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Cyber-Physical Scheduling for Predictable
Reliability of Inter-Vehicle Communications
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Abstract—Predictable reliability of inter-vehicle communica-
tions is a basis for the paradigm shift from single-vehicle-oriented
safety and efficiency control to networked vehicle control. The
lack of predictable interference control in existing vehicular
communication mechanisms, however, makes them incapable of
ensuring predictable communication reliability. To address the
gap, we propose the Cyber-Physical Scheduling (CPS) framework
that leverages the PRK interference model and addresses the
challenges of vehicle mobility and broadcast to PRK-based
scheduling. To address vehicle mobility, CPS leverages the phys-
ical locations of vehicles to define the gPRK interference model,
a geometric approximation of the PRK model, for lightweight
control signaling and effective interference relation estimation,
and CPS leverages cyber-physical structures of vehicle traffic
flows for effective instantiation and use of the gPRK model.
To support predictable broadcast, CPS controls the interactions
between gPRK model adaptations of the links of the same
sender to ensure predictable broadcast reliability in the presence
of vehicle mobility. Through experimental analysis with high-
fidelity ns-3 and SUMO simulation, we observe that CPS enables
predictable reliability while achieving high throughput and low
delay in communication. To the best of our knowledge, CPS is the
first field-deployable method that ensures predictable interference
control and thus reliability in inter-vehicle communications.

I. INTRODUCTION

Transcending the traditional paradigm of single-vehicle-
oriented safety and efficiency control, next-generation vehi-
cles are expected to cooperate with one another and with
transportation infrastructures to ensure safety, maximize fuel
economy, and minimize emission as well as congestion [6].
One basis for this vision is wireless communication between
vehicles. Critical to the optimality and safety of networked
vehicle control, inter-vehicle communication is required to
be predictably reliable, that is, satisfying the packet delivery
ratios as required by vehicle control applications [29]. Given
the different impact that communication reliability, delay, and
throughput have on networked vehicle control [29], [28] and
the inherent tradeoff between communication reliability, delay,
and throughput [22], [30], the optimal operation of networked
vehicle systems also requires controlling the tradeoff between
communication reliability, delay, and throughput, for which
controlling communication reliability in a predictable manner
is also a basis [20], [30].

Despite extensive research in vehicular wireless networking
and field trials of IEEE 802.11p-based networks, there still
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lack solutions for ensuring predictable reliability of inter-
vehicle communications. Inheriting the basic design principles
of WiFi such as CSMA-based channel access control, for
instance, existing 802.11p-based solutions may not even be
able to ensure a communication reliability of 30% [16], [31].
One major reason for the unpredictability and low reliability
in existing inter-vehicle wireless networking solutions is the
lack of predictable interference control. Thus scheduling data
transmissions to control interference in a predictable manner
is a basic element of inter-vehicle networking.

Given the pervasiveness of vehicles, networks of vehicles
tend to be of large scale even though most networked ve-
hicle control only involve communications between close-by
vehicles [6]. In the meantime, vehicle mobility introduces
dynamics in network topology which, together with uncer-
tainties in wireless communication, introduces complex dy-
namics and uncertainties in inter-vehicle communication. For
agile adaptation to uncertainties and for avoiding information
inconsistency in centralized scheduling in large-scale vehicle-
to-vehicle (V2V) networks, distributed scheduling is necessary
for inter-vehicle communications. Because wireless signals
propagate far away in space and signals from different vehicles
add to one other, however, inter-vehicle interference rela-
tions tend to be non-local and combinatorial, and predictable
interference control tends to require coordination between
transmitters far away from one another, which is challenging
in highly-dynamic, large-scale V2V networks.

For predictable interference control in distributed schedul-
ing, Zhang et. al [30] have identified the physical-ratio-K
(PRK) interference model that transforms non-local interfer-
ence control problems into local control problems which only
require explicit coordination between close-by transmitters.
Based on the PRK model, Zhang et. al [31] have also proposed
the PRK-based scheduling protocol PRKS which ensures
predictable communication reliability in networks of no or
low node mobility. Not targeting V2V networks, however,
PRKS does not address the challenges of vehicle mobility,
thus not applicable to inter-vehicle communications. In V2V
networks, vehicle mobility makes network topology and inter-
vehicle channel properties highly dynamic, which in turn
makes interference relations between vehicles highly dynamic,
especially for vehicles on different roads or in opposite driving
directions of a same road. The highly dynamic nature of inter-
vehicle interference relations challenges the precise identifi-
cation of interference relations in terms of both interference
relation estimation and the signaling of interference relations.
Additionally, PRKS focuses on predictable unicast reliability
without considering predictable reliability in broadcast which
is a fundamental primitive in inter-vehicle communications
[6]. Thus the open question is whether it is feasible and
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how to apply PRK-based scheduling in V2V networks so that
the interference between concurrently transmitting vehicles is
controlled in a predictable manner to ensure the required inter-
vehicle communication reliability (i.e., packet delivery ratio).

For predictable V2V communication reliability, we develop
the Cyber-Physical Scheduling (CPS) framework that lever-
ages cyber-physical structures of V2V networks to address the
challenges of vehicle mobility and broadcast, and we make the
following contributions:

• Leveraging the physical locations of vehicles and for
effective control signaling of fast-varying interference
relations, we propose a geometric approximation of the
PRK interference model, denoted as the gPRK model.
Together with our control-theoretic approach to gPRK
model adaptation, the gPRK model enables vehicles to
learn their mutual interference relations in the presence of
vehicle mobility and without requiring significant control
signaling bandwidth.

• For accurate identification of interference relations in the
presence of vehicle mobility, we propose to leverage
cyber-physical structures of vehicle traffic flows (par-
ticularly, spatiotemporal interference correlation as well
as micro- and macro-scopic vehicle dynamics) for agile
instantiation and effective use of the gPRK model in
scheduling.

• For ensuring predictable broadcast reliability in the pres-
ence of network dynamics such as vehicle mobility, we
address the interactions between gPRK model adaptations
of the links of the same broadcast sender.

• We propose the distributed Cyber-Physical Scheduling
(CPS) framework that integrates the above interference
modeling mechanisms in scheduling inter-vehicle com-
munications. We implement CPS in ns-3 [2], and we
experimentally analyze CPS through high-fidelity, in-
tegrated simulation of wireless networks and vehicle
dynamics using ns-3 and SUMO [9] respectively. We
validate that CPS ensures predictable reliability while
achieving high throughput and low delay in inter-vehicle
communications, thus providing a wireless networking
foundation for networked vehicle control.

Note that, even though concepts such as vehicle mobility,
vehicle location, and wireless channel correlation have been
used in various forms in existing protocols, CPS is the first ap-
proach that effectively leverages vehicle location information,
spatiotemporal interference correlation, vehicle dynamics, and
the gPRK model to ensure predictable interference control
and thus predictable reliability in inter-vehicle communication,
which is non-trivial and is also a critical enabler of the vision
of networked vehicle control.

The rest of the paper is organized as follows. We discuss
related work in Section II. We present the problem specifica-
tion and review the PRK interference model [30] as well as
PRKS scheduling protocol [31] In Section III. We overview
the CPS framework in Section IV, and then present our
approaches to addressing vehicle mobility and broadcast in
Sections V and VI respectively. We experimentally analyze
CPS in Section VII, and we make concluding remarks in

Section VIII.

II. RELATED WORK

IEEE 802.11p is a well-studied industry standard specify-
ing the medium access control mechanisms for inter-vehicle
communication. Inheriting basic WiFi mechanisms such as
CSMA and thus unable to ensure predictable interference
control, 802.11p-based solutions do not ensure predictable link
reliability [16], [31]. To improve the reliability of inter-vehicle
communications, schemes that control information exchange
load as well as packet transmission power and rate have been
proposed [23]. Not addressing the fundamental limitations of
CSMA in interference control, these schemes reduce achiev-
able network throughput and increase communication delay
while still being unable to ensure predictable communication
reliability [31], as we will show in Section VII.

TDMA schemes [3], [5] have been proposed for inter-
vehicle communications. Based on the protocol interference
model which is inaccurate and cannot ensure predictable in-
terference control [31], however, these schemes cannot ensure
predictable communication reliability. Multi-scale schemes
have been proposed to first allocate non-overlapping sets of
time slots to different roads and then let vehicles on each road
compete for channel access in a TDMA manner [12], [21],
[10]. Assuming a protocol interference model in both road-
level scheduling and vehicle-level scheduling, however, these
schemes do not ensure predictable communication reliability.
Schemes have also been proposed to first partition space
into geographic regions such as rectangles or hexagons and
then schedule transmissions based on geographic regions [18],
[25]. Assuming a protocol interference model, however, these
schemes do not ensure predictable communication reliability
either. Resource allocation mechanisms have also been pro-
posed to improve communication throughput between vehicles
as well as between vehicles and transportation infrastructures
[32]. Focusing on network throughput, these work do not
consider ensuring predictable, controllable reliability in vehic-
ular communication, and, due to throughput-reliability tradeoff
[30], the high throughput usually comes at the cost of low
communication reliability.

Besides 802.11p-based approach to vehicular networking,
cellular V2X networking has drawn significant attention re-
cently [19]. Our study in this paper focuses on ad-hoc net-
work architectures which do not require the availability of
infrastructure nodes (e.g., cellular base stations or 802.11p
roadside units) and thus are generically applicable in real-
world settings. When there exist infrastructure nodes such as
cellular base stations, the infrastructure nodes can be leveraged
to optimize protocol execution such as control signaling [27].
Interference control remains a key issue in cellular V2X
networks; the insight that this paper provides into predictable
inference control in highly-dynamic vehicle networks will
shed light on predictable interference control in cellular V2X
networks, and we expect techniques proposed in [27] can
be leveraged to extend the results of this paper to cellular
network settings. Similarly, we expect the basic methodologies
proposed in this paper can be extended to communications
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between vehicles and transportation infrastructures (e.g., traffic
lights). Detailed study of these will be interesting research
pursuits but are beyond the scope of this paper.

III. PRELIMINARIES

Problem specification. In inter-vehicle wireless communi-
cation networks, referred to as V2V networks hereafter, a fun-
damental communication primitive is single-hop broadcast via
which a vehicle shares its states (e.g., location and speed) with
close-by vehicles within a certain distance (e.g., 150 meters)
[6]. Given the significance of single-hop broadcast (e.g., for
real-time networked vehicle control [6]) and for conciseness of
presentation, our discussion in this paper focuses on single-hop
broadcast, but the proposed methodology for scheduling inter-
vehicle broadcasts applies to the scheduling of inter-vehicle
single-hop unicast. Even though we only consider single-hop
broadcasts by individual vehicles, we do consider real-world
settings where the individual vehicles are widely distributed in
space and may well be beyond the broadcast range of many
other vehicles.

With the above V2V network setup, we study the online
slot-scheduling problem where, given a set of vehicles on the
road at any time instant, a maximal subset of the vehicles
need to be scheduled in a distributed manner to transmit
concurrently while ensuring that the mean packet delivery
ratio (PDR) from every transmitting vehicle S to each of
its broadcast receivers R is no less than an application-
required PDR TS,R. Note that a vehicle R is a broadcast
receiver of a transmitting vehicle S if the Euclidean distance
between S and R, denoted by D(S,R), is no more than
the communication range of S, denoted by DS . Focusing
on predictable co-channel interference control in broadcast
scheduling, we assume that all vehicles share a single commu-
nication channel and that the broadcast transmission power is
fixed for each vehicle even though different vehicles may use
different transmission powers; multi-channel scheduling and
broadcast power control are relegated as future research.
PRK interference model & PRKS. Despite decades of
research in wireless channel access scheduling, most existing
literature are based on either the protocol interference model
or the physical interference model, neither of which is a
good foundation for distributed interference control in the
presence of uncertainties [30], [31]. The protocol model is
local and suitable for distributed protocol design, but it is
inaccurate and does not ensure reliable data delivery [17].
The physical model has high-fidelity, but it is non-local and
combinatorial and thus not suitable for distributed protocol
design in dynamic, uncertain network settings [30], [31]. To
address the gap between the existing interference models
and the design of field-deployable scheduling protocols with
predictable communication reliability, Zhang et. al [30] have
identified the physical-ratio-K (PRK) interference model that
integrates the protocol model’s locality with the physical
model’s high-fidelity. In the PRK model, a node C ′ is regarded
as not interfering and thus can transmit concurrently with the
transmission from another node S to its receiver R if and
only if P (C ′, R) < P (S,R)

KS,R,TS,R
, where P (C ′, R) and P (S,R)

are the average strength of signals reaching R from C ′ and S
respectively, KS,R,TS,R

is the minimum real number chosen
such that, in the presence of cumulative interference from
all concurrent transmitters, the probability for R to success-
fully receive packets from S is no less than the minimum
link reliability TS,R required by applications. As shown in
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Fig. 1: PRK interference
model

Figure 1, the PRK model defines,
for each link 〈S,R〉, an exclusion
region (ER) ES,R,TS,R

around the
receiver R such that a node C is
in the ER (i.e., C ∈ ES,R,TS,R

) if
and only if P (C,R) ≥ P (S,R)

KS,R,TS,R
.

Every node C ∈ ES,R,TS,R
is re-

garded as interfering and thus shall
not transmit concurrently with the
transmission from S to R. The
only assumption used in the PRK
model is that the packet delivery reliability along a link is
a non-decreasing function of the signal-to-interference-plus-
noise-ratio (SINR) at the receiver, which generally holds
for wireless communications [30]. Thus the PRK model is
generically applicable to different wireless networks.

For predictable interference control, the parameter
KS,R,TS,R

of the PRK model needs to be instantiated for
every link (S,R) according to unpredictable, in-situ network
and environmental conditions [30], [31]. In particular, if
the communication reliability is below (or above) TS,R,
KS,R,TS,R

needs to be increased (or decreased) so that the
average interference power at the receiver R is decreased
(or increased) accordingly. To this end, Zhang et al [31]
have proposed a control-theoretic apporach by which each
link (S,R) computes the desired change of receiver-side
interference power ∆IR(t) at a time instant t based on the
in-situ measurement feedback of the actual communication
reliability from S to R. If ∆IR(t) < 0 (or ∆IR(t) > 0),
the link decides to increase (or decrease) KS,R,TS,R

such
that the sum of the average interference power from all the
nodes newly added to (or removed from) the exclusion region
ES,R,TS,R

is no less (or more) than |∆IR(t)|.
For every link (S,R), using its instantiated PRK model

parameter KS,R,TS,R
and the local signal maps that contain the

average signal power attenuation between S, R and every other
close-by node C that may interfere with the transmission from
S to R, link (S,R) and every close-by node C become aware
of their mutual interference relations. Based on nodes/links’
mutual interference relations, non-interfering transmissions
can be scheduled to ensure the required communication relia-
bility across individual links. Through extensive measurement
study in the high-fidelity Indriya [4] and NetEye [7] wireless
network testbeds, Zhang et. al [31] observe that PRKS enables
predictable interference control while achieving high channel
spatial reuse. Accordingly, PRKS enables predictable link
reliability, high network throughput, and low communication
delay [31].

IV. OVERVIEW OF CPS
Vehicle mobility is a major challenge in applying PRK-

based scheduling to V2V networks. It makes vehicular wire-
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less channels highly dynamic, thus, as we will analyze in
Section V-A, it would be too costly or even infeasible for
vehicles to maintain accurate signal maps which store the re-
ception power of data signals between close-by vehicles, thus
making the PRK interference model and the PRKS scheduling
protocol not directly applicable to V2V networks. To address
this challenge, we observe that physical vehicle locations are
readily available in V2V networks through GPS and/or other
mechanisms such as simultaneous-localization-and-mapping
(SLAM). Accordingly, we propose the gPRK interference
model as a geometric approximation of the PRK model,
such that the gPRK model enables lightweight approaches
for vehicles to detect their mutual interference relations using
vehicle locations instead of signal maps. As we will elab-
orate further in Section V-A, the gPRK model is amenable
to distributed, feedback-control-theoretic approach to model
instantiation, and the instantiated gPRK model captures the
impact of complex vehicular wireless channels and potential
vehicle localization errors (e.g., due to imperfect GPS).

Vehicle mobility also makes vehicle locations and thus inter-
vehicle interference relations highly dynamic. For enabling
vehicles to accurately identify their mutual interference re-
lations, we propose to leverage spatiotemporal interference
correlation and macroscopic vehicle dynamics to quickly adapt
gPRK model parameters, and to leverage well-understood
microscopic vehicle dynamics to estimate and track vehicle
locations in the presence of vehicle localization errors and non-
zero delay in vehicle location information exchange between
close-by vehicles, as we will discuss in detail in Section V.

Another challenge in V2V networks is the need to support
predictably reliable inter-vehicle broadcast. To ensure the
communication reliability from a sender vehicle S to each of
its broadcast receiver vehicles, we define the sender exclusion
region (a.k.a. sender ER) of S as the union of the exclusion
region (ER) around each receiver of S, and a vehicle in the
sender ER of S is regarded as an interferer of S and shall not
transmit concurrently with S. For broadcast, the exclusion
regions (ERs) around the receivers of the same sender overlap
with one another, and this makes the gPRK model adaptation
of the involved links interact with one another. We propose
gPRK model adaptation rules that explicitly address this
interaction to ensure predictable broadcast reliability in the
presence of vehicle mobility, as we will discuss in detail in
Section VI.

Using the above methods of addressing vehicle mobility
and broadcast that leverage the cyber-physical structures of
V2V networks1, vehicles can identify their mutual interference
relations in an agile, distributed manner. Based on the mutual
interference relations among vehicles, inter-vehicle communi-
cations can be scheduled in a TDMA manner similar to that
in PRKS [31]. To realize the above methods, we propose the
Cyber-Physical Scheduling (CPS) framework for inter-vehicle
communications as shown in Figure 2, where the timescales of
the involved protocol actions (shown in the rectangular boxes)
increase from the left to the right side of the figure. In this

1Particularly, spatiotemporal interference correlation, correlated ER adap-
tation, physical vehicle location, as well as macro- and micro-scopic vehicle
dynamics.
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Fig. 2: Cyber-Physical Scheduling (CPS) framework

framework, time is divided into a consecutive sequence of time
slots, with each time slot being long enough for completing
the transmission and processing of a control or data packet. As
in PRKS [31], the transmissions of control signaling packets2

and data packets are separated in frequency or in time so that
there is no interference between control packet transmission
and data packet transmission. Through the exchange of control
signaling packets, close-by vehicles discover one another and
initialize the gPRK model parameters for the corresponding
links. Based on the feedback on the status (i.e., success or
failure) of data packet transmissions, in-situ communication
reliabilities are estimated and then gPRK model parameters
are adapted on the fly. Together with estimated locations of
close-by vehicles, the in-situ gPRK model parameters enable
vehicles to detect their mutual interference relations. Based
on in-situ interference relations, a maximal set of mutually
non-interfering vehicles are scheduled to transmit their data
packets at each time slot according to the distributed TDMA
algorithm ONAMA [15].

From each vehicle’s perspective, immediately after it starts,
it quickly discovers close-by vehicles, initializes related gPRK
model parameters, and detects mutual interference relations
with close-by vehicles (see Sections V and VI). Then, in
parallel with data transmissions and using the feedback on
data transmission status (i.e., success or failure), the vehicle
adapts its gPRK model parameters, and, with adaptive estima-
tion of the locations of close-by vehicles, the vehicle adapts
data transmission schedules according to in-situ interference
relations with close-by vehicles.

Figure 2 shows the timescales of different protocol actions
in CPS. When a vehicle starts, it quickly performs neighbor-
discovery at every time slot for a short period (e.g., 2 seconds),
and then it maintains neighborhood information at a frequency
of regular control packet transmissions (e.g., every 100 time
slots). Given a vehicle and a link from a sending vehicle,
the gPRK model parameter is updated each time a new
communication reliability estimation becomes available (e.g.,
every 1,000 time slots). Each vehicle updates its estimation
of the locations of close-by vehicles and its interference
relations with close-by vehicles every time slot, which enables

2For instance, those containing gPRK model parameters, vehicle locations,
and/or sender ERs.
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the ONAMA-based scheduling of non-interfering concurrent
transmitters at each time slot. In our implementation, we have
set the duration of each time slot to be 2.5 milliseconds so
that a data packet up to 1,500 bytes can be delivered in a
time slot when the radio transmission rate is 6Mbps (i.e., the
lowest transmission rate of the current 802.11p standard) and
when operations other than the actual data transmission (e.g.,
composing the data packet) may take up to 0.5 millisecond in a
time slot. Accordingly, inter-vehicle interference relations and
gPRK model parameters are updated every 2.5 milliseconds
and about every 2.5 seconds respectively. In general, the opti-
mal choice of the time slot duration depends on factors such as
the packet length and real-time communication requirement.
For instance, the shorter the packet length and maximum
allowable communication delay, the shorter the time slot. The
CPS scheduling framework is applicable for different choices
of the time slot durations, but the optical choice of time slot
duration is beyond the scope of this work.

With the above overview of the CPS framework, we next
elaborate on our approaches to addressing vehicle mobility and
broadcast in Sections V and VI respectively. For conciseness
of presentation, our discussion will focus on a sender S and
its receiver set R = {R : R 6= S ∧ D(S,R) ≤ DS} unless
mentioned otherwise.

V. ADDRESSING VEHICLE MOBILITY

Vehicle mobility makes inter-vehicle interference relations
highly dynamic, and this challenges both interference rela-
tion estimation and the signaling of interference relations. In
what follows, we present our approaches that leverage cyber-
physical structures of V2V networks to address the challenges.

A. Geometric Approximation of PRK Model

Challenge of using PRK model in V2V networks. As
discussed in Section III, the definition of the PRK interference
model is based on signal power between close-by nodes. To
use the PRK model in data transmission scheduling, nodes
need to maintain local signal maps so that interfering nodes
and links can be aware of their mutual interference relations.
For networks of no or low node mobility which Zhang et al.
[31] have considered, the average signal power between nodes
does not change at timescales such as seconds, minutes, or
even hours. Accordingly, the frequency of signal map update
and thus the overhead of signal map maintenance tends to
be low for networks of no or low mobility [31]. For V2V
networks, however, vehicle mobility makes average signal
power between close-by vehicles fast-varying in nature, for
instance, at the timescales of seconds or less. If we were
to apply the PRK interference model to V2V networks, the
local signal maps between close-by vehicles would need to
be updated frequently. In particular, every vehicle R needs
to frequently estimate the in-situ signal power from every
other potentially interfering vehicle C to itself; after each
estimation, R needs to share the newly estimated signal
power P (C,R) with every other potentially interfering vehicle
through control signalling packet exchange [31], which would
introduce significant messaging overhead.

Assuming there are N close-by vehicles that may interfere
with one another, for instance, the signal map would contain,
for every vehicle vi(i = 1 . . . N), the average signal power
from every other vehicle to vi. Since every vehicle vi can
only estimate the average signal power from every other vehi-
cle to itself through received-signal-strength-indicator (RSSI)
sampling [31] and wireless channels may well be asymmetric
[31], it is necessary for every vehicle vi to share its estimates
with every other vehicle in order for every vehicle to establish
and maintain its own local signal map about the signal power
between close-by vehicles. For instance, a receiver vehicle
R can sample and estimate the signal power P (C,R) from
another vehicle C to itself, but R has to shared its estimate
of P (C,R) with C in order for C to know P (C,R) and thus
decide whether itself can interfere with the transmission from
a sender vehicle S to R based on the PRK model. Assuming
it takes two bytes to encode the signal power from one vehicle
to another and it takes six bytes to encode the ID (e.g., MAC
address) of each vehicle, it takes (6 + 8(N − 1)) bytes for
a vehicle vi to encode the signal power from every other
vehicle to itself. Therefore, each update of the signal map takes
N(6 + 8(N − 1)) bytes of information exchange between ve-
hicles. Assuming the signal map is updated every t0 seconds,
the signal map maintenance will consume 8N(6+8(N−1))

t0
bps

network bandwidth. For typical values of N in V2V networks
and different update intervals t0, Figure 3 shows the significant

Fig. 3: Overhead of signal map maintenance

overhead of signal map maintenance in V2V networks.
Considering that the current physical layer of the V2V

communication standard IEEE 802.11p can only support a
transmission rate of 6Mbps - 27Mbps, that the total bandwidth
available to a set of mutually interfering vehicles is no more
than the transmission rate, and that N may well be in the range
of hundreds (e.g., in urban settings), Figure 3 shows that the
signal map maintenance overhead accounts for a significant
portion or even exceed the total communication bandwidth
of V2V networks. This implies that it is too costly or even
infeasible to maintain accurate signal maps for PRK-based
scheduling in V2V networks. Therefore, it is difficult, if not
impossible, to directly apply the PRK interference model to
data transmission scheduling in V2V networks.
gPRK interference model. In V2V network systems, vehicle
locations are important factors for networked vehicle control,
and thus they are readily available through GPS and/or other
mechanisms such as simultaneous-localization-and-mapping
(SLAM). Using vehicle locations, it is easy for vehicles to
know the distances among themselves. To avoid the significant
overhead (and sometimes infeasibility) of maintaining accurate
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signal maps in V2V networks and considering the fact that, on
average, closer-by vehicles tend to introduce stronger interfer-
ence signal power to one another than farther away vehicles,
we propose to leverage the availability of vehicle location
information to define a geometric approximation of the PRK
interference model, denoted as the gPRK interference model.
In the gPRK model, interference relations among vehicles
are defined based on inter-vehicle distance, and nodes closer-
by may be regarded as interfering with one another since
they tend to introduce stronger interference to one another. In
particular, a vehicle C ′ is regarded as not interfering and thus
can transmit concurrently with the transmission from another
vehicle S to its receiver R if and only if

D(C ′, R) > D(S,R)KS,R,TS,R
, (1)

where D(C ′, R) and D(S,R) are the geometric dis-
tance between C ′ and R and that between S and

R
C

S

RSTRSKRSD
,,,),(

C 
Exclusion Region

Fig. 4: gPRK model

R respectively, KS,R,TS,R
is the

minimum real number chosen
such that, in the presence of cu-
mulative interference from all con-
current transmitters, the probabil-
ity for R to successfully receive
packets from S is no less than the
minimum link reliability TS,R re-
quired by applications. As shown
in Figure 4, the gPRK model de-
fines, for each link 〈S,R〉, an exclusion region (ER) ES,R,TS,R

around the receiver R such that a node C is in the region (i.e.,
C ∈ ES,R,TS,R

) if and only if D(C,R) ≤ D(S,R)KS,R,TS,R
.

Similar to the PRK model, the gPRK model is local since
only local, pairwise interference relations are defined between
close-by vehicles. The gPRK model is also suitable for reliable
inter-vehicle communication since it ensures the application-
required link reliability by adapting parameter KS,R,TS,R

for
each link 〈S,R〉 according to in-situ network and environ-
mental conditions and by considering wireless communication
properties such as cumulative interference. As we will discuss
shortly, the selection of the parameter KS,R,TS,R

is through
feedback control which ensures that the actual link reliability
is no less than the application-required packet delivery ratio.
Since the impact of vehicle wireless channel properties (e.g.,
asymmetric and anisotropic channel gains [8]) and poten-
tial vehicle localization errors on gPRK-based scheduling is
reflected through the actual link reliability, the feedback-
control-based approach to selecting the gPRK mode parameter
KS,R,TS,R

and the resulting gPRK-based scheduling implicitly
addresses the impact of vehicular wireless channel properties
and vehicle location errors which is usually too complex to
explicitly characterize in closed forms.

With the gPRK model, a vehicle only needs to share its
location with potentially interfering vehicles in order for an
interfering vehicle to detect their mutual interference relation
using the gPRK model parameter K, and a vehicle does not
need to share with other vehicles the signal power from every
other potentially interfering vehicle to itself. With seven bytes,
a vehicle can encode its longitude and latitude information
such that the location information accuracy is 1.11meters.

Then, for the case of N mutually-interfering vehicles as
discussed earlier and assuming it takes six bytes to encode
the ID (e.g., MAC address) of a vehicle, it takes 13N bytes
of information exchange between vehicles in order for the
N vehicles to be mutually aware of one another’s location.
Assuming that the location update frequency is the same as
that of signal map update in PRK-based scheduling, using the
gPRK model instead of the PRK model would reduce the
control signaling overhead by a factor of 8N(6+8(N−1))

13N =
48
13 + 64

13 (N − 1). Using location prediction via microscopic
vehicle dynamics models as we will discuss in Section V,
the update frequency of vehicle locations can be lower than
that of signal map, thus enabling more reduction in control
overhead. For highly reliable inter-vehicle communication in
large-scale V2V networks, N tends to be large and in the
range of hundreds. Thus the use of the gPRK model instead
of the PRK model enables orders of magnitude reduction in
control signaling overhead, which in turn makes it feasible and
efficient to use the gPRK model in real-world V2V networks.
gPRK model adaptation. Similar to the PRK model, the
parameter KS,R,TS,R

of the gPRK model needs to be instan-
tiated for every link 〈S,R〉 according to in-situ network and
environmental conditions such as vehicle spatial distribution,
wireless signal power attenuation between vehicles, and vehi-
cle localization accuracy. To this end, we adopt the feedback-
control-theoretic approach of Zhang et al. [31] to formulate
the gPRK model instantiation problem as a feedback control
problem shown in Figure 5. In the control-theoretic setup,

 YS,R(t)

++++ DIR(t) Link (S, R)
Reference 
input TS,R gPRK Model

Controller

disturbance 
DIU(t)

Fig. 5: gPRK model instantiation

∆IR(t) is the change of the cumulative interference power
that vehicles in either ES,R,TS,R

(t) or ES,R,TS,R
(t+1) but not

in both introduce to the receiver R from time t to t+ 1, and
∆IU (t) is change of the cumulative interference power that
vehicles not in ES,R,TS,R

(t)∪ES,R,TS,R
(t+1) introduce to the

receiver R from time t to t+ 1. ∆IU (t) is beyond the control
of link 〈S,R〉 itself, and thus it is treated as a disturbance.
Then, the objective of the “gPRK model controller” is, upon
a feedback on the actual link reliability of 〈S,R〉 at a time
instant t (i.e., YS,R(t)), to compute ∆IR(t) that, if introduced
to receiver R by changing the parameter KS,R,TS,R

at time t,
would make E[YS,R(t + 1)] = TS,R at the next time instant
t+ 1.3

Using the methodology of Zhang et al. [31] and letting
y(t) = cy(t − 1) + (1 − c)YS,R(t) (0 ≤ c < 1), ∆IR(t)
is computed as follows [31]:

∆IR(t) =
(1 + c)y(t)− cy(t− 1)− TS,R

(1− c)a(t)
− µU (t), (2)

3In protocol implementation, the actual time interval between time instants
t and t + 1 is the time interval for R to compute its (t + 1)-th sample of
communication reliability along 〈S,R〉.
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where a(t) =
TS,R−YS,R(t)

f−1(TS,R)−f−1(YS,R(t)) , f(.) is the radio model
function that defines the relation between link reliability
YS,R(t) and the signal-to-interference-plus-noise-ratio (SINR)
at the receiver R at time t, and µU (t) denotes the mean
value of ∆IU (t). Since the receiver R can locally measure
or estimate y(t), y(t− 1), a(t), and µU (t) [31], R can locally
compute ∆IR(t). After computing ∆IR(t) at time t, R
needs to compute KS,R,TS,R

(t + 1) so that the expected link
reliability is no less than TS,R when the PRK model parameter
is KS,R,TS,R

(t+1),4 and that, to ensure as high channel spatial
reuse as possible, the expected interference introduced to R
by the nodes in either ES,R,TS,R

(t) or ES,R,TS,R
(t+1) but not

in both is as close to |∆IR(t)| as possible when they transmit
concurrently with S.

To realize the above design, we define, for each node C
that may be included in the exclusion region of R during
network operation, the expected interference I(C,R, t) that
C introduces to R when C is not in the exclusion region
of R. Then I(C,R, t) = βC(t)P (C,R, t), where βC(t) is the
probability for C to transmit data packets at time t, P (C,R, t)
is the power strength of the data signals reaching R from
C at time t, and R can estimate P (C,R, t) and βC(t) by
passively monitoring the control signaling packets transmitted
by C without introducing additional control signal packets
[31].5 Considering the discrete nature of node distribution in
space and the requirement on satisfying the minimum link
reliability TS,R, we propose the following rules for computing
KS,R,TS,R

(t+ 1):

• Rule-ER0: If ∆IR(t) = 0, let KS,R,TS,R
(t + 1) =

KS,R,TS,R
(t).

• Rule-ER1: If ∆IR(t) < 0 (i.e., need to ex-
pand the exclusion region), let ES,R,TS,R

(t + 1) =
ES,R,TS,R

(t), then keep adding nodes not already in
ES,R,TS,R

(t + 1), in the non-decreasing order of their
distance to R, into ES,R,TS,R

(t + 1) until the node
B such that adding B into ES,R,TS,R

(t + 1) makes∑
C∈ES,R,TS,R

(t+1)\ES,R,TS,R
(t) I(C,R, t) ≥ |∆IR(t)| for

the first time. Then let KS,R,TS,R
(t + 1) = D(B,R,t)

D(S,R,t) ,
where D(B,R, t) and D(S,R, t) denote the distance
from B and S to R at time t respectively.

• Rule-ER2: If ∆IR(t) > 0 (i.e., need to shrink the
exclusion region), let ES,R,TS,R

(t + 1) = ES,R,TS,R
(t),

then keep removing nodes out of ES,R,TS,R
(t + 1), in

the non-increasing order of their distance to R, until the
node B such that removing any more node after removing
B makes

∑
C∈ES,R,TS,R

(t)\ES,R,TS,R
(t+1) I(C,R, t) >

∆IR(t) for the first time. Then let KS,R,TS,R
(t + 1) =

D(B,R,t)
D(S,R,t) .

For convenience, we call the above rules the gPRK-model-
adaptation rules. (An example of gPRK model adaptation

4Due to the discrete nature of node distribution, the resulting link reliability
may be slightly higher than the required reliability TS,R instead of being
exactly TS,R.

5As in PRKS [31], the control signaling packets used for estimating
P (C,R, t) and βC(t) are transmitted at a power level higher than that of
data packet transmissions such that nodes interfering with one another can
overhear these control signaling packets from one another.

can be found in [14].) As link 〈S,R〉 updates its param-
eter KS,R,TS,R

, the parameter is shared with nodes within
ES,R,TS,R

through control signaling as discussed in Section IV,
which enables nodes to be aware of their mutual interference
relations and thus to schedule transmissions with predictable
interference control.

Through locally measured/estimated y(t), y(t−1), a(t), and
µU (t), each link 〈S,R〉 adapts its gPRK model parameter
KS,R,TS,R

in a distributed manner according to (2) and the
gPRK-model-adaptation rules. Note that, by (2), the exact
coupling between the distributed adaptations at different links
is through µU (t) instead of ∆IU (t). Given that the cumulative
interference power from vehicles outside the exclusion regions
is the sum of the interference power from a large number of
vehicles and because of the Law of Large Numbers, µU (t)
tends to be much more stable and close to zero even though
∆IU (t) is time-varying.6 Together with the vehicle clustering
effect in a vehicle traffic flow [24] (which we will discuss
shortly), the relatively stable and small µU (t) facilitates the
convergence of gPRK model adaptation in the network.

B. gPRK Modeling with Vehicle Mobility

Vehicle mobility makes network topology and interference
relations highly dynamic (especially for vehicles on different
roads or in opposite driving directions of a same road), and
this challenges the instantiation and use of the gPRK model
in V2V networks. In what follows, we elaborate on our
design that addresses the challenges by effectively leveraging
cyber-physical structures of V2V networks, particularly, the
spatiotemporal interference correlation as well as macro- and
micro-scopic vehicle dynamics.
Agile model instantiation for new links. Due to vehicle
mobility and starting of vehicles, new links may form when
vehicles come within one another’s communication ranges.
The need for reliable inter-vehicle communication makes it
desirable for the gPRK model parameters of the newly-
formed links to quickly converge to their safe-state where
application-required link reliabilities are ensured. To this end,
it is desirable to initialize the gPRK model parameters of
newly formed links close to where their safe-state may be,
and we propose to leverage spatial interference correlation
to accomplish this. More specifically, in large-scale wireless
networks such as V2V networks, close-by links whose senders
and receivers are close to one another respectively tend to
experience similar interference power and similar set of close-

Fig. 6: Spatial interference cor-
relation

by, strong interferers, espe-
cially if the radii of their
receiver-side exclusion re-
gions (ERs) are similar. For
the network setting of Sec-
tion VII, for instance, Fig-
ure 6 shows the empiri-
cal cumulative distribution
function (CDF) of the corre-
lation coefficient between the receiver-side interference power

6For instance, for the experimental study scenarios of Section VII, µU (t)
is statistically equaly to zero at 95% confidence level [14].
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of any two links for which the inter-sender distance, the inter-
receiver distance, and the difference in the radii of receiver-
side ERs are no more than 30 meters. We see that the corre-
lation coefficient tends to be large. This spatial interference
correlation enables us to develop mechanisms for accurate
gPRK model initialization as below.

When a new link from Si to Ri, denoted by 〈Si, Ri〉,
is formed at time t, Ri first checks whether there exists
another sender vehicle Sj(j 6= i) for which the gPRK
model parameter KSj ,Ri,TSj,Ri

(t) has converged to a safe
state for link 〈Sj , Ri〉 (i.e., the communication reliability
from Sj to Ri has met the requirement TSj ,Ri

). For con-
venience, we call the link 〈Sj , Ri〉 a self-reference link for
〈Si, Ri〉. (An example is shown in Figure 7.) Let S = {Sj :

self-
reference link

Ri

Si Sk

Rk

Sj

neighbor-
reference link

Fig. 7: Reference links

〈Sj , Ri〉 is a self-reference link for 〈Si, Ri〉}, and let S∗ be
the vehicle that is closest to Si out of all the vehicles in
S. Then Ri uses 〈S∗, Ri〉 to initialize the gPRK model of
〈Si, Ri〉 as follows: Ri first sets the gPRK model parameter
of 〈Si, Ri〉 such that the ER of 〈Si, Ri〉 is the same as that of
〈S∗, Ri〉, and, based on the assumption that Ri experiences
similar interference power when senders S∗ and Si transmit
to Ri with the same ER around Ri, Ri then uses the gPRK-
model-adaptation rules to adjust the model parameter of
〈Si, Ri〉 to accommodate the differences between 〈Si, Ri〉 and
〈S∗, Ri〉. More specifically, Ri first sets KSi,Ri,TSi,Ri

(t) =
D(S∗,Ri,t)KS∗,Ri,TS∗,Ri

(t)

D(Si,Ri,t)
, where D(Vj , Vi, t) denotes the ge-

ometric distance between two vehicles Vj and Vi at time
t; this is so that the ER of 〈Si, Ri〉 is the same as that
of 〈S∗, Ri〉. Then Ri adjusts KSi,Ri,TSi,Ri

(t) to address the
difference in total tolerable interference by links 〈Si, Ri〉 and
〈S∗, Ri〉 due to their differences in data signal reception
power and required communication reliability. In particu-
lar, Ri computes ∆IRi(t) = P (Si, Ri, t) − P (S∗, Ri, t) +
P (Si, Ri, t)(

1
f−1(TSi,Ri

)−
1

f−1(TS∗,Ri
) ), where P (Vj , Vi, t) de-

notes the signal power from vehicle Vj to Vi at time t, the term
P (Si, Ri, t)−P (S∗, Ri, t) accounts for the difference in toler-
able interference due to different signal power from S∗ and Si,
and the term P (Si, Ri, t)(

1
f−1(TSi,Ri

) −
1

f−1(TS∗,Ri
) ) accounts

for the change in tolerable interference when the communica-
tion reliability requirement by 〈Si, Ri〉 changes from TS∗,Ri

to TSi,Ri . Finally Ri applies the gPRK-model-adaptation
rules (as discussed in Section V-A) to adjust the value of
KSi,Ri,TSi,Ri

(t), and the final value of KSi,Ri,TSi,Ri
(t) is set

as the initial gPRK model parameter for the newly formed link
〈Si, Ri〉.

If there exists no self-reference link for 〈Si, Ri〉 when it
newly forms (e.g., when vehicle Ri just got started), Ri tries

to identify a neighbor-reference link 〈Sk, Rk〉(k 6= i) such
that the gPRK model parameter KSk,Rk,TSk,Rk

(t) has con-
verged to a safe state, and that D(Sk, Si, t) and D(Rk, Ri, t)
are less than a threshold D0, where D0 is chosen such
that links 〈Sk, Rk〉 and 〈Si, Ri〉 experience similar inter-
ference power when the radii of their ERs are the same
(i.e., D(Sk, Rk)KSk,Rk,TSk,Rk

= D(Si, Ri)KSi,Ri,TSi,Ri
).

(An example is shown in Figure 7.) Let L = {〈Sk, Rk〉 :
〈Sk, Rk〉 is a neighbor-reference link for 〈Si, Ri〉}, define the
distance between two links 〈Sk, Rk〉 and 〈Si, Ri〉 at time t
as max{D(Sk, Si, t), D(Rk, Ri, t)}, and let 〈S∗, R∗〉 be the
link closest to 〈Si, Ri〉 among all the links in L. Ri then uses
〈S∗, R∗〉 to initialize the gPRK model for 〈Si, Ri〉 as in the
case of estimation via self-reference links as discussed above.

Leveraging the spatial correlation between 〈Si, Ri〉 and its
self-reference and neighbor-reference links, the above gPRK
model initialization mechanism enables good approximation of
the safe-state gPRK model parameter of 〈Si, Ri〉 in normal and
heavy vehicle traffic settings where there are usually enough
number of surrounding vehicles/links around 〈Si, Ri〉. In the
case of very light vehicle traffic settings (e.g., at 3 a.m.), there
may exist no self-reference link nor neighbor-reference link for
a newly formed link 〈Si, Ri〉. In this case, vehicles are sparsely
distributed, cumulative interference from far-away vehicles
tends to be small, and the exclusion region (ER) tends to be
smaller than in the case of normal and heavy vehicle traffic
settings. Accordingly, Ri can approximate its safe-state gPRK
model parameter by only considering pairwise interference
among close-by vehicles. More precisely, Ri sets the initial
value of the gPRK model parameter such that the initial ER
around itself includes every vehicle whose transmission alone,
concurrent with the transmission from Si to Ri, can make the
communication reliability drop below TSi,Ri

.

Agile model instantiation for transient links. For an
established link 〈Si, Ri〉 where Si and Ri are on different
roads or in opposite driving directions of the same road,
the link may be transient since the relative position between
Si and Ri and thus the link properties between them may
change significantly during an update interval of the gPRK
model parameter (e.g., every 2.5 seconds). In this case, the
gPRK-model-adaptation rules of Section V-A won’t be agile
enough to track the gPRK model parameter of 〈Si, Ri〉. Thus
we propose to treat the transient link between Si and Ri

as a “new” link from one time slot to the next and use
the gPRK model initialization approach presented above to
instantiate the gPRK model parameter of 〈Si, Ri〉. In normal
and heavy vehicle traffic settings, vehicles of the same traffic
flow (i.e., vehicle traffic along the same direction of a road
segment) tend to form clusters depending on their speed,
with the vehicles in the same cluster having approximately
equal speed and relatively stable spatial distribution, and this
clustering behavior applies to both free-flow and congested
traffic and for both highways and urban roads [24]. With
spatiotemporal constraints on vehicle movement along a traffic
flow, vehicle cluster membership tends to last at timescales
from seconds to minutes or even longer [24]. The relative
stability in cluster membership and intra-cluster vehicle spatial
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distribution make the gPRK-model-adaptation rules applicable
to the links between vehicles of the same cluster, and these sta-
ble links can serve as the self-reference and neighbor-reference
links for other transient links, thus enabling online, adaptive
instantiation of the gPRK model parameters of transient links.
In the case of very light vehicle traffic where there may exist
no self-reference nor neighbor-reference link for a transient
link 〈Si, Ri〉, the gPRK model parameter of 〈Si, Ri〉 may be
instantiated by considering pairwise interference as discussed
earlier.

Another type of transient link 〈Si, Ri〉 exists when Ri

repeatedly moves in and out of the communication range of Si.
In this case, if the interval between Ri moving out of and then
back into the communication range of Si is small (e.g., less
than 2 seconds), then 〈Si, Ri〉 can retain its last gPRK model
parameter considering the temporal correlation of interference
at the receiver Ri (as we elaborate in more detail in [14]); if
the interval is large, 〈Si, Ri〉 can be treated as a new link, and
its gPRK model parameter can be initialized using the gPRK
model initialization method discussed earlier.
Effective use of gPRK model. In order for vehicles to
use the gPRK model to detect their mutual interference rela-
tions in a distributed manner, close-by, potentially interfering
vehicles need to be aware of one another’s locations. A
vehicle can update and share its location with close-by vehicles
by broadcasting its location periodically. In the presence of
high vehicle mobility, however, the relative positions of two
vehicles may change in an non-negligible manner during the
broadcast intervals. For instance, even if the location infor-
mation is updated every half a second, the distance between
two vehicles driving at a speed of 80km/h (i.e., 50mph)
along the opposite directions of a road may change 22.22
meters during the update interval. In order for vehicles to
have accurate information about one another’s locations during
update intervals and with limited location update frequencies
as well as potentially imperfect control signaling reliability,
we propose to have vehicles estimate one another’s locations
during update intervals. For accurate estimation of vehicle
locations, it is important to have a good model for vehicle
location dynamics.

Fortunately, vehicle dynamics have been studied extensively
in traffic flow theory, and the intelligent-driver-model (IDM) as
well as its extensions have been shown to be able to accurately
model real-world, microscopic vehicle dynamics [24]. Using
the IDM model and by treating vehicle location as a part of
the “state” of a vehicle, we can derive the dynamic model
of the vehicle. (Details of the derivation can be found in
[14].) Given that the model is nonlinear, we use the Unscented
Kalman Filter (UKF) [26] to estimate vehicle locations. By
treating the model parameters as a part of the system state
and introducing random walks to the parameter evolution
[26], the microscopic model can also be adapted according
to the individual driving behavior of vehicles in different real-
world settings. Besides vehicle location estimation, the above
approach to vehicle location estimation can be applied to a
vehicle itself to filter out its own location measurement errors
for improved localization accuracy.

The IDM model focuses on the longitudinal movement

of a vehicle along a specific lane, and it does not directly
model behavior such as lane change and turn. Since it is more
difficult to model those behavior accurately [24], we propose,
for effectiveness of real-world deployment, not to explicitly
model those behavior and resort to event-based quick diffusion
of vehicle state to address the impact of lane change and turn;
that is, a vehicle immediately shares its new location right after
it changes lane or turns. Together, these mechanisms enable
vehicles to be aware of one another’s locations, thus enabling
the effective use of the gPRK model in V2V networks.

VI. SUPPORTING PREDICTABLE BROADCAST

Sender ER for reliable broadcast. A fundamental com-
munication primitive in V2V networks is single-hop broad-
cast via which a vehicle shares its state (e.g., location and
speed) with close-by vehicles within a certain distance [6].
Reliable broadcast is a well-known challenge because, even
though acknowledgments from receivers are required for many
reliability-enhancement mechanisms such as ACK-/negative-
ACK-based retransmission of lost packets and RTS-CTS-based
collision avoidance in medium access control, it is difficult
for a sender to reliably and efficiently get an acknowledgment
from every receiver, especially when the number of receivers
is large in V2V networks (e.g., up to hundreds).

To address the challenge, we observe that, to ensure a
minimum broadcast reliability TS for a sender S, we need
to make sure that the communication reliability along the link
from S to every one of its receiver Ri ∈ R is at least TS .
This fact enables us to define, for a broadcast sender S, a
receiver exclusion region (ER) ES,Ri,TS

for every receiver
Ri ∈ R based on the gPRK model. Accordingly, we define
the sender ER for S, denoted by ES,TS

, as the union of

Fig. 8: Sender ER

its corresponding receiver ERs;
that is, ES,TS

= ∪Ri∈RES,Ri,TS
.

For instance, Figure 8 shows an
example of the sender ER when
the sender S has four receivers
R1, R2, R3 and R4. Based on the
definition of the sender ER, the
broadcast reliability of TS is en-
sured as long as no node in ES,TS

transmits concurrently with sender S.
Broadcast receiver ER adaptation. For reliable inter-
vehicle broadcast, a vehicle C in the sender ER of another
vehicle S shall not transmit concurrently with S. Given that the
sender ER of a vehicle S is the union of the receiver ERs of S’s
receivers, a vehicle C may lie in the receiver ER of multiple
receivers; that is, the receiver ERs of two receivers Ri and Rj

(i 6= j) may overlap and share some common vehicles. The
overlap of receiver ERs and the fact that the sender ER is the
union of all receiver ERs make the adaptation of gPRK model
parameters and thus ERs around individual receivers interact
with one another. To ensure predictable broadcast reliability
in the presence of network dynamics such as vehicle mobility,
we need to address the interaction between the adaptation
of ERs around individual receivers of the same sender. In
particular, after a receiver Ri computes ∆IRi

(t) at time t and
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if ∆IRi
(t) 6= 0, Ri needs to consider whether a vehicle C

lies in the receiver ER of another receiver Rj(j 6= i) when
deciding to add or remove C from the receiver ER of Ri itself.

When ∆IRi
(t) < 0 (i.e., Ri needs to expand its receiver

ER), the receiver ER expansion rule Rule-ER1 needs to be
amended with the following rule:

Rule-BC1: If a vehicle C is not in the receiver ER of Ri

but is in the receiver ER of another receiver Rj(j 6= i)
at time t (i.e., C ∈ ES,Rj ,TS

(t) \ ES,Ri,TS
(t)), Ri treats

I(C,Ri, t) as zero.

The rationale for Rule-BC1 is that, if C is already in the
receiver ER of another receiver Rj , C is already in the
sender ER of S and does not transmit concurrently with the
broadcast transmission by S, and thus C does not introduce
any interference to the receiver Ri and its effective interference
power to Ri (i.e., I(C,Ri, t) is zero.

When ∆IRi
(t) > 0 (i.e., Ri needs to shrink its receiver

ER), the receiver ER shrinking rule Rule-ER2 needs to be
amended with Rule-BC1 for the same rationale as discussed
above. However, if the receiver ER of Ri is completely
covered by other receivers’ ERs at time t (i.e., ES,TS

(t) =
ES,TS

(t) \ ES,Ri,TS
(t)) or if applying Rule-ER2 and Rule-

BC1 at time t would make the receiver ER of Ri completely
covered by other receivers’ ERs, Rule-ER2 and Rule-BC1
cannot be directly applied since applying these rules would
lead to an empty receiver ER for Ri, which could make the
communication reliability to Ri unpredictable in the presence
of network dynamics as we will discuss shortly. In this case,
we regard Ri as an unconstrained receiver of S at time t
since the sender ER of S will only depend on the receiver
ERs of those receivers other than Ri. Accordingly, we regard
a receiver Rj as a constrained receiver of S at time t if Rj

is not an unconstrained receiver.
For an unconstrained receiver Ri at time t, its receiver ER

does not impact the sender ER ES,TS
(t) at time t, thus we

could arbitrarily set its ER if we did not consider network
dynamics such as vehicle mobility. Due to vehicle mobility,
however, the set of vehicles whose receiver ERs jointly cover
that of Ri at time t may move such that their receiver ERs do
not cover that of Ri at time t + 1. To address the impact of
network dynamics, we propose the following rule of adapting
the receiver ER of an unconstrained receiver Ri so that the
communication reliability from S to Ri is still ensured at time
t+ 1 even if network dynamics (e.g., vehicle mobility) is such
that Ri’s receiver ER is not covered by others’ receiver ERs
at time t + 1. (Note that, for a constrained receiver Rj with
∆IRj

(t) > 0, Rule-ER2 and Rule-BC1 apply.)

Rule-BC2:
(A) If ∆IRi(t) > 0, Ri is an unconstrained receiver
of S, and the receiver ER of Ri is completely covered
by other receivers’ ERs at time t (i.e., ES,TS

(t) =
ES,TS

(t)\ES,Ri,TS
(t)), Ri expands its receiver ER to the

largest possible that is still completely covered by other
receivers’ ERs (i.e., sets KS,Ri,TS

(t) to the largest value
that still ensures ES,TS

(t) = ES,TS
(t)\ES,Ri,TS

(t)), and
then Ri applies Rule-ER2 (but not Rule-BC1) to shrink
its receiver ER.

(B) If ∆IRi(t) > 0, Ri is an unconstrained receiver of
S, and the receiver ER of Ri is not completely covered
by other receivers’ ERs at time t (i.e., ES,TS

(t) 6=
ES,TS

(t) \ES,Ri,TS
(t)), Ri first lets E0 = ES,Ri,TS,R

(t),
then keeps removing nodes out of ES,Ri,TS,R

(t), in the
non-increasing order of their distance to R, until the
condition ES,TS

(t) = ES,TS
(t) \ ES,Ri,TS

(t) holds for
the first time. Then Ri sets ∆IRi(t) as ∆IRi(t) −∑

C∈E0\ES,Ri,TS,R
(t) I(C,R, t), where I(C,R, t) is com-

puted in conformance with Rule-BC1. Then Ri applies
Rule-ER2 (but not Rule-BC1) to shrink its receiver ER.

In Rule-BC2(A), the reason why Ri first expands its receiver
ER to the largest possible that is still completely covered
by other receivers’ ERs is to make sure that, before apply-
ing Rule-ER2, the value of ES,R,TS,R

(t) corresponds to the
network setting from which the value of ∆IRi(t) is derived
while pretending that the receiver ER of Ri was not covered
by others’ receiver ERs.

With Rule-BC2, the communication reliability from S to
Ri is ensured even if the receiver ER of Ri is not covered
by others’ receiver ERs at time t + 1. This property is
important for V2V networks with high vehicle mobility. A
special case is when a vehicle Rj(j 6= i) at the boundary
of the broadcast communication range of S moves outside
the communication range of S while Ri is the next vehicle
closest to the boundary of S’s communication range, as shown
in Figure 9. In this case, Ri’s receiver ER is covered by that of

Ri s ER

iR jRS

Rj s ER

Fig. 9: Benefit of Rule-
BC2

Rj , and a significant portion of
S’s sender ER is also covered
by Rj’s receiver ER.7 With Rule-
BC2, Ri sets its receiver ER by
pretending that it was not cov-
ered by that of Rj , thus the com-
munication reliability from S to
Ri is ensured when Rj moves
outside the communication range
of S; without Rule-BC2, the re-
ceiver ER around Ri would be-
come empty, which would make the communication reliability
from S to Ri unpredictable when Rj moves outside the
communication range of S.
Broadcast scheduling. With the aforementioned approaches
to recevier ER adaptation and sender ER computation, broad-
cast senders will be able to identify their mutual interference
relations, and their transmissions can be scheduled via the
distributed TDMA algorithm ONAMA [15] such that a maxi-
mal set of mutually non-interfering vehicles are scheduled to
transmit at each time slot.

VII. EXPERIMENTAL ANALYSIS

There lack large-scale, field-deployed V2V network testbeds
for evaluating link layer scheduling mechanisms. Thus we im-
plement our CPS scheduling framework in the widely-used ns-
3 [2] network simulator, and we experimentally analyze CPS

7For clarity of Figure 9, the figure does not show other receivers of S nor
their ERs.
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by integrating high-fidelity ns-3 wireless network simulation
and SUMO vehicle dynamics simulation [9].

A. Methodology

Multi-dimensional high-fidelity simulation. High-fidelity
simulation of V2V networks requires high-fidelity simulation
of V2V wireless channels and vehicle mobility dynamics. For
V2V wireless channels, we implement in ns-3 a channel model
based on real-world measurement data that capture large-scale
path loss, small-scale fading, and real-world complexities such
as multi-path fading, anisotropic, asymmetric wireless signal
attenuation, and the impact of vehicles and surrounding objects
(e.g., bridges and buildings) on vehicular wireless channels [8].
For vehicle mobility dynamics, we use the SUMO simulator
that simulates vehicle traffic flow dynamics at high-fidelity
based on real-world traffic and road conditions of Detroit,
Michigan, USA [9]. For integrated, high-fidelity simulation
of V2V wireless channels and vehicle mobility, we integrate
SUMO simulation with ns-3 simulation through the traffic con-
trol interface (TraCI) of SUMO, as shown in Figure 10. With

Fig. 10: Integration of SUMO with
ns-3

the TraCI interface,
ns-3 can query any
desired information
(e.g., locations of
individual vehicles)
from SUMO anytime.
When a simulation
starts, ns-3 first
invokes SUMO with its local configuration files, as shown
by link a of Figure 10; during a ns-3 simulation, ns-3
continuously queries vehicle state information (e.g., locations)
from SUMO, as shown by link b of Figure 10.

CPS assumes that each vehicle has a location sensor (e.g.,
GPS and/or SLAM) which reports its real-time locations.
To simulate location measurement errors, our experimental
analysis assumes that the error is a Gaussian variate with zero
mean and a standard deviation of four meters, a localization
accuracy achievable by today’s GPS systems.
Protocols. To understand the benefits of CPS in scheduling
inter-vehicle communications, we comparatively study the
following representative V2V network protocols:

• 802.11p: the MAC protocol of the IEEE 802.11p standard
which uses CSMA/CA to coordinate channel access and
interference control [16]. This is the MAC protocol used
in existing field deployments of DSRC implementations
(e.g., those by USDOT).

• DCC: an ETSI standard that, on top of the 802.11p
protocol, uses congestion, power, and rate control to
mitigate inter-vehicle interference and improve commu-
nication reliability [23].

• AMAC: the ADHOC MAC protocol [3] which is a slot-
reservation-based TDMA protocol based on the protocol
interference model. In the protocol, vehicles transmit in
their reserved slots without carrier sensing. If collisions
are detected in a certain time slot of the TDMA frame,
vehicles will release the slot and reserve another slot .

• VDDCP: a TDMA-based MAC protocol [11] that, based
on the protocol interference model, first allocates non-
overlapping sets of time slots to different roads and then
let vehicles on each road compete for channel access in
a slot-reservation-based TDMA manner as in AMAC.

To understand the effectiveness of the geometric approxi-
mation of the PRK model by the gPRK model, we also study a
variant of CPS, denoted as OCPS (for Oracle CPS), that is the
same as CPS except for its use of the PRK model. In OCPS,
we assume that, after a vehicle R has a new estimate for the
signal power P (C,R) from another vehicle C to itself, the
newly estimated P (C,R) is known to every other potentially
interfering vehicle through some oracle without requiring any
control signalling packet exchange as we have discussed in
Section V-A; this way, the costly and sometimes infeasible
signal-map-related control signalling overhead is gone, and
OCPS can be executed in our simulation environment.
Network settings. For understanding protocol behavior in
real-world settings, we consider an urban network consisting
of vehicles in midtown Detroit of Michigan, USA. As shown in
Figure 11, the urban network consists of freeway I-75 and city
roads in midtown Detroit, and it spans an area of 3km×3km.
In the network, vehicle speed limits range from 40km/h (i.e.,
25mph) on small city streets to 120km/h (i.e., 75mph) on I-
75. Our study considers normal vehicle traffic flow conditions,
and the average bumper-to-bumper distance ranges from one
meter to 20 meters. The vehicle spatial distribution is such that
the cumulative distribution function (CDF) of the number of
vehicles within 150 meters from any vehicle on the road is as
shown in Figure 12. The simulation of each V2V network
protocol simulates the behavior of the V2V network for a
duration of 50 minutes (i.e., representating 50 minutes of real-
world behavior of the involved vehicles), and the execution of
the simulation in the ExoGENI cloud computing facility [1]
takes about 1.5 days. Each simulation is repeated five times.

We set the desired broadcast communication range as 150
meters. Unless mentioned otherwise, the desired broadcast
reliability is set as 90%; for understanding the behavior of
CPS, we also experiment with CPS when the desired broadcast
reliability is 70%, 80%, and 95%. For protocols that do not use
transmission rate and power control (i.e., protocols other than
DCC), the transmission rate is set as 6Mbps, and the transmis-
sion power is set at a value that ensures that the signal-to-noise
ratio (SNR) in the absence of interference is 6dB above the
SNR for ensuring the desired communication reliability (e.g.,
90% ) for links of length 150 meters. Each vehicle transmits

Fig. 11: V2V network in
Detroit, Michigan, USA
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a data packet every 100 milliseconds, a frequency needed for
many active safety and networked vehicle control applications
in V2V networks [6]. The size of each data packet is 1,500
bytes.

We have experimented with other network settings such as
on freeways, and we have observed phenomena similar to what
we will present in Section VII-B; due to the limitation of
space, we relegate the detailed discussion to [14].

B. Experimental Results

Behavior of CPS. For CPS and different communication
reliability requirements, Figures 13, 14, and 15 show the mean
packet-delivery-reliability (PDR), gPRK model parameter K,
and the exclusion region (ER) size (i.e., number of vehicles
in the ER) of links as well as their 95% confidence intervals
respectively. We see that CPS ensures the required communi-
cation reliability, and this is accomplished by adapting the
gPRK model parameter K for each link. In particular, as
the required communication reliability increases, the gPRK
model parameter K increases, which increases the ER size
and reduces the interference from other vehicles.

As discussed in Section VI, the ERs of the receivers of the
same sender may overlap with one another. To understand the
degree of overlap, Figure 16 shows, for the communication
reliability requirement of 90% and for a certain percentage of
the selected receivers out of all the receivers of a sender (e.g.,
10%, 20%, . . . , 100%), the median and its 95% confidence
interval of the ratio of the number of nodes within the union
of the ERs of the selected receivers/links to the size of the
sender ER. The confidence intervals (CI) tend to too small to
be visibly plotted, so we use the numbers by the individual
data points to show the width of the CIs centered around
the average value. We see that, due to spatially co-located
receivers, there is significant overlap in ERs. For instance, the
ERs of 40% and 70% of the receivers account for 84.74%
and 100% of the sender ER on average, respectively. Similar
phenomena have been observed for other communication
reliability requirements.
CPS vs. existing protocols. For different protocols and
the communication reliability requirement of 90%, Figure 17
shows the boxplot of communication reliability from each
vehicle to its receivers, Figure 18 shows the concurrency
(i.e., number of concurrent transmissions at a time slot) in
the network, Figure 19 shows the network throughput that is
computed as the number of packets successfully delivered to
receivers in every time-slot duration (i.e., 2.5ms), and Fig-
ure 20 shows the packet delivery delay when packet retrans-
mission is used to ensure the application-required reliability
for protocols that would be unable to ensure the application-
required reliability otherwise (i.e., protocols other than CPS).
In these figures, the boxplot for a performance metric (e.g.,
reliability) of a protocol is such that the red line between the
notches shows the median value of the metric, the notches
show the 95% confidence interval of the median metric value,
the top and botton lines of the blue box show the 75-percentile
and 25-percentile of the metric values respectively, the small
black lines at the top and bottom of the boxplot show the

maximum and minimum metric value respectively, and the
red plus signs (if any) represent outliers (i.e., values occuring
at very small proability).

Enabling accurate, agile identification of interference re-
lations among vehicles, our gPRK-based cyber-physical ap-
proach to interference modeling and transmission schedul-
ing ensures predictable interference control and application-
required broadcast reliability, as shown in Figure 17. More-
over, this is achieved while having considered the complex,
real-world vehicular wireless channels and vehicle localization
errors as discussed in Section VII-A.

Implicitly assuming a protocol interference model and
using a contention-based approach to medium access con-
trol, 802.11p and DCC do not ensure predictable control
of interference and thus do not ensure application-required
communication reliability. Through congestion, power, and
rate control, DCC improves the reliability of 802.11p, but the
broadcast reliability is still quite low in DCC (i.e., being ∼6%
in our study). Assuming an inaccurate protocol interference
model and unable to address the challenge of high vehicle
mobility to TDMA scheduling, the TDMA protocols AMAC
and VDDCP cannot ensure predictable interference control,
and the communication reliability from senders to receivers
tend to be quite unpredictable, ranging from very low to
very high and varying over time. In AMAC and VDDCP,
the slot reservation tends to be unreliable in the presence
of vehicle mobility and inter-vehicle interference, thus the
concurrency in AMAC and VDDCP tends to be quite low
too, as shown in Figure 18. The fact that the reliability is
unpredictable while the concurrency is low in AMAC and
VDDCP demonstrates the importance of accurately identifying
inter-vehicle interference relations in an agile manner in the
presence of vehicle mobility, as is accomplished in our CPS
framework.

Communication reliability and concurrency directly impact
the communication throughput and delay. For instance, high
reliability and high concurrency are needed to ensure high
throughput and low delay in communication. The concurrency
in 802.11p and DCC is the highest among all the proto-
cols, but their throughput is quite low (being 0.33 and 0.51
packets/time-slot respectively) due to the low communication
reliability in both protocols, as shown in Figures 19 and 17.
Due to the low concurrency and the unpredictable, often-
low communication reliability in AMAC and VDDCP, the
throughput is low in both protocols (being 0.11 and 0.12
packets/time-slot respectively). Ensuring application-required
reliability while maximizing channel spatial reuse, CPS en-
ables significantly higher throughput than other protocols
do. To improve communication reliability, retransmission is
needed in other protocols, which significantly increases the
communication delay, as shown in Figure 20. The low con-
currency and the unpredictable communication reliability in
AMAC and VDDCP make their communication delay the
largest among all the protocols.
CPS vs. OCPS. Figure 21 shows the empirical cumulative
distribution function (CDF) of the communication reliabil-
ity from each vehicle to its receivers in CPS and OCPS.
We see that OCPS achieves a much higher communication



13

0.8

0.85

0.9

0.95

1

P
D

R
70%
80%
90%
95%

Fig. 13: Mean PDR

0

2

4

6

8

10

12

P
ar

am
et

er
 K

70%
80%
90%
95%

Fig. 14: gPRK parameter K

0

10

20

30

40

50

60

E
R

 S
iz

e

70%
80%
90%
95%

Fig. 15: ER size

20 40 60 80 100
Percentage of receivers (%)

30

40

50

60

70

80

90

100

R
at

io
 o

f E
R

 s
iz

e 
(%

)

0.2325

0.19512

0.18689

0.18553

0.18222
0.15718

0.1387
0.13061

0.08505
0

Fig. 16: ER overlap Fig. 17: Reliability Fig. 18: Concurrency

Fig. 19: Throughput Fig. 20: Delay Fig. 21: CPS vs. OCPS

reliability than other existing protocols, with the minimum
communication reliability being 75% and the reliability being
no less than the required 90% for about 85% of the links
from a broadcast sender to its receivers. Nonetheless, the
communication reliability of about 15% of the links is less
than the required 90% in OCPS, while CPS ensures the
required reliability for all the links. The reason for this is
because, in OCPS, even though the existence of an oracle
addresses the signalling overhead challenge in PRK-based
scheduling, it is still difficult to precisely track the highly-
dynamic signal power from one vehicle to another in the pres-
ence of vehicle mobility, which makes it difficult to precisely
track inter-vehicle interference relations and thus difficult
to ensure predictable communication reliability. In CPS, the
gPRK model and the tracking of vehicle movements through
well-understood vehicle dynamics enable precise tracking of
inter-vehicle interference relations and thus enable predictable
interference control and predictable communication reliability,
showing the benefits of using the geometric approximation of
the PRK model in V2V networks.

VIII. CONCLUDING REMARKS

For predictable inter-vehicle communication reliability,
we have formulated and applied the gPRK interference
model to predictable interference control in V2V networks.
Our gPRK-based interference modeling effectively leverages

cyber-physical structures of V2V networks (e.g., spatiotem-
poral interference correlation and vehicle dynamics). Based
on the cyber-physical interference modeling, our Cyber-
Physical Scheduling (CPS) framework ensures predictable
reliability of V2V communications. Ensuring predictable in-
terference control and communication reliability, our cyber-
physical approach to interference modeling and data trans-
mission scheduling is expected to enable the development
of mechanisms for predictable timeliness, throughput, and
their tradeoff with reliability in V2V communications, thus
enabling wireless-networked vehicle control [6]. This is a
future direction worth pursuing.
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