), θ̂

)
+ δt

(
vt−1

)
, t = 1, · · · , T. (5)
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The discrepancy δt between model prediction and the reality, projected onto the model

space, is the structural uncertainty of concern here. In the discussion that follows we

will make the following simplification. We assume that the physical system is finite

dimensional, vt ∈ <n, and that the model state lives in the same space as reality, i.e.,

xt ≈ vt and ξ(·) ≡ id is the identity operator in (4), and H(·) ≡ h(·) in (2) and

(3b). This assumption means that the discretization errors are very small, and that

the main source of error is the missing representation of some physical processes. With

these assumptions the evolution equations for the physical system (1) and the physical

observations equation (2) become, respectively:

vt = P (vt−1) + ηt (6a)

=M
(
vt−1, θ̂

)
+ δt

(
vt−1) + ηt, t = 0, · · · , T − 1,

yt = h(vt) + εt. (6b)

We seek to understand the structure of the model-form error (5) by comparing

the observations (6b) of the real system against the model predicted values of these

observables (3b), i.e., by considering the discrepancies in the observable quantities:

∆t = zt − yt ∈ Rm, t = 1, · · · , T. (7)

Specifically, our goal is to model the state error δt in order to gain understanding of the

missing dynamics, i.e., of the physical processes that are not captured by the modelM.

Moreover, good estimates of the discrepancy δt allow to improve model predictions by

applying the correction (6a) to model results:

vt ≈ xt + δt. (8)

We consider two techniques to quantify the structure of the uncertainty in the

models. The first is the global structural uncertainty approach, which models the

discrepancy between the model state and physical state over the entire state space.

The second is the local uncertainty approach, which only takes account the variables in

the vicinity of the source of uncertainty and not all variables in the system. We now

give a detailed description of these approaches.

2.1. Global models for structural uncertainty

Rooted in control engineering, state-space models (SSMs) are dynamical systems that

describe the probabilistic dependence between the latent variables and the observed

measurements [11]. A stat-space vector evolves forward in time under the control of

external inputs. An output equation captures the relationship between the system

state, the input, and the output. A linear time-invariant (LTI) discrete-time SSM has

the form:

ζt = A · ζt−1 + B · ut−1 + K · νt−1, t = 1, · · · , T ; ζ0 = given, (9a)

γt = C · ζt + D · ut + εt, t = 1, · · · , T, (9b)
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where (9a) is the state equation, and (9b) is the output equation. Here ζt ∈ Rnssm

is the state vector, ut ∈ Rpssm is the input or control variable, γt ∈ Rmssm is output

of the system (observable quantities), νt ∈ Rqssm is the disturbance of the model, and

εt ∈ Rmssm is the observation error. The evolution of the system is captured by the

dynamics or state matrix A ∈ Rnssm×nssm , the input matrix B ∈ Rnssm×pssm , the output or

sensor matrix C ∈ Rmssm×nssm , the feed-through or feed forward matrix D ∈ Rmssm×pssm ,

and the disturbance matrix K ∈ Rnssm×qssm .

In order to understand the structure of uncertainty in this work we employ SSMs

(9) to describe the evolving discrepancy between the model and the true physics, as

follows:

• The state vector ζt consists of hidden states that represent the dynamics of the

structural model error, and are driven by the error dynamics of the model.

• The hidden error ζt depends on the model solution at every time step and on the

discrepancy between the model outputs and the physical observations. The inputs

of our SSM are therefore the model predictions (3a) :

x̂t =M
(
xt−1, θ̂

)
, t = 1, · · · , T. (10)

• The outputs of the SSM are the observed discrepancies (7) between the model

forecast (10) and reality:

∆̂t = ẑt − yt = h (x̂t)− yt, t = 1, · · · , T. (11)

• The outputs of the SSM predict the total stat-space discrepancy ∆̂t.

The SSM that models the global error dynamics is:

ζt = A · ζt−1 + B · x̂t + K · ηt, ζ0 = given, (12a)

∆̂t = C · ζt + D · x̂t + εt. (12b)

From the sequence of known inputs x̂t and the known outputs ∆̂t, t = 1, . . . , T one can

perform a system identification and fit the matrices A,B,K,C,D. The matrix entries

contain information about the structure and source of uncertainty in models; this aspect

will be discussed in detail in the numerical experiments Section 3.

It is important to note that in the global approach, the SSM (12) approximates the

dynamics of the model error over the entire model space. Since the dimension of the

hidden error vector ζt ∈ Rnssm can be much smaller than the dimension of the model

state-space error vector δt ∈ Rn, nssm < n, the hidden error vector predicted by (12)

needs to be lifted up to the model space:

δt = F · ζt + G · x̂t. (13)

In order to define the projection matrices F ∈ Rn×nssm and G ∈ Rn×n and one needs

to use additional information about the structure of the model and the observation

operator. Some possible definitions are discussed below.



A State-Space Approach to Analyze Structural Uncertainty in Physical Models 6

• The global error dynamics model (12) can be defined on the entire state-space, i.e.,

nssm = n. In this case the hidden error approximates the entire model error vector

ζt ≈ δt, and therefore F = I and G = 0 in (13).

• The hidden error dynamics vector (12) can represent the projection of the full

model error onto a subspace spanned by the orthonormal basis Φ ∈ <n×nssm with

ΦT ·Φ = I ∈ <nssm×nssm . In this case we have:

ζt ≈ ΦT · δt, δt ≈ Φ ΦT · ζt ⇒ F = Φ ΦT and G = 0.

The reduced order basis Φ ∈ <n×nssm can be obtained from snapshots of a more

complex model trajectories by proper orthogonal decomposition.

• The lifting operation (13) can be constructed using the observation operator.

Specifically, assuming a small model error we have:

∆̂t = h (xt)− h (vt) ≈
∂h

∂x
(xt) (xt − vt) = −Ht δt, where Ht =

∂h

∂x
(xt). (14)

Let H+
t be the pseudo-inverse of H. From (14) and (12b) we have that:

xt−vt = −δt ≈ H+
t ∆̂t ≈ H+

t C ζt+H+
t D x̂t ⇒ F = H+

t C and G = H+
t D.

(15)

Before the next time step the model forecast (10) is corrected with the predicted

discrepancy (13) in order to obtain a better approximation of the true physical state:

xt = x̂t + δt. (16)

2.2. Local models for structural uncertainty

In order to capture the global error dynamics the SSM (12) needs to be large. Finding

the matrix coefficients from the inputs and outputs of this model is highly challenging.

Moreover, many models have a dynamics driven by local dependencies among variables.

The model structural errors due to local inaccuracies in the representation of physics

have local impacts.

In order to address these points we consider local error models that seek to capture

the structural uncertainty associated with only subsets of variables of the model. The

assumption is that structural errors are associated with certain parts of the model,

and that the effects of one type of structural error is observed locally in the evolution

of “nearby” model variables and quantities of interest. By nearby we mean variables

in physical proximity (e.g., grid points located at a short distance from each other)

or variables that are tightly coupled to one another. Some prior knowledge about

the source of structural errors may be required in order to define the local subset of

variables affected by it. The interaction between local and remote variables is assumed

to be sufficiently weak such that we can capture the evolution of errors using only

local models: the errors depend on local variable states as inputs, and provide the
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discrepancies between the model forecasts and true physics only on for those observable

quantities that measure local variables.

The large SSM (12) modeling the global error dynamics is split into a set of L

small-dimensional “local” SSMs:

ζ`
t = A` · ζ`

t−1 + B` · x̂`
t + K` · η`

t , ζ`
0 = given, (17a)

∆̂`
t = C` · ζ`

t + D` · x̂`
t + ε`t, (17b)

δ`
t = F` · ζ`

t + G` · x̂`
t, (17c)

x`
t := x̂`

t + δ`
t , ` = 1, . . . , L. (17d)

Here x` consists of a local subset of model variables (e.g., associated with a certain

geographic region), ζ`
t are the hidden states associated with the local model errors, and

∆̂`
t are the observations associated with that particular geographic region. In the local

approach the large model (12) is replaced by a set of small error models (17), one for

each local set of variables that are affected by structural errors.

In absence of any prior knowledge regarding the location of potential sources of

uncertainty one can iterate over subsets of variables of the model, assume the uncertainty

is associated with those variables, and construct the local error SSM (17) using only the

variables in the locality of the source of uncertainty. The state is corrected according

to (17d). The difference between the observables associated with the corrected solution

(17d) and the real data allows to rank the different possible sources of error, and to select

the ones that lead to the smallest differences. Algorithm 1 summarizes this approach.

Algorithm 1 Identifying the subsets of variables most affected by model uncertainty

using local structural uncertainty modeling.

UncertaintyVars=Subset of variables in the model concern of having uncertainty.

For variable= UncertaintyVars[0]+L: UncertaintyVars[end]-L

x̂` = x
(
variable− L

2
: variable + L

2

)
Obtain x`using (17)

rank(variable) =RMSE
(
y,x`

)
End For

[min,index]=minimum(rank)

return x` = x(index− L
2

: index + L
2
)

3. Numerical experiments

In order to illustrate the proposed modeling os structural errors we employ two test

systems. The first one is the Lorenz-96 model with 40 variables [12], and the second

model is the stratospheric chemistry model [13]. For our experiments we use the SSM

library in Matlab [14] to obtain the state-space equations of the error models, i.e., the

A,B,C,D matrices. We use the identity observation operator, i.e., we observe the

errors in all model states. From (15) with H+
t = I we have δt ≈ ∆̂t.
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3.1. Lorenz-96 model

The one dimensional Lorenz model is given by [12]:

dXk

dt
= −Xk−2Xk−1 +Xk−1Xk+1 −Xk + F, k = 1, 2, · · · , K, (18)

with K = 40 variables, periodic boundary conditions, and a forcing term F = 8. The

variables of Lorenz model are periodic meaning that, values of Xk−K and Xk+K is equal

to Xk.

A more complex Lorenz model includes two distinct time scales. It couples each

variable Xk of the slow model (18) with a fast oscillating system described by the

variables {Yj,k}k=1,...,K,j=1,...,J . The two-scale Lorenz model (19) adds five fast variables

(J = 5) to each slow variable in the basic Lorenz (18):

The equations are:

dXk

dt
= Xk−1 (Xk+1 −Xk−2)−Xk − (hc/b)

J∑
j=1

Yj,k (19)

dYj,k
dt

= − cbYj+1,k (Yj+2,k − Yj−1,k)− cYj,k + (hc/b)Xk,

k = 1, 2, · · · , K, j =, 2, · · · , J.

System (19) has 200 variables. We select the coupling coefficient value h = 0.2. The

parameters c = 1 and b = 10 are chosen such that the convective (fast) scales oscillate

ten times faster than the large (slow) scales.

We consider (19) to be the real physical system, and (18) to the the computer

model approximation. The mapping of variables is vt = {Xk, Yj,k}1≤k≤K,1≤j≤J , xt =

{Xk}1≤k≤K , and ξ(vt) = {Xk}1≤k≤K . For simplicity, we use the identity observation

operator H(xt) = xt. Using the discrepancy between the model solution and the true

physics we employ the global and the local modeling approaches to analyze the structure

of uncertainty in the model.

3.1.1. Global structural uncertainty modeling results For the global approach at each

time step we observe the discrepancy between the model solution and the real data for

all model variables (7). The model (18) is integrated forward in time starting from real

data to obtain the model forecast x̂t 10. The SSM states ζt are predicted from past

values, the observed discrepancies, and the model forecast. Before the next step is taken

the model solution is corrected using the predicted global error according to (12a). This

procedure is summarized by Algorithm 2.

In the first experiment we have perturbed the 12th and 30th variables in the Lorenz

system, and kept all other slow variables without the additional forcing from the fast

scales not captured by the model. This means that the structural uncertainty affects

only two variables in the model. The system will was integrated forward in time for

1000 time steps, and the number of error hidden states was was empirically chosen equal

to eight. Figure 1 shows the corrected model solution using with reduced uncertainty.
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Algorithm 2 Reducing the uncertainty in the Lorenz model using the global approach.

∆t = x̂t − vt, t ∈ {training times}.
[A,B,C,D, ζ0] = SSM

(
{∆t, x̂t}t∈{training times}

)
.

x0 = y1
For t = 1 : T

x̂t =M
(
xt−1, θ̂

)
ζt = A ζt−1 + B x̂t

∆̂t = C ζt + D x̂t

xt = x̂t + ∆̂t

End For

0 200 400 600 800 1000
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Time step

 

 

Corrected solution
Model solution
Real solution

Figure 1. The evolution of a Lorenz variable in time for model solution, real solution

and corrected model solution. The corrected model solution of the Lorenz system is

obtained using the predicted global model error. The 12th and 30th variables in the

model are perturbed, meaning that they are affected by the structural uncertainty.

The SSM coefficient matrices are shown in Figure 2 when perturbing only the 12th

and 30th variables in the Lorenz system. The output matrix C identifies well the

source of uncertainty: the larger entries correspond to the 12th and 30th variables. The

state matrix A has the largest entries near the diagonal, indicating that global error

correlations are spatially localized. The input matrix B shows no special structure that

reveals the uncertainty location. The feed forward matrix D also captures the perturbed

states.

In the second experiment the structural uncertainty affects the 8th, 16th, 25th, and

33rd variables in the Lorenz system (18). Figure 3 shows the SSM coefficient matrices.

The sensor matrix C again identifies well the perturbed variables, with entry peaks

corresponding to the perturbed variables. The state matrix A has the largest entries

near the diagonal, indicating that global error correlations are spatially localized. The

input matrix B does not have any special structure. The feed forward matrix D also

captures the perturbed states.

Furthermore, the length of the the time series used in SSM for tuning the

parameters, affects the prediction power. The more data used, the parameters of SSM



A State-Space Approach to Analyze Structural Uncertainty in Physical Models 10

0
5

10

0

5

10
−1

−0.5

0

0.5

(a) State matrix A

0
20

40

0

5

10
−50

0

50

100

(b) Input matrix B

0
5

10

0

20

40
−10

−5

0

5
x 10−7

(c) Output matrix C

0
20

40

0

20

40
−5

0

5
x 10−5

(d) Feed-forward matrix D

Figure 2. The structure of the SSM coefficient matrices for the global error model.

The structural uncertainty affects the 12th and 30th variables in the Lorenz model (18).

gets better tuned and the hidden dynamics of the error will be identified better. Table

(1.a) illustrates the predictability power of the SSM using different length of time series.

The variables we use also impacts the performance of SSM to great extent. Table (1.b)

also shows the predictability power of the SSM using different number of variables.

(a) Effect of length of time-series on

SSM performance

Length of time-series RMSE

1000 2.2449

800 3.0075

400 4.1406

(b) Effect of using different variable

numbers on SSM performance

Number of variables RMSE

40 2.2449

20 3.5834

10 5.2142

Table 1. RMSE between corrected model solution and real data
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(c) Output matrix C

0
20

40

0

20

40
−4

−2

0

2

4
x 10−5

(d) Feed-forward matrix D

Figure 3. The structure of the SSM coefficient matrices for the global error model.

The structural uncertainty affects the 8th, 16th, 25th and 33rd variables in the Lorenz

model (18).

3.1.2. Local structural uncertainty modeling results In the local approach all the

assumptions made for the global approach also hold. The difference is that we construct

the SSM representing the uncertainty in variable i using only a subset of variables in

the physical vicinity of i, and do not include all variables in the system. Therefore, for

local error modeling one needs to determine the size of the local neighborhood where

errors are correlated with the error in variable i. In case of the Lorenz model (18) the

physical distance between variables equal the difference between their indices, modulo

20 (due to the periodic boundary conditions). Therefore one needs to determine the

decorrelation distance L such that the local error model for variable i uses information

from variables indexed i− L to i+ L.

For the first set of experiments we set the localization radius to L = 1. The 22nd

variable is perturbed, and we use the model predictions x̂ of variables 21, 22, 23 to build

the local error SSM. The corrected model solution, obtained according to (17), is shown
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Figure 4. The evolution of a Lorenz variable in time for model solution, real solution

and corrected model solution. The corrected model solution is obtained using the

predicted local error. The structural uncertainty affects the 22nd variable in the model,

and the localization radius is one.

in Figure 4. Figure 5 shows the matrix coefficients for the local error SSM. Since we

only included three variables in the SSM the dimension of the output matrix C is 3× 3;

the largest entry corresponds to the perturbed variable. The state matrix A is nearly

the identity matrix, the input matrix B does not have any special structure, and the

feed-forward matrix D is zero. However, the corrected solution is closer to the“truth”,

as shown in Figure 4.

In the next experiment we set the localization radius to L = 5. Figure 6 shows

the corrected solution using a local error SSM model with 11 variables. The corrected

solution is much closer to the truth than the one obtained for L = 1, see also Figure

4. This implies that an accurate corrected model solution depends on a good choice of

the localization radius; in this experiment including more variables is beneficial. Figure

7 shows the SSM matrix coefficients for this experiment. The sensor matrix C has a

peak in the middle variable corresponding to the perturbed variable. The structure of

the rest of the matrices are very similar to the experiment where the localization radius

is three.

However, in practice, the real source of uncertainty is unknown and we might

not have sufficient knowledge about the states of the model that are affected by large

structural uncertainties. One can find the most uncertain variables by iterating over

subsets of model states, as summarized in Algorithm 1. At each iteration we assume

that the source of uncertainty affects one particular subset of variables. A local error

SSM is constructed, the corrected solution is computed, and the root mean square of the

difference between the corrected solution and the real trajectory is found. The subsets

of variables corresponding to the minimum root mean square differences are considered

the most likely to be affected by structural uncertainty, since local corrections applied

to those variables results in most improvements of the overall model predictions.
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(d) Feed-forward matrix D

Figure 5. The local error SSM coefficients for the Lorenz system (18). The structural

uncertainty affects the 22nd variable in the model, and the localization radius is one.
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Figure 6. The evolution of a Lorenz variable in time for model solution, real solution

and corrected model solution. The corrected model solution is obtained through

applying the local model discrepancy. The structural uncertainty affects the 22nd

variable in the model, and the localization radius is five.
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Figure 7. The local error SSM coefficients for the Lorenz system (18). The structural

uncertainty affects the 22nd variable in the model, and the localization radius is five.

In the third experiment we perturb one variable in the Lorenz system. We iterate

over all variables in the Lorenz system, and for each we apply the local approach with

a given localization radius. The differences between the corrected solution and the real

trajectory are obtained. We consider the root mean square errors between the vectors of

solutions at each time moment along the trajectory. The histogram of minima of the root

mean square differences will show for which variable corrections result in the minimum

error. This helps identify the potential source of uncertainty in the system. Figure 8

shows the histogram of root mean square differences between corrected solution and

real data after perturbing the 30th variable. We iterate over all variables in the Lorenz

system, and for each we apply the local approach with a localization radius of three. The

frequency of the minimum of the discrepancy between model solution and real data for

the 30th variable is higher than for other variables. In another experiment we perturb

the 14th variable in the Lorenz system with the localization radius of five. Figure 8

shows the histogram of discrepancies perturbing the 14th variable; again, the frequency

of the minimum of the root mean square differences between model solution and real
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Figure 8. Histogram of minimum root mean square discrepancies between the

corrected solution and the exact trajectory using the local error modeling approach.

data for the 14th variable is higher than for other variables, which indicates that the

source of uncertainty is well identified.

3.2. Stratospheric chemistry model

A basic stratospheric chemistry mechanism [13] is given by the following set of reactions:

r1) O2 + hv
k1−−→ 2O

(
k1 = 2.643× 10−10 · σ3

)
r2) O + O2

k2−−→ O3

(
k2 = 8.018× 10−17

)
r3) O3 + hv

k3−−→ O + O2

(
k3 = 6.120× 10−4 · σ

)
r4) O + O3

k4−−→ 2O2

(
k4 = 1.576× 10−15

)
r5) O3 + hv

k5−−→ O1D + O2

(
k5 = 1.070× 10−3 · σ2

)
(20)

r6) O1D + M
k6−−→ O + M

(
k6 = 7.110× 10−11

)
r7) O1D + O3

k7−−→ 2O2

(
k7 = 1.200× 10−10

)
r8) NO + O3

k8−−→ NO2 + O2

(
k8 = 6.062× 10−15

)
r9) NO2 + O

k9−−→ NO + O2

(
k9 = 1.069× 10−11

)
r10) NO2 + hv

k10−−→ NO + O
(
k10 = 1.289× 10−2 · σ

)
.

Here M = 8.120E + 16 molecules/cm3 is the atmospheric number density. The rate

coefficients are scaled for time expressed in seconds, and σ(t) ∈ [0, 1] represents the

normalized sunlight intensity during a diurnal cycle [13].

In our experiments we consider the full set of equations (20) as describing the true

physical system (6a). Our model (3a) is the set of reactions r1 . . . r7; not captured by
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Figure 9. Model forecasts and corrected model solutions for the stratospheric chemical

system with missing reactions. A global model of structural uncertainty is used.

the model are those reactions r8, r9, r10 that involve nitrous oxides (NO,NO2). The

three missing reactions correspond to missing dynamics in the model, i.e., physical

phenomena that exist in reality but are not captured by the computer model. Our

goal is to understand what is the missing dynamics in the chemical system that leads

to systematic differences between the model and reality. In order to tackle this we

construct a global error model (12) that estimates the global discrepancy between the

system of full reactions and the system with three missing reactions. The assumptions

made for the Lorenz model also hold here, i.e. we don’t have observation error and

disturbance, and we use the identity observation operator, therefore according to (15)

we have δt ≈ ∆̂t.

Figure 9 shows the solutions of the reference system, as well as the original and the

corrected solutions of the model with missing physics. Correcting the solutions of the

model with missing dynamics allows to recover very well the trajectories of the physical

(reference) model. Figure 10 shows the coefficient matrices of the global SSM for the

stratospheric model. There is no particular structure associated with these matrices.

While the linear SSM dynamics can mimic the evolution of structural errors in the

nonlinear chemical system (20), it cannot explain the real source of discrepancies as

coming from three missing reactions.

Having the corrected solution, one is interested to learn about the number of missing

chemical reactions as well as their corresponding reaction rates; the missing chemical

reactions represent the missing dynamics in the model. Assuming we know what the

missing reactions are, the corresponding reaction rates can be obtained through an

optimization process that adjusts their values such as to minimize the model-observation

discrepancies. In this experiment we carry out the optimization using a genetic algorithm

(GA). The reason for using the GA approach rather than a traditional gradient-based

approach is that computing the Jacobian of this system is very expensive. GAs are a

class of evolutionary algorithms that is used both for constrained and unconstrained

optimization problems. A population of candidate solutions is generated randomly in
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Figure 10. The structure of the matrix coefficients of the global-error SSM for the

stratospheric chemical system.

the domain of search space and the fitness of each individual solution is evaluated

using the value of the objective function in the optimization problem. In an iterative

process the population of candidate solutions then evolves toward the best solution in

the search space. At each iteration the properties of the candidate solutions are changed

randomly by cross-over and mutation (operations inspired by biological evolution) to

ensure the dispersion of the possible solutions throughout the search space. The best

fitted solutions will be selected to form the next generation of feasible solutions. The

algorithm is stopped when the maximum number of iterations is reached, or the highest

fitness value was obtained, or successive iterations do not improve the result any further

[15].

For this experiment we use Matlab’s GA toolbox with a population size of 30, 50

iterations, cross over rate of 0.85, and a mutation rate of 0.05. The fitness function is

the root mean square difference between the true physics (solution of the stratospheric

model with all reactions) and the solution of the model (stratospheric model with

three reactions having uncertain reaction coefficients). With tight upper bounds and
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lower bounds for the reaction rates of the missing reactions, the optimization finds the

reaction rate coefficients for r8, r9, r10 to have the values 7.781 × 10−15, 1.937 × 10−11,

and 3.4621 × 10−2, respectively. The absolute differences between the approximated

values and the true values of the rate coefficients are small, 1.719× 10−15, 8.687× 10−12,

and 0.021, respectively. This experiment illustrates the fact that any information we

have about the source of structural uncertainty (e.g., three missing chemical reactions)

can and should be used to obtain a more accurate, physically based description of the

associated model errors.

4. Conclusions

Physics-based computer models of the real world are imperfect since not all physical

processes that drive reality are fully captured by the model. This work considers the

structural model uncertainty, i.e., the model inadequacy due to missing aspects of the

dynamics of the true physical system. We study structural uncertainty based on the

information provided by the discrepancy between the model solution and the true state

of the physical system, as measured by the available observations.

The proposed approach is to approximate the dynamics of structural errors using

linear state-space models. The parameter matrices of these models are obtained from

fitting their response to match the mapping of model states as inputs to the observed

model-reality differences as outputs.

Two different strategies to model the error dynamics are discussed: the global

approach and the local approach. The global approach seeks to build one state-space

model that approximates the entire structural uncertainty over the model’s entire state-

space. The local approach uses the ansatz that structural errors are only correlated

locally, and that the correlation decreases with increasing distance between model

components. Low-dimensional local state-space models are constructed to approximate

the dynamics of the local errors, and they use only information from subsets of variables

and data.

Numerical experiments are carried out with two test problems, the Lorenz-96 system

and a stratospheric chemistry model. These experiments reveal that the state-space

discrepancy models provide intuition about the variables affected most by the missing

dynamics. Global error models can identify the sources of uncertainty inside the physics-

based models. Local error models capture the evolution of uncertainty over subsets of

variables and are considerably less expensive to construct. When there is insufficient

knowledge about the source of structural uncertainty the local approach allows to locate

the subsets of variables that are most affected by it. The structural errors estimated with

both global and local approaches can be used to correct the model solution and obtain

improved estimates of the true physics. However, even if the state-space models can

reproduce well the dynamics of the error, they may do this using an internal dynamics

that is unrelated to the model dynamics or the true physics. In particular, reproducing

the error dynamics does not necessarily explain the missing physics, as it was illustrated
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in the experiments with the stratospheric chemistry system. Consequently, in order

to fully understand structural errors it is important to incorporate in the analysis all

available information about the nature of the missing physical processes.
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