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Abstract

A method is presented addressing quantitative assessment of tunnel roof stability, based on the
kinematic approach of limit analysis. Long tunnels with both rectangular (flat-ceiling) and circular
cross-sections are considered. The rock is governed by the Hoek-Brown strength envelope and
the normality flow rule, and it is assumed to provide enough ductility at failure, making plasticity
theorems applicable. A failing block in the collapse mechanism is separated from the stationary
rock by a deformation band with a large gradient of velocity across its width. The shape of the
block in the critical mechanism is found from the requirement of the mechanism’s kinematic
admissibility and an optimization procedure consistent with respective measures of stability. The
stability number and the supporting pressure needed for tunnel stability are calculated first.
Although less commonly used in rock engineering, a procedure is developed for estimating the
factor of safety, defined as the ratio of the rock shear strength determined from the Hoek-Brown
criterion to the demand on the strength. Curiously, for flat-ceiling tunnels, such definition of the
factor of safety yields results equivalent to the ratio of a dimensionless group dependent on the
uniaxial compressive strength and the size of the tunnel to the stability number. Such an
equivalency does not hold for tunnels with ceilings of finite curvature. Not surprisingly, all
measures of tunnel roof stability are strongly dependent on the Geological Strength Index that

describes the quality of the rock.
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1. Introduction

Roof collapse is a common type of failure' in tunnels both during construction and service.
An early attempt at an assessment of tunnel roof stability was presented by Lippmann? in 1971.
His approach included both the kinematic and static approach of limit analysis applied to the rock
described by the classical pressure-dependent (Mohr-Coulomb) strength criterion. Davis et al.?
considered undrained stability of a tunnel roof in clays as well as the face stability during tunnel
construction. The latter was also studied by Leca and Dormieux* and others®, but an analysis of
this failure type is not carried out in this paper. The interest in stability of tunnels has been
increasing as a result of an increasing number of tunneling projects around the world; analytical®
? and numerical’!! modelling efforts have been carried out for assessment of roof stability. In this
paper, the focus is placed on the measures for roof stability assessment in tunnels of rectangular
(flat-ceiling) and circular cross-sections.

Fraldi and Guarracino®’

suggested analytical solutions utilizing the calculus of variations
in the kinematic approach of limit analysis. The variational approach was used to determine the
shape of the failing block in the collapse mechanism. Their solutions address roof collapse in both
rectangular and circular cross-section tunnels, in rocks with strength governed by the Hoek-Brown
criterion. This method gave rise to a series of other papers, for example'2, most of which focused
on the shape of the failing block, rather than stability measures, such as the stability number or a
factor of safety. The former was considered more recently for rocks with tension cut-off®, and an
effort is made in this paper to address the various stability measures in regard to roof failures in
rocks governed by the Hoek-Brown strength criterion. Suchowerska et al.'® analyzed both deep
and shallow tunnel roofs using the finite element upper and lower bound method, and displacement
finite element analysis. Stability numbers were reported from their studies for rectangular cavities,
and they are used in this paper for comparison.

The focus of this paper is on the stability of roofs in deep tunnels in rocks with strength
governed by the Hoek-Brown criterion. The depth of tunnels is assumed sufficient to prevent
failure propagating to the ground surface. However, a straight-forward extension of the analysis
can be used to address the stability of shallow tunnels'®. Surprisingly, many analyses of roof
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stability in deep tunnels have focused on the geometry of the failure mechanisms , rather than

measures of stability® !°. This paper’s focus is on three stability measures: the stability number,



support pressure, and the factor of safety. The latter has been used routinely for geomaterials with
strength determined by a linear failure envelope, but the use of the safety factor with failure
envelopes nonlinear in the first invariant of the stress tensor is intricate'.

A brief description of the Hoek-Brown strength criterion and the definitions of the
measures of stability are provided first, followed by the description of the mechanism, and the
details of the kinematic limit analysis. Numerical results are presented in the form of charts and

tables.

2. Hoek-Brown failure criterion and measures of stability

Failure of rocks is characterized by non-linear pressure dependency, contrary to the linear
friction-type dependency typically used in analyses of soils. Failure envelopes for rock masses
were suggested by Hoek and Brown'® and Johnston'®. These criteria were developed based on
empirical premises, using laboratory tests and field observations. Both criteria were presented as
functions of the major and minor principal stresses, and were functions of the compressive strength
of intact rock and other material parameters and indices. This makes it complicated finding an
explicit analytical expression for the shear strength envelope on the Mohr plane. Therefore, other
forms of non-linear failure criteria were introduced!”?* with analytical representation making an
easier implementation in stability analyses. These, however, did not find a wide acceptance in
practice, and it is the Hoek-Brown concept that became the preferred criterion in rock mechanics

and engineering.

2.1. Hoek-Brown failure criterion

Since its inception in 1980'%, the Hoek-Brown failure criterion has undergone a series of
updates, summarized by Hoek and Marinos®*, and its most recent version® is briefly sketched in
this subsection. The advantage of this function above other criteria is in the direct relationship of
the rock strength to the physical state of rock, expressed through a combination of mechanical

parameters and indices. The fundamental expression of the Hoek-Brown failure criterion reads?
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which is similar to the original function'® with the exception that coefficient a replaced the square
root; this modification led to qualifying the function in Eq. (1) as the generalized Hoek-Brown
criterion. For brevity, we will refer to this function as the Hoek-Brown failure criterion. Stresses
o, and o; in Eq. (1) are the effective major and minor principal stresses, respectively, and o, is
the uniaxial compressive strength of the intact rock. Constant m, is a reduced value of the material

constant m; for intact rocks

(GSI—IOOJ
mb — mie 28-14D (2)

This is a dimensionless constant (for a given rock) that introduces pressure dependency into the
Hoek-Brown criterion. Typical values of m; for various rocks can be found in Hoek?®. Constants

a and s are defined as
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where GSI is the Geological Strength Index that can vary in the range from 5 to 100, and D i1s a
factor defining the degree of rock disturbance, which can vary from zero (undisturbed in-situ rock
masses) to 1 (very disturbed rock masses). Examples of index D for different construction
disturbances can be found in Hoek et al.?

When no data is available, Hoek?® has suggested some representative values of m; for
several rock types; for example, m; = 7 for carbonate rocks, such as limestone and marble, m; = 10

for lithified mudstone, siltstone, or shale, and m; = 25 for course-grained igneous rocks, such as

gabbro or granite. In this study, computations of stability measures for tunnel roofs are performed



for a variety of rock types with a GSI ranging from 10 to 100 and m; in the range from 5 to 25.
Throughout all calculations, the rock mass is considered minimally disturbed (D = 0).

The Hoek-Brown failure surface in the Haigh-Westergaard space is shown in Fig. 1(a). The
surface consists of six curvilinear sections, and its intersection with the octahedral plane is shown

in Fig. 1(b). The expression in Eq. (1) describes segment EFGE, which includes all limit stress
states that satisfy the principal stress combination o 2 0, > 0;, typical in most calculations.
Because the criterion in Eq. (1) is independent of the intermediate principal stress o, surface
EFGE does not intersect axis o, (surface with varying curvature, parallel to o), and any straight
line on this surface, for example F’G’, is parallel to axis o, . Lines on surface EFGE that are not
parallel to axis o, are not straight lines, and the segments of the cross-section of the failure surface
with the octahedral plane, Fig. 1(b), are curvilinear. The curvature of these segments is significant
only for small hydrostatic pressure, and it decreases with an increase in o] =0, = 0;.

A single point on the surface in space o/,0;,0;, Fig. 1(a), is mapped on the vector plane
in Fig. 1(c) as three stress circles, each determined by a pair of principal stresses. Point E on the
hydrostatic axis (o, =0, =03 ) in the Haigh-Westergaard space is mapped on the strength
envelope in Fig. 1(c) as three stress circles, all reduced to a point at location E*. This point can be
interpreted as the triaxial (isotropic) tensile strength o,, even if the direct measurement of this
property cannot be easily carried out. Strength o, is a material property, and is a positive number,
but the stress equal to the tensile strength is negative (under compression-positive sign convention).
By substituting o] =0} =—0, into Eq. (1), the value of o, is found to be uniquely related to

uniaxial compressive strength o, and material constants s and mj
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Uniaxial tensile strength may or may not be equal to o, ; this i1s dependent on the curvature of the

strength envelope. Calculations indicated that for rocks with disturbance factor D =0, GSI in the

range of 10 to 100, and m; in the 5 to 25 range, the uniaxial tensile strength is always smaller than



the isotropic tensile strength o, but the difference does not exceed 4%, and in most cases, it is a

fraction of one percent.

Some analyses of stability require that the failure envelope in Fig. 1(c) be given explicitly
as a shear strength envelope. For example, most analyses that seek the factor of safety typically
require this form. However, a direct transformation of Eq. (1) into an explicit form 7 =17(c,) is

cumbersome; consequently, Hoek and Brown'> suggested an alternative form of the limit state

condition as

B
r=Ao, (“" i ] (6)

O
which can be conveniently plotted as an envelope to limit stress circles on the 7-o, plane. This
form uses two dimensionless material parameters 4 and B, in addition to the uniaxial compressive
strength of intact rock o, and tensile strength o, . The reader will notice that by setting B=1, a
linear envelope results, and the classical Mohr-Coulomb limit state condition follows when
A =tang (¢being the internal friction angle). Parameters 4 and B can be estimated by matching

the envelope in Eq. (6) with stress states in Eq. (1) for a stress range of interest?’.

2.2. Analysis method

The kinematic approach of limit analysis is used in the paper; this method makes an

assumption of perfect plasticity, convexity of the failure criterion, and normality of the flow rule.

This flow rule implies that strain rate vectors & in the conjugate space ¢~ are perpendicular

to the failure surface in o),0;,0; space, as illustrated in Fig. 1(a). Similarly, the velocity

discontinuity vectors v on the conjugate plane (with coordinates v; and v,), Fig. 1(c), are normal

to the strength envelope on plane 7,0,. Angle § will be referred to as the rupture angle'* 2.

Velocity discontinuities in this approach are interpreted as bands of plastically deforming material
with large velocity gradients in the transverse direction®®. Perfect plasticity implies ductility of

deformation, whereas most bonded geomaterials are characterized by some brittle behavior.



Chen? argued, however, that if the strain of rock in a boundary value problem is small prior to a
brittle drop in stress, then the deformability “may be sufficient to permit the consideration of limit

theorems...” Therefore, examples of limit analysis application to rocks can be found throughout
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the literature , including examples of tunnel roof stability

The kinematic theorem of limit analysis allows calculating a rigorous bound to an unknown
load (or a different measure of stability) from the balance of work rates of the internal (dissipated)
and external work during incipient collapse consistent with a kinematically admissible failure
mechanism. The approach yields an upper bound to an active force causing failure, or a lower

bound to a reaction (passive force).

2.3. Measures of roof stability

Stability number. One measure of roof stability is a dimensionless combination of the rock

properties and the tunnel size, consistent with the tunnel being at the verge of collapse (critical
combination). Comparing the actual combination of the parameters for a given tunnel to the critical
one allows assessing the safety of the tunnel against the roof collapse. The typical dimensionless

group used in the past is the stability number, relating the properties of the rock and the size of the

it ”

where o, is the uniaxial compressive strength of intact rock, yis the unit weight of the rock, and

tunnel at failure, defined as

R defines the size of the tunnel (e.g., half-width of rectangular tunnels or a radius of circular
tunnels).

Supporting pressure. The critical supporting pressure is defined as the minimum, uniformly

distributed traction on the inside surface of the tunnel needed to prevent collapse. The safety
margin then follows from comparing the available support stress to the critical one. Support
pressure is a passive load, i.e., it is the capacity of the support structure to react to the rock load.

Factor of Safety. This measure of safety is used routinely in soil engineering, but less so in

rock engineering. It is typically defined as the ratio of the available shear strength of the
geomaterial to the demand on the shear strength. While application of this definition is

straightforward for soils governed by the classical Mohr-Coulomb strength envelope, calculations
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of the factor of safety for rock structures governed by the Hoek-Brown strength criterion are more
intricate.
All three measures of tunnel roof stability will be examined for flat-ceiling and circular-

arch roofs.

3. Failure mechanism

Both rectangular and circular cross-section tunnels are illustrated in Fig. 2. The strength of
the surrounding rock is described by the Hoek-Brown failure criterion in Eq. (1), and its
deformation is governed by the normality plastic flow rule. Possible anisotropy and heterogeneity
of the rock is ignored. No distinct joints are assumed to be present in the rock mass. Only deep
tunnels are considered, where the loads on the ground surface do not affect the stability of the
tunnel, and the roof collapse does not propagate to the ground surface (H >> k). However, collapse
mechanisms of the type considered in the paper, can be easily generalized for both deep and
shallow tunnels, as indicated recently by Fraldi et al.'?

The tunnels considered are long and the plane-strain analysis will be carried out. The
driving force of the roof collapse is the gravity load, and a block moving downward, of yet
unknown shape, is the predominant failure mechanism.

20,21 included

Earlier kinematic limit analyses for materials with nonlinear strength criteria
replacement of the geomaterial with a substitution material governed by the classical Mohr-
Coulomb envelope tangent to the nonlinear strength criterion. The locus of the point of tangency
of the linear approximation and the nonlinear criterion was then one of the variables in the
procedure for finding the best bound to a stability/safety measure. The disadvantage of such a
method is in an overestimation of the rock strength by the substitution material and in limiting the
collapse mechanisms to those with only one rupture angle, often leading to unrealistic failure
patterns®. The method in this paper utilizes the entire range of rupture angles & as determined by
the normality flow rule and illustrated in Fig. 1(c), thereby increasing the range of admissible
failure mechanisms. The tunnel may or may not require supporting pressure p for stability (support
pressure p is illustrated in Fig. 2).

The failure mechanisms of a tunnel roof are illustrated for a rectangular-section tunnel and

for the circular tunnel in Figs. 3(a) and 3(b), respectively. The piece-wise linear surface BoBiBn+1



separates the stationary rock from the moving block, and will be referred to as a deformation band,
rupture band, or rupture surface. This is a band of plastically deforming material with a large
velocity gradient across its width, and it is idealized in calculations as a layer of zero thickness®®
(a kinematic discontinuity). The entire block moves with uniform vertical velocity v. Interpreted

as a deformation band, rupture layer BiB;Bs+1 undergoes shear and volumetric deformation, with
the velocity discontinuity components of v, and v, , Fig. 1(c). The rate of volumetric deformation

is large in the tensile regime, but it drops with an increase in the compressive stress. This variable
volumetric deformation rate is a consequence of nonlinearity of the strength envelope and the
normality of the flow rule enforced in limit analysis. The approach taken yields rigorous bounds
to stability measures, even if the physical deformation of the rock is not well predicted by the
normality flow rule®.

After initial plastic deformation, band BiB;Bn+1 will form a symmetric half of the
detachment surface of the polygon-shaped rock block. However, only incipient failure is

considered in limit analysis. The shape of the block is fully defined by n angles &, , and n-1 angles
n; (and angle B for circular tunnels). Rupture angle &, for any segment of the deformation band

L, is related to the shape of the block through independent variable inclination angles «; as in

the following formula

VA
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This rupture angle relates the specific traction vector on the strength envelope in Fig. 1(c) to every

segment L; of the deformation band. The normal and shear components of the traction vector for

an arbitrary point on the strength envelope can be found following Balmer*® as shown by Kumar**
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Equations (9) and (10) constitute a parametric form of the Hoek-Brown strength envelope,

instrumental in the analysis.
4. Stability analyses
4.1. Stability number

The rate of internal (dissipated) work in one symmetric half of the tunnel during incipient

collapse is computed as integrated rates along all segments of the deformation band

D:vi(rjcosq.—O'njsindj)Lj (11)

j=

where v is the magnitude of block velocity vector v, L, is the length of j™ segment of the
deformation band, and o,; 7, are given in Egs. (9) and (10), with &, determined for every

segment from Eq. (8). The rate of work done by the rock weight in one half of the tunnel during

the tunnel collapse is
Wyzyv(ZSj—Kj (12)

where S is the area of j™ triangle OB;B;+,0 in Fig. 3, and

K=

R 2
By rectangular tunnel (13a)

K= (% -f j R’ circular tunnel (13b)

Requiring a balance of internal (dissipated) and external work rates

D=W, (14)
the critical value of the dimensionless group o.; /R (stability number in Eq. (7)) can be derived as
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where K is given in Egs. (13a) and (13b) for the rectangular and circular cross-section, respectively.
The kinematic approach of limit analysis yields the lower bound to stability number N in Eq. (15),
and its critical (maximum) value is found through an optimization procedure with the geometry of

the block being varied. The details of the process will be given in Section 5.

4.2. Supporting pressure

Safety of tunnels against roof collapse can be improved using rock bolts, or by providing
support to the interior tunnel surface (for example, structural tunnel lining). This section considers
the minimum support stress the tunnel lining has to withstand to assure stability. Because the
supporting stress is a reaction to the rock mass loading, the kinematic approach of limit analysis
provides the lower bound to the “pressure” that prevents collapse. This supporting pressure, p, is
assumed to be uniformly distributed (Fig. 2). Once support pressure p is incorporated into the
collapse mechanisms in Fig. 3, its work rate during an incipient collapse (in one half of the roof

failure mechanism) can be calculated easily as

W,=-pvM (16)

where
M =R rectangular tunnel (17a)
M =Rcos circular tunnel (17b)

Note that this work is negative, as the supporting pressure is a reaction to the rock mass loading.

To find the lower bound to p, the work rate balance in Eq. (14) needs to be amended on the right-

11



hand side by the term in Eq. (16). Consequently, the dimensionless supporting pressure for the

rectangular and circular tunnels can be calculated as

p 1 (Zn:S _Kj o, 1 ﬁ: cosZé'j[mba(l—sinéj)]“‘
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where K is given in Egs. (13a) and (14b), and M in Egs. (17a) and (17b). The dimensionless group
o.i /YR represents the actual combination of the rock compressive strength and the tunnel geometry,
and it is not its critical value (stability number). If this dimensionless group is larger than the

stability number in Eq. (15), no support pressure is necessary.

4.3 Factor of safety

For structures involving soils, the factor of safety is commonly defined as the ratio of shear

strength 7 of the soil to shear strength 7, necessary to maintain limit equilibrium (shear strength

demand). The same definition is adopted here for rocks, with the exception that the strength is now

governed by the Hoek-Brown criterion

F=— (19)

Application of the factor of safety so defined for a linear strength envelope is straightforward, but
using this definition with a nonlinear envelope, such as the Hoek-Brown criterion, is not common

and is more intricate'®.

The upper curve in Fig. 4 is the Hoek-Brown strength envelope 7 =17(o,), whereas the

lower curve represents the reduced shear strength 7, =7(c,)/ F=7,(c,) . It can be easily shown
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that the rupture angle § at a given point on the Hoek-Brown criterion is associated with the rupture

angle 0, on the reduced-strength envelope through the following relationship (Fig. 4)
& =arctan(F tand, ) (20)

Application of the factor of safety in kinematic limit analysis requires the construction of a failure
mechanism in the material with shear strength reduced by factor F. Factor F will be referred to
occasionally as the strength reduction factor, and its minimum value is the factor of safety as
defined in Eq. (19). Consequently, in calculations of the factor of safety, rupture angles § on all

segments of the rupture surfaces (idealized deformation bands) in Figs. 3(a) and 3(b) need to be

replaced with reduced angles J,. The reduced angle &, on the ™ segment of the rupture surface
is related to independent variable angle «; through an equation analogous to Eq. (8). Components

o,, and 7, of the traction vector on the rupture surface in the material with reduced strength can

be calculated now by modifying Egs. (9) and (10)

1
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where &, =arctan(F tan J,,) . Traction components 7,0, and 7,0, with respective rupture angles

6 and ¢, are illustrated in Fig.4 (o,, =0,). The rate of internal (dissipated) work for the

symmetric half of the mechanism in the rock with reduced strength can now be found easily from

a formula analogous to Eq. (11)

D, :VZ(% COS0,; — O, sin5d_].)Ldj (23)



where onq; and 74; are the traction vector components expressed in Egs. (21) and (22) for the
respective j segment of the rupture band, and Ly is the length of the segment.

As per Eq. (14), it is now required that the rate of the internal work in Eq. (23) be balanced
with the rate of external work, Eq. (12), for the mechanism in the rock with reduced strength.

Consequently, the following equation was developed

O, 2 cos mba(l—sin5j) I-a
yRj=1| 2F ZSincsj
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where &; =arctan(F tand,,), o,/ yR is the actual combination of the rock properties and tunnel
geometry, and L,, and S,; are the geometrical quantities in the mechanism with reduced strength
(see Fig. 3). Once the set of independent variable angles «; (j=1,2...n) in the mechanism of
failure is selected, the respective angles &, in Eq. (24) are defined by Eq. (8). Eq. (24) is an

implicit equation with respect to the strength reduction factor /" and it can be solved iteratively (for

a set of given angles ¢ and 7,). Kinematic limit analysis yields an upper bound to factor of safety
F, and it is found by minimizing the strength reduction factor with a variable set of angles « ; and
n;(and g for circular tunnels). A comment on the process of optimization will be included in

Section 5.

Calculations can be carried out using Eq. (24) for both the rectangular and circular tunnels,
though there is a simpler method that can be used for rectangular (flat-ceiling) tunnels. It is
somewhat peculiar that the rate of work dissipation for the mechanism spanning the width of a
flat-ceiling tunnel is independent of whether the mechanism is constructed for the true or the

reduced rock failure criterion (Fig. 4). Consider two failing blocks in Fig. 5, one for given shear

strength 7(o,) with the rock rupture along the dashed line, and one in a rock with reduced strength

7(o,)/ F (solid line). Both are similar to the mechanism in Fig. 3(a), but the rock blocks are now
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divided into vertical columns. Based on the geometrical relations in Fig. 5, it can be proved that

the dissipation rate calculated from Eq. (11) and Eq. (23) are identical and independent of F’

D, :vf(rdj Co80, — O,y siné'dj)Ldj :vf“(fj coso; —o,, sinéj)Lj =D (25)

J=l Jj=

—

where subscript d denotes the quantities in the mechanism with reduced failure criterion. It can be
further shown that the rate of work of the rock weight in the mechanism with the strength reduced

by factor F is equal to that in the mechanism for the true strength criterion decreased by factor F’

W (26)

1
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Consequently, Egs. (25), (26) and (14) lead to a simple expression for the reduction factor

e
However, this simple expression cannot be used for circular tunnels, because Egs. (25) and (26)
are valid only for flat-roof tunnels. Further manipulation of Eq. (27) leads to

o

ci

F= % (28)

where the numerator is the dimensionless number for the actual tunnel, and the denominator is the
stability number as defined in Eq. (7) and calculated in Eq. (15). Eq. (28) is very useful as it allows
calculating the factor of safety for rectangular tunnels in a simple and straightforward manner,
without solving the implicit Eq. (24). For reasons of validating this approach, both Egs. (24) and
(28) were used to calculate the factor of safety for flat-ceiling tunnels (both yield identical results).

This simpler approach is not applicable to tunnels with arched cross-sections.
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5. Results of calculations and discussion
5.1. Optimization of results in limit analysis

The three measures of stability (stability number, required supporting pressure, and the
factor of safety) are all calculated based on the mechanisms illustrated in Fig. 3. Surface BiBiBn+1
is a symmetric half of a band of deforming material, idealized as a zero thickness layer with
velocity discontinuity vector v (kinematic discontinuity). This surface is piece-wise linear with n

segments, and inclination of segment / described by independent angle ;. The length of the ;*
segment is determined by angles «; and 7,, as marked in Fig. 3. Preliminary calculations

indicated that the rupture surface in rectangular cross-section tunnels always originates at the

corners. Consequently, there are n independent angles «; and n — 1 independent angles 7, needed

to fully describe the shape of the kinematic discontinuity. A circular tunnel requires an additional
angle S to describe the shape of the falling block. Angles ¢, 7, and £ are independent variables in
the optimization process. Kinematic limit analysis provides a lower bound to the stability number
and the required supporting pressure (passive load), and the upper bound to the factor of safety.
Independent angles ¢;and 7; (and £ for circular tunnels) were varied with a minimum increment
of 0.01°, until a maximum of the stability number or required support pressure was found, or the
minimum of the factor of safety was achieved. The calculations were terminated when the
difference between two consecutive solutions (dimensionless numbers) was less than 10, Because
of the symmetry of the problem, calculations were carried out for half of the tunnel. Calculations
were carried out with 15 linear segments, n =15 (further increase in n led to negligible

improvement of results).
5.2. Stability number

Rectangular tunnels. Stability numbers for rectangular cross-section (flat-ceiling) tunnels,

calculated based on Eq. (15), are plotted in Fig. 6, in semi-log scale, as functions of the Geological
Strength Index (GSI) and parameter m;. The stability numbers decrease as the GSI increases, but

they also decrease with a decrease in m;, which is counterintuitive. Strength index GSI has a very
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significant effect on the stability number. The numerically obtained results are compared to those
based on an analytical procedure that uses limit analysis with a variational approach, suggested by
Fraldi and Guarracino®. Although Fraldi and Guarracino were more interested in the geometry of
the falling block and did not calculate stability numbers, their approach was adopted in the present
study to arrive at the results shown as circular bullets in Fig. 6. For all practical purposes, these
results are identical to those using the method suggested in this paper. The second set of the results
used for comparison comes from the finite element limit analysis, both lower and upper bound,
from a paper by Suchowerska et al.'® The band between lower and upper bound solutions read
from the chart in Suchowerska et al.!* is quite narrow, yet the stability numbers from the approach
advocated in this paper plot between the two bounds, as illustrated in Fig. 6. Some numerical
values from this study are also given in Table 1.

In the current study, the Hoek-Brown failure criterion in Eq. (1) was used to arrive at the

results, whereas the method in the study of Fraldi and Guarracino® required the use of explicit

approximation 7(o,) of the Hoek-Brown envelope. For that purpose, Eq. (6) was used. In

calculations of results based on the method of Fraldi and Guarracino, parameters 4 and B in Eq. (6)
were estimated using linear regression suggested by Hoek and Brown?’.

To conclude the comparisons, the shape of the rupture surface is plotted in Fig. 7 for three
cases calculated with a different number of segments in the rupture surface. These are compared
with the results in Ref.® If only one-segment is used in each symmetric half to model the collapse,
the shape of the rupture surface noticeably departs from the shape calculated in Ref.® However, if
ten segments are used, the shape of the roof rupture surface in this study is indistinguishable from
that in the analytical approach® (corresponding stability numbers are also presented in the figure).

Circular tunnels. Circular cross-section tunnels are common due to the technology used in

tunnel construction. The stability numbers of circular tunnels calculated using Eq. (15) are plotted
in Fig. 8 in semi-log scale. Not surprisingly, the GSI has a very profound influence on the stability
number, but for the entire range of GSI, the stability numbers are barely distinguishable for
different rock types described by constant m;. For comparative reasons, some numerical values of
the stability number for circular tunnels are given in Table 2. When compared to rectangular
tunnels in Fig. 6, stability numbers are now far lower for the entire range of GSI (and m;). One
plausible reason comes from the effects of the block size. The collapse block in a rectangular

tunnel of given width is larger than that during the failure in a circular tunnel of the same width
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(the resistance to failure is proportional to the width of the tunnel, whereas the weight of the block
increases with the square of the size). Although limit analysis does not allow for calculations of
the true stress field, it is possible to inspect the traction (stress vector) on the rupture band in the
mechanism used in the analysis. This is because the traction vector is uniquely related to a point
on the strength envelope through angle 6. In general, stresses so estimated will not be in
equilibrium, but they may indicate some tendencies helpful in explaining the trends in the solutions.
The correlation between the distribution of the traction on the rupture surface and the shape of the
tunnel (of the same width) is illustrated in Figs. 9(a) and 10(a).

The curves in Fig. 9(a) illustrate the Hoek-Brown strength envelopes for GSI= 60 and
various m;, consistent with Egs. (9) and (10). The bullets on the curves show the dimensionless
components of traction vectors on the deformation bands in the critical failure mechanisms (each
bullet represents traction components on one of the 15 segments Z; used in the failure mechanisms,
Fig. 3). The traction on the deformation band in the neighborhood of the symmetry axis tends to
be in the tensile regime, with the compression increasing away from the center plane of the
mechanism. It appears that critical mechanisms of roof failure in rectangular tunnels involve
traction on the rupture surface in the low range of the normal stress (including the tensile range).
Traction vectors on rupture surfaces in circular tunnels span a wider range in compression,
providing for larger confining stress and improved stability (lower stability numbers).

The reader will notice that the influence of m; on the stability of rectangular tunnels (Fig. 6)
is more distinct and opposite to that in circular tunnels (Fig. 8). Rocks with a higher value of m;
are likely to be of higher “quality,” but, contrary to expectations, the stability number for
rectangular tunnels increases with an increase in m;. A plausible explanation for this peculiarity
can be found in the described distribution of the traction vector on the rupture band in the two
types of tunnels shown in Fig. 9(a). As described by Hoek-Brown criterion, for a given GSI,
carbonate rocks described by m; = 7 appear to have larger tensile strength and shear strength in the
tensile regime than igneous rocks (m; = 25), while a large portion of the rupture band in flat-ceiling
tunnels appears to be subjected to traction in the tensile regime. The opposite trend in stability
number with respect to m; is found for circular tunnels, where traction on the deformation band
spans a wider range in compression. While this is a plausible reason for the trends in the stability
number, it needs to be emphasized again that traction vector components calculated from the

kinematic approach are not true stresses, as the method does not assure equilibrium of the stress
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field. The influence of parameter m; on the shape of rupture surfaces for GS/ = 60 in the two types
of tunnels are illustrated in Figs. 9(b). The influence of GS/ on the shape of the failure mechanism
for m; = 7 is shown in Figs. 10(b).

Information about the height of the block in the failure mechanisms is presented in the
chart in Fig. 11; height 4 and tunnel size R are illustrated in Fig. 2. Both indices GSI and m; affect
the height of the block, and the rectangular tunnels involve larger (taller) blocks. The height of the
block reaches the minimum when the rock’s GSI is equal to about 25, and it increases with a
decrease in m; (m; describes the rock type).

Stability numbers for roofs in circular tunnels in rocks with strength governed by the Hoek-
Brown criterion have not been reported earlier, hence the results in Fig. 8 could not be compared
to those from other studies. The study of Fraldi and Guarracino’, for example, focused only on the
geometry (shape) of the failing block, and not on any measures of stability. However, even the
shape of the block from that study cannot be reliably compared with that in the present study. This
is because in Ref.” an assumption was made that the shape of the surface separating the moving
block from the stationary rock is independent of the tunnel ceiling shape (this was a sound
assumption only for flat-ceiling tunnels where the rupture surface always originates from the

corners).

5.3. Required supporting pressure

As the kinematic approach yields the lower bound to the supporting pressure (passive load),
the required value was calculated by maximizing dimensionless group p/yR in Eq. (18). The results
are plotted in Fig. 12. In general, rectangular tunnels characterized by the same dimensionless
number of gci/yR require greater supporting pressure than circular tunnels do.

For circular tunnels, Fig. 12(b), the required support pressure increases with a decrease in
m;, as expected. For rectangular tunnels, however, this trend is true only for larger supporting
pressures, Fig. 12(a). The source of this curiosity for flat-ceiling tunnels is likely to be in a low
confining stress (or even tensile stress) on the rupture band separating the moving block from the
stationary rock. This is confirmed by inspecting the traction vector on the deformation band for
tunnels that require a support pressure for stability. The open bullets in Fig. 13 show the

components of the traction vector on the deformation band in flat-ceiling tunnels that are at the
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verge of collapse. The stability numbers N for these tunnels are 32.65, 38.47 and 46.63 for rocks
with m; equal to 7, 10 and 15, respectively. The filled bullets illustrate the traction vectors for
tunnels of twice the width, but in the same rocks. Now the tunnels need a supporting pressure for
stability (p/yR equal to 0.187, 0.148 and 0.118 for rocks of m; =7, 10 and 15, respectively).
Introducing the support pressure moves the confining stress on the rupture band into the range

where the shear stress of rock increases with an increase in m; (as in Fig. 13), reversing the trend

in Fig. 12(a).

5.4. Factor of safety

Although the stability number is useful in stability assessment of structures, the factor of
safety is a more intuitive measure. Based on the approach proposed in this study, the factors of
safety for tunnels can be calculated for either flat-ceiling or circular cross-section tunnels from
Eq. (24), or from Eq.(28) for rectangular tunnels only. Because the latter provides a
straightforward approach for rectangular tunnels (utilizing Eq. (15) or the charts in Fig. 6),
computational results for factors of safety will be presented in a chart for circular tunnels, with
only limited data for flat-ceiling tunnels in Table 3.

Factors of safety for circular tunnels were calculated from an implicit expression in
Eq. (24). They are presented in Fig. 14 as a function of a./yR for various rock indices GSI and m;.
Numerical values of the factor of safety are given in Table 4 for selected dimensionless group
o./yR and rock indices. Not surprisingly, the factor of safety increases with an increase in GSI,
and for given GSI, it increases with ag./yR. Because the critical combination of g./yR is equal to
the stability number as defined in Eq. (7), all values on the horizontal axis for =1 are equal to
stability numbers for the particular combinations of GSI and m;. The Geological Strength Index
has a profound influence on the factor of safety.

It is common to consider the factor of safety as a ratio of geomaterial shear strength to the
demand on the shear strength needed to avoid collapse, as in Eq. (19). Consequently, it is tempting
to define the factor of safety for tunnels as the ratio of dimensionless group o.i/yR to its critical
value (stability number N in Eq. (7)). Factors of safety calculated using both the definition in
Eq. (28) and the one in Eq. (19) are illustrated in Fig. 15. As predicted earlier, for rectangular

cross-section tunnels both definitions yield identical results, but it is a special case that cannot be
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generalized. For circular tunnels, the definition in Eq. (28) significantly overestimates the factor

of safety based on the shear strength demand, Eq. (19), and calculated from Eq. (24).
5.5. Example

Consider a deep circular tunnel with 5 m radius (R =5 m), with the following rock mass
properties/indices: y = 26 kN/m>, 6. = 20 MPa, GSI = 20, m; =5, D = 0 (mp, a and s are calculated
from Egs. (2) through (4)). The dimensionless group o.i/yR = 153.8, whereas the stability number
from Fig. 8 is 108.5. Because this tunnel is stable (the lower the stability number compared to the
dimensionless group o./yR, the more stable the tunnel), no supporting pressure is required. By
reading the chart in Fig. 14, the factor of safety can be determined: F = 1.21.

The dimensionless number o./yR for a tunnel with radius of 10 m in the same rock mass
would be only 76.9, thus lower than stability number 108.5 (factor of safety from Eq. (24) is
F=0.83). A supporting pressure is needed to render the tunnel stable. One can read p/yR = 0.034
for oci/yR = 76.9 from the chart in Fig. 12(b). The required supporting pressure is then equal to
0.034xyR = 8.84 kPa. This is a lower bound to the pressure needed for limit equilibrium (F = 1).
Now, if a factor of safety of F'=2.0 was required, one could calculate the required pressure that
assures F'=2.0 by including the work of the supporting pressure in Eq. (16) into the work rate
balance in Eq. (14). Given safety factor F, and following the path used to develop Eq. (24), the

following expression for the required support pressure is found

a

x |cosd. | mall—sind. I-a
> A ( . j) cosd,,
2sin g, /

p I (2 o,
£ yYS K |-
¥R RM(le “ )

(29)

1
sing, )| mya(1-sins,) |
(L sme ) ( : '/) sin54j+isin5dj L,

m,  mya 2sin o, Tom, o

where 6, =arctan(F tand,;). This is an explicit equation for the required dimensionless pressure

p/yR, because the factor of safety is given. The maximization of the pressure takes place with

respect to angles dy, 7 and £ in the mechanism in Fig. 3(b). Calculations indicated that a

supporting pressure of 131.1 kPa is needed to assure a safety factor of 2 (334.5 kPa when the

required factor of safety is raised to 3). Notice that setting p/yR =0, Eq. (29) can be transformed
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into the implicit Eq. (24) for calculating the factor of safety, whereas setting p/yR =0 and F =1,

Eq. (15) for calculating the stability number is recovered.

6. Conclusions

The kinematic approach of limit analysis was applied to consider stability of roofs in deep
tunnels. The collapse mechanism includes a rock block moving downward, separated from the
stationary rock by a band of deforming material. The rock in the band was assumed to allow
enough ductility to permit application of plasticity theorems. The shape of the block is not
predetermined, and it follows from a straightforward yet effective method using the plastic flow
rule associated with the Hoek-Brown failure criterion.

Three measures of stability were calculated: the stability number, required supporting
pressure, and the factor of safety. In general, the stability number for tunnels of comparable width
are smaller for tunnels with a circular cross-section compared to rectangular (flat-ceiling) tunnels
(the lower the stability number compared to the dimensionless group oci/yR, the more stable the
tunnel). Inspection of the traction vector on the band separating the failing block from the
stationary rock revealed that the ‘confining pressure’ above the tunnel ceiling in circular cross-
section tunnels is larger than that in flat-ceiling tunnels (of comparable size), providing for lower
stability numbers. Stability numbers are very strongly dependent on the Geological Strength Index
(GSI), but less so on the type of rock (m;). The most critical failure mechanisms for rectangular
cross-section tunnels include a rock block spanning the entire width of the tunnel roof, and the
block is larger than those in circular tunnels of comparable width. In both cases, the height (size)
of the block is dependent on the GSI, with the smallest block for the GSI equal to about 25. The
size of the block tends to increase substantially with an increase of parameter m;, which describes
the type of rock.

The definition of the factor of safety adopted here was the ratio of the rock shear strength
to the demand on the shear strength assuring the roof is stable. While straightforward for failure
envelopes linear in the first invariant of the stress tensor, its application is more elaborate for
nonlinear criteria. Calculations require solving an implicit equation, and the details of the specific
procedure for calculating the factor of safety for the tunnels with rock strength governed by the

Hoek-Brown criterion are described in the paper. Not surprisingly, factors of safety strongly
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depend on the dimensionless group that involves the compressive strength of the rock and the size
of the tunnel (c./yR), and for a given G./YR, it is strongly dependent on the GSI. Factors of safety
for flat-ceiling tunnels can be alternatively calculated as a ratio of o./yR to stability number M.
This peculiarity is a consequence of the geometry of the failure mechanism in the tunnels with flat

ceilings, and cannot be used for tunnels with ceilings of finite radius of curvature.
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Figure Captions

Figure 1. Hoek-Brown strength criterion: (a) failure surface in Haigh-Westergaard space,

(b) cross-section on octahedral plane, and (c) strength envelope on 7—o, plane.

Figure 2. Problem geometry (H >>h), including supporting pressure p: (a) rectangular (flat-

ceiling) tunnel, and (b) circular tunnel.

Figure 3. Schematics of roof collapse mechanisms: (a) rectangular tunnel, and (b) circular

tunnel.
Figure 4. Hoek-Brown strength envelope and the strength envelope reduced by factor F.

Figure 5. Geometric relations in flat-ceiling tunnel mechanisms for full rock strength and

reduced rock strength.

Figure 6. Stability numbers obtained in this study for rectangular tunnels (rock disturbance
factor D = 0), and comparison with results from Suchowerska et al. (2012) and those

based on approach of Fraldi and Guarracino (2009).

Figure 7. Comparison of the shape of the rupture surface from this study and Fraldi and
Guarracino (2009), and associated stability numbers (# — number of linear segments

describing the shape of a symmetric half of the block; GSI =80, m; =7, D = 0).
Figure 8. Stability numbers as functions of GSI and m; for circular tunnels (D = 0).

Figure 9. The influence of tunnel geometry and m; (GSI = 60, D = 0) on the solution: (a) traction

vector on the rupture surface, and (b) profiles of collapsing blocks.

Figure 10. The influence of tunnel geometry and GSI (m; = 7, D = 0) on the solution: (a) traction

vector on the rupture surface, and (b) profiles of collapsing blocks.
Figure 11. The height of the failed mass (rock block).
Figure 12. Required supporting pressure: (a) rectangular tunnels, and (b) circular tunnels.

Figure 13. Traction vector on the rupture surface for flat-roof tunnels with and without

supporting pressure.

Figure 14. Factors of safety for circular tunnels.
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Figure 15. Comparison of factors of safety defined by the shear strength demand, Eq. (19), and

uniaxial compressive strength, Eq. (28).
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Table 1. Stability numbers for rectangular tunnels (D = 0)

mi
5 10 15 20 25

10 1136.45 1565.30 1900.41 2184.49 2434.90
20  460.87 639.24 777.70 895.10 998.71
30 213.60 296.26 360.49 414.87 462.90
40 105.70 146.28 177.86 204.61 228.27
50 54.00 7447 9042 103.96 115.94
60 28.03 38.47 46.63 53.57 59.71
70  14.68 20.02 2422 27.79 30.96
80 7.73 1046 12.62 14.47 16.10
90 4.08 548  6.60  7.55 8.39
100 2.17 288 345 394 438

GSI

Table 2. Stability numbers for circular tunnels (D = 0)

mi
5 10 15 20 25
10 299.31 293.68 291.42 289.77 289.47
20 108.58 106.66 105.94 105.45 105.33
30 50.63 49.70 4934 49.11 49.04
40  26.55 2599 2579 25.66 25.62
50 1471 1436 1423 14.14 14.11
60 836  8&.13 804 799 797
70 4.81 466 4.60 456 455
80 278 268 264 262 261
90 1.61 1.55 1.52 1.51 1.50
100 094 090 0.88 0.87 0.86

GSI
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Table 3. Factors of safety for rectangular tunnels (D = 0)

ohR  GSI "
5 10 15 20 25
5000 10 4399 3.194 2631 2288 2.053
20 10848 7.821 6429 5585 5.006
500 30 2340 1.687 1386 1205 1.080
40 4730 3418 2811 2443 2.190
S0 9258 6714 5529 4809 4312
50 60 1783 1299 1.072 0933 0837
70 3405 2496 2064 1798 1614
80 6467 4776 3959 3454 3.104
00 12229 9.111 7.575 6.621 5954
5 100 2302 1733 1446 1266 1.140

Table 4. Factors of safety for circular tunnels (D = 0)

shR  GSI ™
5 10 15 20 25
1000 10 2004 1945 1922 1910 1.902
20 3790 3498 3382 3319 3278
100 30 1458 1448 1444 1442 1440
40 2155 2082 2054 2.038 2.029
S0 3232 3.005 2912 2861 2.829
10 60 1106 1117 1121 1.123 1.124
70 1549 1528 1519 1514 1511
80 2256 2.149 2102 2075 2.058
00 3464 3.152 3013 2932 2879
I 100 1038 1062 1.071 1075 1.078
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