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Abstract. Ensemble Kalman filter (EnKF) has proven successful in
assimilating observations of large-scale dynamical systems, such as the
atmosphere, into computer simulations for better predictability. Due to
the fact that a limited-size ensemble of model states is used, sampling
errors accumulate, and manifest themselves as long-range spurious corre-
lations, leading to filter divergence. This effect is alleviated in practice by
applying covariance localization. This work investigates the possibility of
using machine learning algorithms to automatically tune the parameters
of the covariance localization step of ensemble filters. Numerical experi-
ments carried out with the Lorenz-96 model reveal the potential of the
proposed machine learning approaches.

Keywords: Data assimilation - EnKF - Covariance localization -
Machine learning

1 Introduction

Data assimilation (DA) is the set of methodologies that combine multiple sources
of information about a physical system, with the goal of producing an accurate
description of the state of that system [27]. Statistical DA algorithms apply
Bayes’ theorem to describe the system state using a probability distribution
conditioned by all available sources of information. A typical starting point for
most of the algorithms in this approach is the Kalman filter (KF) [26], which
assumes that the underlying sources of errors are normally distributed, with
known means and covariances. The ensemble Kalman filter (EnKF) [19] follows
a Monte-Carlo approach to propagate covariance information, which makes it a
practical approach for large-scale settings.

In typical atmospheric applications the model state space has dimension
~10°-10'2, and a huge ensemble is required to accurately approximate the
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corresponding covariance matrices. However, computational resources limit the
number of ensemble members to 30-100, leading to “under-sampling” [24] and
its consequences: filter divergence, inbreeding, and long-range spurious correla-
tions [4]. Inbreeding and the filter divergence are alleviated by some form of
inflation [5]. We focus here only on long-range spurious correlations which are
handled in practice by covariance localization [23].

Covariance localization is implemented by multiplying the regression coeffi-
cient in the Kalman gain with a decaying distance-dependent function such as
a Gaussian [4] or the Gaspari-Cohn fifth order piecewise polynomial [22]. Dif-
ferent localization techniques have been recently considered for different obser-
vation types, different type of state variables, or for an observation and a state
variable that are separated in time. However, in general, tuning the localization
parameter for big atmospheric problems is a very expensive process. Previous
efforts for building adaptive algorithms for covariance localization includes the
works [3,4,7,10,11,29].

In this study we propose to adapt covariance localization parameters using
machine learning algorithms. Two approaches are proposed and discussed. In
the localization-in-time method the radius of influence is held constant in space,
but it changes adaptively from one assimilation cycle to the next. In the space-
time-localization method, the localization radius is space-dependent and is also
adapted for each assimilation time instant. The learning process is conducted off-
line based on historical records such as reanalysis data, and the trained model
is subsequently used to predict the proper values of localization radii in future
assimilation windows.

The paper is organized as follows. Background is given in Sect. 2. Section 3
presents the new adaptive localization algorithms. Experimental setup, and
numerical results are reported in Sect. 4. Conclusions and future directions are
highlighted in Sect. 5.

2 Background

2.1 Ensemble Kalman Filter (EnKF)

EnKF proceeds in a prediction-correction fashion and carries out two main steps
in every assimilation cycle: forecast and analysis. Assume an analysis ensemble
{x3_i(e) | e=1,...,Neps} is available at a time instance t;_1. In the forecast
step, an ensemble of forecasts {x}(e) | e = 1,...,Neps} is generated by running
the numerical model forward to the next time instance t; where observations
are available:

Xllcc(e) = Mtk—l—’tk (XZ—l(e)) + nk(e)v e=1,...,Neps, (la)

where M is a discretization of the model dynamics. To simulate the fact that the

model is an imperfect representation of reality, random model error realizations
nk(e) are added. Typical assumption is that the model error is a random variable
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distributed according to a Gaussian distribution A(0, Q). In this paper we
follow a perfect-model approach for simplicity, i.e., we set Qi = 0 Vk.

The generated forecast ensemble provides estimates of the ensemble mean i;
and the flow-dependent background error covariance matrix By at time instance
[

1

B = No. 1 X X T Xy = [x};(e) - ifk:l(i:l,quens’

1 Nens (lb)
o= D Xk(e).

ens e=1

In the analysis step, each member of the forecast is analyzed separately using
the Kalman filter formulas [16,19]:

xi(e) = x,(e) + Kx ([yr + Crle)] — Ha(x(e))) , (1)
Ky = ByHY (H,B.HY + Ry.) ", (1d)

where yy is the observation collected at time t;. The relation between a model
state x; and an observation yj is characterized by

i = Hr(k) + G G ~N(0,Ry), (2)

with Hy, and Ry, being the observation operator and the observation error covari-
ance matrix, respectively, at time ¢;. Here Hy = H), (i‘,;) is the linearized obser-
vation operator, e.g. the Jacobian, at time instance t;. Many flavors of EnKF
have been developed over time. For a detailed discussion on EnKF and variants,
see for example [6,20].

2.2 Covariance Localization

The small number of ensemble members may result in a poor estimation of
the true correlations between state components, or between state variables and
observations. In particular, spurious correlations might develop between vari-
ables that are located at large physical distances, when the true correlation
between these variables is negligible. As a result, state variables are artificially
affected by observations that are physically remote [2,23]. This generally results
in degradation of the quality of the analysis, and eventually leads to filter diver-
gence. Covariance localization seeks to filter out the long range spurious corre-
lations and enhance the estimate of forecast error covariance [23,25]. Standard
covariance localization is typically carried out by applying a Schur (Hadamard)
product between a correlation matrix p with distance-decreasing entries and the
ensemble estimated covariance matrix, resulting in the localized Kalman gain:

Ky = (poBy) HY (Hy (po By HY + Ry) . (3)

Localization can be applied to H;yBg, and optionally to the By projected
into the observations space, that is, HyByHYZ [34]. Since the correlation matrix
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is a covariance matrix, the Schur product of the correlation function and the
forecast background error covariance matrix is also a covariance matrix. Covari-
ance localization has the virtue of increasing the rank of the flow-dependent
background error covariance matrix p o By, and therefore increasing the effec-
tive sample size. A popular choice of the correlation function p is a Gaussian
function defined by

plz,c) = 7%/, (4)

where z = 2(i,7) is a distance function between ith and jth grid points respec-
tively. The value of the correlation coefficient p(z,c) is at highest of 1 for a
distance z = 0, and decreases as the distance increases. Depending on the imple-
mentation, z can be either the distance between an observation and grid point
or the distance between grid points in the physical space. The radius of influence
¢ must be tuned for each application.

2.3 Machine Learning

Recent studies show that machine learning (ML) algorithms can be helpful in
solving computational science problems, including [8,32]. There is a plethora of
ML algorithms for regression analysis. In this work, we limit ourselves to the
ensemble approach [18] which has proven successful in enhancing the perfor-
mance and results of ML algorithms. Specifically, ensemble methods work by
combining several MLL models into a single predictive model that can in prin-
ciple overcome the limitations of the individual ML models. These limitations
are generally manifested as bias and/or high-variance. Ensemble ML methods
aim to decrease the bias (e.g., boosting) and the variance (e.g., bagging), and
hence outperform the individual predictive models. Moreover, ML algorithms
work by performing an optimization procedure that my be entrapped in a local
optimum. An ensemble ML algorithm enables running the local search, carried
out by each individual predictive model, from different starting points and thus
enhances the predictive power. Common types of ML ensemble methods include
the Bootstrap aggregation — bagging for short — [12], and Boosting [15]. In bag-
ging, the training set is used to train an ensemble of ML models, and all trained
models are equally important, i.e. the decisions made by all models are given
the same weight. Each of the models is trained using a subset randomly drawn
from the training dataset. A widely successful algorithm in this family of meth-
ods, is Random Forests (RF) [13]. In the boosting approach, on the other hand,
the decisions made by the learners are weighted based on the performance of
each model. A widely common algorithm in this approach is Gradient Boosting
(GB) [14].

Random Forests. RFs [13] work by constructing an ensemble of decision trees,
such that each tree builds a classification or regression model in the form of a
tree structure. Instead of using the whole set of features available for the learning
algorithm at once, each subtree uses a subset of features. The ensemble of trees
is constructed using a variant of the bagging technique, thus yielding a small
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variance of the learning algorithm [18]. Furthermore, to ensure robustness of the
ensemble-based learner, each sub-tree is assigned a subset of features selected
randomly in a way that minimizes the correlation between individual learners.
Random sampling and bootstrapping [30] can be efficiently applied to RFs to
generate a parallel, robust, and very fast learner for high-dimensional data and
features.

Gradient Boosting. GB proceeds by incrementally building the prediction model
as an ensemble of weak predictors. Specifically, GB algorithm build a sequence of
simple regression trees with each constructed over the prediction residual of the
preceding trees [21]. This procedure gives a chance to each sub-tree to correct
its predecessors, and consequently build an accurate ensemble-based model.

3 Machine Learning Approach for Adaptive Localization

This section develops two machine learning approaches for adaptive covariance
localization. Specifically, we let a ML model learn, and consequently predict,
the best localization radius to be used in the filtering procedure. Here, we can
either allow the localization radius to vary over time only, or both in space and
in time. In both cases, RF or GB, or another suitable regression, model is used
to construct the learning model that takes the impactful set of features as input,
and the localization radius as output.

3.1 Features and Decision Criteria

Under the Gaussianity assumption, the quality of the DA solution is given by
the quality of its first two statistical moments. However, including the ensem-
ble mean and correlations as a set of features can be prohibitive in large-scale
applications. One idea is to select only model states with negligible correlations
among them, e.g., states that are physically located at distances larger than the
radius of influence. Another useful strategy to reduce model features is to select
descriptive summaries such as the minimum and the maximum magnitude of
state components in the ensemble. Similarly, we suggest including blocks of the
correlation matrix for variables located nearby in physical space, i.e., for subsets
of variables that are highly correlated.

To construct a proper objective function for the ML algorithm to optimize,
we need to quantify the accuracy of the mean estimate, and ensemble-based
approximation of the covariance matrix generated by the filtering algorithm. To
quantify the accuracy of the ensemble mean we use the root mean-squared error
(RMSE), defined as follows:

RMSE), = % — x5, (5)

1
\% Nstate
where x"™¢ is the true system state, and ||-||, is the Euclidean norm. Since the
true state is not known in practice, we also consider the deviation of the state

true
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from collected measurements as a useful indication of filter performance. The
observation-state RM SFE is defined as follows:

1
Vv Nobs

The quality of the analysis state x = x* by either (5) in case of perfect problem
settings, or by (6) in case of real applications. In this work we use the observation-
analysis error metric (6), denoted by RMSEX"Y | as the first decision criterion.

The quality of the ensemble-based covariance can be inspected by investigat-
ing the spread of the ensemble around truth (or the observations), using Tala-
grand diagram (rank histogram) [1,17]. A quality analysis ensemble leads to a
rank histogram that is close to a uniform distribution. Conversely, U-shaped and
Bell-shaped rank histograms correspond to under-dispersion and over-dispersion
of the ensemble, respectively. Ensemble based methods, especially with small
ensemble sizes, are generally expected to yield U-shaped rank histograms, unless
they are well-designed and well-tuned. In this work we use the uniformity of the
analysis rank histogram, in observation space, as the second decision criterion.
To quantify the level of uniformity of the rank histogram, we follow the approach
proposed in [9]. Specifically, the Kullback-Leibler (KL) divergence [28] between
a Beta distribution Beta(c, ) fitted to rank histogram of an ensemble, and
a uniform distribution. This measure calculated using the forecast ensemble is
used as a learning feature, while the one calculated using the analysis ensemble
is used as a decision criterion. To account for both accuracy and dispersion, we
combine the two metrics into a single criterion, as follows:

RMSEZY = 1M (%) — vl - (6)

Cr = wi RMSEX'Y wy Dy, (Beta(a, B)|| Beta(1.0,1.0)), (7)

where the weighting parameters realize an appropriate scaling of the two metrics.
The weights wq,wy can be predefined, or can be learned from the data them as
part of the ML procedure. Here, we define the best set of localization radii at
every assimilation cycle to be the minimizer of (7).

Adaptive-in-Time Localization. Here, the value of this radius is fixed in space,
and only varied from one assimilation cycle to the next. Specifically, at the
current cycle we perform the assimilation using all localization radii from a pool
of possible value, and for each case compute the cost function (7). The radius
associated with the minimum cost function is selected as winner. The analysis of
the current assimilation cycle is then computed using the winner radius. During
the training phase, at each assimilation cycle, the ML algorithm learns the best
localization radius (i.e., winner) corresponding to the selected features. During
the test phase, the learned model uses the current features to estimate the proper
value of the localization radius.

Space-Time Adaptive Localization. Here, the localization radii vary both in time

and in space. In this case, the localization radius is a vector r containing a scalar
localization parameter for each state variable of the system. At each assimilation
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cycle we collect a sample consisting of the model features as inputs and the
winner vector of localization radii as output of the learning model.

Computational Considerations. During the training phase, the proposed meth-
odology requires trying all possible radii from the pool, and re-do the assimilation
with the selected radius. This is computationally demanding, but the model can
be trained off-line using historical data. The testing phase the learning model
predicts a good value of the localization radius, which is then used in the assim-
ilation; no additional costs are incurred except for the (relatively inexpensive)
prediction made by the trained model.

4 Numerical Results

In order to study the performance of the proposed adaptive localization algo-
rithm we employ he Lorenz-96 model [31], described by:

%:—Xk,1 (Xk72Xk71_Xk+1)_Xk+F, k:1,2,~" ,K, (8)
with K = 40 variables, and a forcing term F = 8. A vector of equidistant
component values ranging from [—2, 2] was integrated forward in time for 1000
steps, each of size 0.005 [units], and the final state was taken as the reference
initial condition for the experiments. The background uncertainty is set to 8%
of average magnitude of the reference solution. All state vector components are
observed, ie., H = I € REXK with I the identity operator. To avoid filter
collapse, the analysis ensemble is inflated at the end of each assimilation cycle,
with the inflation factor set to 6 = 1.09.

Assimilation Filter. All experiments are implemented in Python using the
DATeS framework [9]. The performance of the proposed methodology is com-
pared against the deterministic implementation of EnKF (DEnKF) with param-
eters empirically tuned as reported in [35]. The EnKF uses 25 ensemble members,
with an inflation factor of 1.09 applied to the analysis ensemble.

Machine Learning Model. Several ML regressors to model and predict the local-
ization radii, for ensemble data assimilation algorithms, have been explored and
tested. However, for brevity, we use RF and GB as the main learning tools in
the numerical experiments discussed below. We use Scikit-learn, the machine
learning library in Python [33], to construct the ML models used in this work.

Results with Adaptive-in-Time Localization. This experiment has 100 assimila-
tion cycles, where the first 80% are dedicated to the training phase and the last
20% to the testing phase. The pool of radii for this experiment covers all possible
values for the Lorenz model, i.e., r € [1,40]. We compare the performance of the
adaptive localization algorithms against the best hand-tuned fixed localization
radius value of 4 which is obtained by letting the localization radius ¢ take all
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possible integer values in the interval [1,40]. Figure 1 shows the RMSE results,
on a logarithmic scale, of EnKF with a fixed localization radius » = 4, and
EnKF with adaptive covariance localization with multiple choices of the weights
wi, we = 1 — wy. The RMSE over the training phase is shown in Fig. 1(left),
and that of the testing phase is shown in Fig. 1(right). We separate the results
into two panels here, to get a closer look at the relative performance between
the different experiments during the testing phase, e.g., in Fig. 1(right). The
results suggest that increasing the weight of the KL distance measure, that is
ws, enhances the performance of the filter, as long as we don’t completely elim-
inate w;. For the best choices of the weights, the overall performance of the
adaptive localization is slightly better than that of the fixed, hand-tuned radius.

wy = 0.0 —— w; =05 ----- wy =1

wy = 0.0 —e— w; =05

e wy =03 ——e wy = 0.7 s w =03 ——e w =07 —— =4

107\

=) 6x107%=
= =
6% 1072 .
4% 1072
4% 1072
3x 1072 3% 1072

0 10 20 30 40 50 80 85 90 95 100
Time (assimilation cycles) Time (assimilation cycles)

Fig. 1. EnKF results with adaptive-in-time covariance localization, using RF learning
model, for different choices of the weighting factors w1, w2 of (7), compared to EnKF
with fixed localization radius. The training phase consists of 80 assimilation cycles (left
panel), followed by the testing phase with 20 assimilation cycles (right panel).

To elaborate more on the results, we pick the weights w; = 0.7 and wy =
0.3 of the adaptive localization criterion for this experiment. Figure2 shows
the variability in the tuned localization radius over time for both training and
test phase. The adaptive algorithm changes the radius considerably over the
simulation.

40

Localization radius
Do
(=)

0

20 40 60 80 100
Time (assimilation cycles)

Fig. 2. EnKF results with adaptive-in-time covariance localization, using RF learning

model. The evolution of the localization radius in time over all 100 assimilation cycles
is shown. The weights of the adaptive localization criterion are w; = 0.7 and w2 = 0.3.
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In decision trees, every node is a condition how to split values in a single fea-
ture. The criteria usually is based on Gini impurity, information gain (entropy)
or variance. Upon training a tree, it is possible to compute how much each fea-
ture contributes to decreasing the weighted impurity. Hence, the RF model helps
in recognition and selection of the most important features affecting the target
variable prediction. Figure 3 shows the 35 most important features of the Lorenz
model which we included in our experiments. These results, as expected, suggest
that the information about the first and second order moments are both essential
for the learning algorithm.

= = =
=3 o o
= > &

Feature importance

=
=)
)

0.00

39

/J(<7€17~,Im)

T34
T17

p(37, w38)

=
U

Features

Fig. 3. EnKF results with adaptive-in-time covariance localization, using RF learning
model. The plot shows the 35 most important features extracted for the DA experiment
with weights w1 = 0.7 and w2 = 0.3.

Results with Space-Time Adaptive Localization. The pool of radii for this exper-
iment consists of vectors of size 40 where each component of the vector can take
any value in the interval [1,40]. With the infinite number of possibilities, trying
all possible permutations of the localization radii is infeasible. One way to limit
the number of trials is to test randomly selected vectors of radii in the pool. For
this experiment, we set the number of trials to 30 and at each trial we randomly
pick a vector of radii from the pool. The number of target variables to estimate
at each assimilation cycle in the test phase is 40 and hence we need more samples
for the training phase. The number of assimilation cycles for this experiment is
1000, from which 80% dedicated to the training phase, and 20% to the testing

phase.
Figure4 shows the RMSE results of EnKF with space-time adaptive local-
ization for multiple choices of the weighting parameters wi, wos = 1 — w;.

Figure 4(left) shows the results over the training phase, while Fig. 4(right) shows
the RMSE results over the last 50 assimilation cycles of the testing phase. The
performance of adaptive localization is compared to EnKF with fixed localiza-
tion radius r = 4. The RMSE results of the adaptive localization algorithm are
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slightly better than those of EnKF with the empirically tuned fixed radius. Of
course in practice, the goal is to completely replace the empirical tuning proce-
dure with an automated scheme. These results suggest that the proposed app-
roach, to automatically adjust the space-time covariance localization parameter
can produce favorable results without the need for empirical adjustment.

wy = 0.0 —— w; =05 —--eo wy =1

— w =00 —e— w; =05 - w =1
—— w =03 —— w =07  —— p=4 ——ewp =03 —=- w; =07 —— =4

600 625 60 675 700 725 750 775 800 950 960 970 950 990 1000
Time (assimilation cycles) Time (assimilation cycles)

Fig. 4. EnKF results with space-time adaptive covariance localization, using RF learn-
ing model, for different choices of the weighting factors wi, w2, compared to EnKF
results with fixed localization radius. The training phase consists of 800 assimilation
cycles (left panel), followed by the testing phase with 200. For clarity, RMSE results
of the last 50 assimilation cycles of the testing phase are shown in the right panel.

Figure ba shows the average and the statistical variability of the localization
radii over time, for each state variable of the Lorenz-96 model. The results are
found by averaging over all 1000 assimilation cycles, with the weights wy, = 0.7
and wy = 0.3. From these results, we see that the adaptive values chosen by
the algorithm can vary considerably in the temporal domain of the experiment.
This variability can be further seen in Fig.5b, which shows the evolution of
localization radii in both time and space, over the last 100 cycles of the testing
phase.

40

20 »WMWMM

17 —e— Average

30

—#- Standard deviation 2

, vy i
MRaaiafhSnah 2 s T as Radh IAGRR2 40 Ak Seakans) & 4 e i A ey
5 10 15 20 25 30 35 40 20 40 60 80 100
State variables Time (assimilation cycles)
(a) Temporal statistics (b) Space-time evolution

Fig. 5. EnKF results with space-time adaptive covariance localization, using RF learn-
ing model. The weights of the adaptive localization criterion are set to w; = 0.7 and
wz = 0.3. Panel (a) shows average and standard deviation results of the localization
radii for the state variables of the Lorenz-96 model (8). Panel (b) shows the space-time
evolution of the localization radii over the last 100 assimilation cycles of the testing
phase of the experiment.
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On the Choice of the Learning Model. The work in this paper is not aimed to
cover or compare all suitable ML algorithms in the context of adaptive covariance
localization. In the numerical experiments presented above, we chose the RF as
the main learning model, however the method proposed is not limited this choice,
and can be easily extended to incorporate other suitable regression model. For
example RF could be replaced with GB, however the computational cost of
training the regressor, and the performance of the DA algorithm must be both
accounted for.

DA Performance. To compare the performance of the DA filter with localization
radii predicted by RF against GB, we study the RMSE obtained by incorporating
each of these two learning models. Figure 6 shows the average RMSE over the
test phase resulting by replacing RF with GB. Here, the RMSE results for both
cases, i.e. time-only and space-time adaptivity, resulting by incorporating RF
tend to be slightly lower than that resulting when GB is used.

B Gradient Boosting (GB) Random Forest (RF)
wy =03, w; =07 I —— I
w =0.7,w; =03 I I
wy =0.5,w2 =05 e e e e e e
wy =0,wy =1 T O O ]
w=Lw=0 I I
0.01 0.03 0.05 0.07 0.01 0.03 0.05 0.07
Average RMSE Average RMSE
Adaptive-in-time localization Space-time adaptive localization

Fig. 6. RMSE results of the adaptive covariance localization approaches are shown for
different choices of the weighting factors w1, ws. Results are shown for both adaptive-in-
time (left), and space-time adaptive localization (right). RMSE is averaged the testing
phase of each experiment, obtained by using both RF and GB.

Computational Time. Table1 shows the CPU-time spent in fitting the training
dataset or training the learning model with both RF and GB. Learning RF model
is less time consuming than GB, especially in the case of space-time adaptivity.

Table 1. CPU-time of the training time of the two ML algorithms, RF and GB for
both time adaptivity and space-time adaptivity approaches.

CPU time (seconds) | Adaptivity type

Time |Space-time
ML model | GB 0.0467 | 16.3485
RF 0.0308 | 0.7508
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This is mainly because RF, by construction, supports multi-target regression,
while GB does not. A simple extension of GB is used for space-time adaptivity,
by fitting a regressor to each of the outputs. From both Fig.6, and Table 1, we
can empirically conclude that RF yields a combination of better performance
and lower computational time, than GB.

5 Concluding Remarks and Future Work

This study investigates using ML models to adaptively tune the covariance local-
ization radii for EnKF family of data assimilation methods. The learning model
can be trained off-line using historical records, e.g., reanalysis data. Once it is
successfully trained, the regression model is used to estimate the values of local-
ization radii in future assimilation cycles. Numerical results carried out using two
standard ML models, suggest that the proposed automatic approach performs at
least as good as the traditional EnKF with empirically hand-tuned localization
parameters.

One can make some empirical conclusions based on the numerical results
herein. Adaptivity leads to a considerable variability of the localization radii in
both time and space. Moreover, the values of state variables have a significant
bearing on radius predictions. Also, the importance of all state variables is not
the same, and some variables in the model have a higher impact on the predic-
tion of localization radii. Finally, the training of the localization algorithms in
both time and space with the current methodology is computationally expensive.
Future research will focus on making the methodology truly practical for very
large models.

In order to extend the use of ML techniques to support data assimilation, an
important question that will be addressed in future research concerns the optimal
choice of features in large-scale numerical models. Specifically, one has to select
sufficient aspects of the model state to carry the information needed to train a
ML model. In the same time, the size of the features vector needs to be relatively
small, even when the model state is extremely large. Next, the computational
expense of the training phase is due to the fact that the analysis needs to be
repeated with multiple localization radii. Future work will seek to considerably
reduce the computational effort by intelligently narrowing the pool of possible
radii to test, and by devising assimilation algorithms that reuse the bulk of the
calculations when computing multiple analyses with multiple localization radii.
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