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Abstract 

A method is presented addressing quantitative assessment of tunnel roof stability, based on the 

kinematic approach of limit analysis. Long tunnels with both rectangular (flat-ceiling) and circular 

cross-sections are considered.  The rock is governed by the Hoek-Brown strength envelope and 

the normality flow rule, and it is assumed to provide enough ductility at failure, making plasticity 

theorems applicable. A failing block in the collapse mechanism is separated from the stationary 

rock by a deformation band with a large gradient of velocity across its width. The shape of the 

block in the critical mechanism is found from the requirement of the mechanism’s kinematic 

admissibility and an optimization procedure consistent with respective measures of stability.  The 

stability number and the supporting pressure needed for tunnel stability are calculated first. 

Although less commonly used in rock engineering, a procedure is developed for estimating the 

factor of safety, defined as the ratio of the rock shear strength determined from the Hoek-Brown 

criterion to the demand on the strength. Curiously, for flat-ceiling tunnels, such definition of the 

factor of safety yields results equivalent to the ratio of a dimensionless group dependent on the 

uniaxial compressive strength and the size of the tunnel to the stability number.  Such an 

equivalency does not hold for tunnels with ceilings of finite curvature. Not surprisingly, all 

measures of tunnel roof stability are strongly dependent on the Geological Strength Index that 

describes the quality of the rock.     
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1. Introduction 

 

Roof collapse is a common type of failure1 in tunnels both during construction and service. 

An early attempt at an assessment of tunnel roof stability was presented by Lippmann2 in 1971. 

His approach included both the kinematic and static approach of limit analysis applied to the rock 

described by the classical pressure-dependent (Mohr-Coulomb) strength criterion. Davis et al.3 

considered undrained stability of a tunnel roof in clays as well as the face stability during tunnel 

construction. The latter was also studied by Leca and Dormieux4 and others5, but an analysis of 

this failure type is not carried out in this paper. The interest in stability of tunnels has been 

increasing as a result of an increasing number of tunneling projects around the world; analytical6-

9 and numerical9-11 modelling efforts have been carried out for assessment of roof stability. In this 

paper, the focus is placed on the measures for roof stability assessment in tunnels of rectangular 

(flat-ceiling) and circular cross-sections.  

Fraldi and Guarracino6, 7 suggested analytical solutions utilizing the calculus of variations 

in the kinematic approach of limit analysis. The variational approach was used to determine the 

shape of the failing block in the collapse mechanism. Their solutions address roof collapse in both 

rectangular and circular cross-section tunnels, in rocks with strength governed by the Hoek-Brown 

criterion. This method gave rise to a series of other papers, for example12, most of which focused 

on the shape of the failing block, rather than stability measures, such as the stability number or a 

factor of safety.  The former was considered more recently for rocks with tension cut-off8, and an 

effort is made in this paper to address the various stability measures in regard to roof failures in 

rocks governed by the Hoek-Brown strength criterion.  Suchowerska et al.10 analyzed both deep 

and shallow tunnel roofs using the finite element upper and lower bound method, and displacement 

finite element analysis. Stability numbers were reported from their studies for rectangular cavities, 

and they are used in this paper for comparison.  

The focus of this paper is on the stability of roofs in deep tunnels in rocks with strength 

governed by the Hoek-Brown criterion. The depth of tunnels is assumed sufficient to prevent 

failure propagating to the ground surface. However, a straight-forward extension of the analysis 

can be used to address the stability of shallow tunnels13. Surprisingly, many analyses of roof 

stability in deep tunnels have focused on the geometry of the failure mechanisms6, 7, 12, rather than 

measures of stability8, 10. This paper’s focus is on three stability measures: the stability number, 
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support pressure, and the factor of safety. The latter has been used routinely for geomaterials with 

strength determined by a linear failure envelope, but the use of the safety factor with failure 

envelopes nonlinear in the first invariant of the stress tensor is intricate14.  

A brief description of the Hoek-Brown strength criterion and the definitions of the 

measures of stability are provided first, followed by the description of the mechanism, and the 

details of the kinematic limit analysis. Numerical results are presented in the form of charts and 

tables.      

 

2. Hoek-Brown failure criterion and measures of stability 

 

Failure of rocks is characterized by non-linear pressure dependency, contrary to the linear 

friction-type dependency typically used in analyses of soils. Failure envelopes for rock masses 

were suggested by Hoek and Brown15 and Johnston16. These criteria were developed based on 

empirical premises, using laboratory tests and field observations.  Both criteria were presented as 

functions of the major and minor principal stresses, and were functions of the compressive strength 

of intact rock and other material parameters and indices. This makes it complicated finding an 

explicit analytical expression for the shear strength envelope on the Mohr plane. Therefore, other 

forms of non-linear failure criteria were introduced17-23 with analytical representation making an 

easier implementation in stability analyses. These, however, did not find a wide acceptance in 

practice, and it is the Hoek-Brown concept that became the preferred criterion in rock mechanics 

and engineering.  

 

2.1. Hoek-Brown failure criterion 

 

Since its inception in 198015, the Hoek-Brown failure criterion has undergone a series of 

updates, summarized by Hoek and Marinos24, and its most recent version25 is briefly sketched in 

this subsection. The advantage of this function above other criteria is in the direct relationship of 

the rock strength to the physical state of rock, expressed through a combination of mechanical 

parameters and indices. The fundamental expression of the Hoek-Brown failure criterion reads25  
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which is similar to the original function15 with the exception that coefficient a replaced the square 

root; this modification led to qualifying the function in Eq. (1) as the generalized Hoek-Brown 

criterion. For brevity, we will refer to this function as the Hoek-Brown failure criterion. Stresses 

1  and 3   in Eq. (1) are the effective major and minor principal stresses, respectively, and ci  is 

the uniaxial compressive strength of the intact rock. Constant mb is a reduced value of the material 

constant mi for intact rocks  
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This is a dimensionless constant (for a given rock) that introduces pressure dependency into the 

Hoek-Brown criterion. Typical values of  mi  for various rocks can be found in Hoek26. Constants 

a and s are defined as 
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where GSI is the Geological Strength Index that can vary in the range from 5 to 100, and D is a 

factor defining the degree of rock disturbance, which can vary from zero (undisturbed in-situ rock 

masses) to 1 (very disturbed rock masses). Examples of index D for different construction 

disturbances can be found in Hoek et al.25 

When no data is available, Hoek26 has suggested some representative values of mi for 

several rock types; for example, mi = 7 for carbonate rocks, such as limestone and marble, mi = 10 

for lithified mudstone, siltstone, or shale, and mi = 25 for course-grained igneous rocks, such as 

gabbro or granite. In this study, computations of stability measures for tunnel roofs are performed 
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for a variety of rock types with a GSI ranging from 10 to 100 and mi in the range from 5 to 25. 

Throughout all calculations, the rock mass is considered minimally disturbed (D = 0).  

The Hoek-Brown failure surface in the Haigh-Westergaard space is shown in Fig. 1(a). The 

surface consists of six curvilinear sections, and its intersection with the octahedral plane is shown 

in Fig. 1(b). The expression in Eq. (1) describes segment EFGE, which includes all limit stress 

states that satisfy the principal stress combination 1 2 3      , typical in most calculations. 

Because the criterion in Eq. (1) is independent of the intermediate principal stress 2  , surface 

EFGE does not intersect axis 2   (surface with varying curvature, parallel to 2  ), and any straight 

line on this surface, for example F’G’, is parallel to axis 2  . Lines on surface EFGE that are not 

parallel to axis 2   are not straight lines, and the segments of the cross-section of the failure surface 

with the octahedral plane, Fig. 1(b), are curvilinear. The curvature of these segments is significant 

only for small hydrostatic pressure, and it decreases with an increase in 1 2 3      .  

 A single point on the surface in space 1 2 3, ,     , Fig. 1(a), is mapped on the vector plane 

in Fig. 1(c) as three stress circles, each determined by a pair of principal stresses. Point E on the 

hydrostatic axis ( 1 2 3      ) in the Haigh-Westergaard space is mapped on the strength 

envelope in Fig. 1(c) as three stress circles, all reduced to a point at location E*. This point can be 

interpreted as the triaxial (isotropic) tensile strength t , even if the direct measurement of this 

property cannot be easily carried out. Strength t  is a material property, and is a positive number, 

but the stress equal to the tensile strength is negative (under compression-positive sign convention). 

By substituting 1 3 t       into Eq. (1), the value of t  is found to be uniquely related to 

uniaxial compressive strength ci  and material constants s and mb  
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Uniaxial tensile strength may or may not be equal to t ; this is dependent on the curvature of the 

strength envelope. Calculations indicated that for rocks with disturbance factor D = 0, GSI in the 

range of 10 to 100, and mi in the 5 to 25 range, the uniaxial tensile strength is always smaller than 
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the isotropic tensile strength t , but the difference does not exceed 4%, and in most cases, it is a 

fraction of one percent.  

Some analyses of stability require that the failure envelope in Fig. 1(c) be given explicitly 

as a shear strength envelope.  For example, most analyses that seek the factor of safety typically 

require this form. However, a direct transformation of Eq. (1) into an explicit form ( )n    is 

cumbersome; consequently, Hoek and Brown15 suggested an alternative form of the limit state 

condition as  
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which can be conveniently plotted as an envelope to limit stress circles on the - n   plane. This 

form uses two dimensionless material parameters A and B, in addition to the uniaxial compressive 

strength of intact rock ci  and tensile strength t . The reader will notice that by setting B = 1, a 

linear envelope results, and the classical Mohr-Coulomb limit state condition follows when 

A = tan  ( being the internal friction angle).  Parameters A and B can be estimated by matching 

the envelope in Eq. (6) with stress states in Eq. (1) for a stress range of interest27.  

 

2.2. Analysis method 

 

The kinematic approach of limit analysis is used in the paper; this method makes an 

assumption of perfect plasticity, convexity of the failure criterion, and normality of the flow rule. 

This flow rule implies that strain rate vectors ε  in the conjugate space 1 2 3, ,    are perpendicular 

to the failure surface in 1 2 3, ,      space, as illustrated in Fig. 1(a). Similarly, the velocity 

discontinuity vectors v on the conjugate plane (with coordinates vt and vn), Fig. 1(c), are normal 

to the strength envelope on plane , n  . Angle  will be referred to as the rupture angle14, 23. 

Velocity discontinuities in this approach are interpreted as bands of plastically deforming material 

with large velocity gradients in the transverse direction28. Perfect plasticity implies ductility of 

deformation, whereas most bonded geomaterials are characterized by some brittle behavior. 
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Chen29 argued, however, that if the strain of rock in a boundary value problem is small prior to a 

brittle drop in stress, then the deformability “may be sufficient to permit the consideration of limit 

theorems...” Therefore, examples of limit analysis application to rocks can be found throughout 

the literature23, 30, 31, including examples of tunnel roof stability7, 10.  

The kinematic theorem of limit analysis allows calculating a rigorous bound to an unknown 

load (or a different measure of stability) from the balance of work rates of the internal (dissipated) 

and external work during incipient collapse consistent with a kinematically admissible failure 

mechanism. The approach yields an upper bound to an active force causing failure, or a lower 

bound to a reaction (passive force).  

 

2.3. Measures of roof stability 

 

Stability number. One measure of roof stability is a dimensionless combination of the rock 

properties and the tunnel size, consistent with the tunnel being at the verge of collapse (critical 

combination). Comparing the actual combination of the parameters for a given tunnel to the critical 

one allows assessing the safety of the tunnel against the roof collapse. The typical dimensionless 

group used in the past is the stability number, relating the properties of the rock and the size of the 

tunnel at failure, defined as 

 ci
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where ci  is the uniaxial compressive strength of intact rock,  is the unit weight of the rock, and 

R defines the size of the tunnel (e.g., half-width of rectangular tunnels or a radius of circular 

tunnels).  

Supporting pressure. The critical supporting pressure is defined as the minimum, uniformly 

distributed traction on the inside surface of the tunnel needed to prevent collapse. The safety 

margin then follows from comparing the available support stress to the critical one. Support 

pressure is a passive load, i.e., it is the capacity of the support structure to react to the rock load.  

Factor of Safety. This measure of safety is used routinely in soil engineering, but less so in 

rock engineering.  It is typically defined as the ratio of the available shear strength of the 

geomaterial to the demand on the shear strength. While application of this definition is 

straightforward for soils governed by the classical Mohr-Coulomb strength envelope, calculations 
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of the factor of safety for rock structures governed by the Hoek-Brown strength criterion are more 

intricate.   

All three measures of tunnel roof stability will be examined for flat-ceiling and circular-

arch roofs.  

 

3. Failure mechanism 

 

Both rectangular and circular cross-section tunnels are illustrated in Fig. 2. The strength of 

the surrounding rock is described by the Hoek-Brown failure criterion in Eq. (1), and its 

deformation is governed by the normality plastic flow rule. Possible anisotropy and heterogeneity 

of the rock is ignored. No distinct joints are assumed to be present in the rock mass. Only deep 

tunnels are considered, where the loads on the ground surface do not affect the stability of the 

tunnel, and the roof collapse does not propagate to the ground surface (H >> h). However, collapse 

mechanisms of the type considered in the paper, can be easily generalized for both deep and 

shallow tunnels, as indicated recently by Fraldi et al.13  

The tunnels considered are long and the plane-strain analysis will be carried out. The 

driving force of the roof collapse is the gravity load, and a block moving downward, of yet 

unknown shape, is the predominant failure mechanism.  

Earlier kinematic limit analyses for materials with nonlinear strength criteria20, 21 included 

replacement of the geomaterial with a substitution material governed by the classical Mohr-

Coulomb  envelope tangent to the nonlinear strength criterion. The locus of the point of tangency 

of the linear approximation and the nonlinear criterion was then one of the variables in the 

procedure for finding the best bound to a stability/safety measure. The disadvantage of such a 

method is in an overestimation of the rock strength by the substitution material and in limiting the 

collapse mechanisms to those with only one rupture angle, often leading to unrealistic failure 

patterns2. The method in this paper utilizes the entire range of rupture angles  as determined by 

the normality flow rule and illustrated in Fig. 1(c), thereby increasing the range of admissible 

failure mechanisms. The tunnel may or may not require supporting pressure p for stability (support 

pressure p is illustrated in Fig. 2). 

The failure mechanisms of a tunnel roof are illustrated for a rectangular-section tunnel and 

for the circular tunnel in Figs. 3(a) and 3(b), respectively. The piece-wise linear surface B0BjBn+1 
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separates the stationary rock from the moving block, and will be referred to as a deformation band, 

rupture band, or rupture surface. This is a band of plastically deforming material with a large 

velocity gradient across its width, and it is idealized in calculations as a layer of zero thickness28 

(a kinematic discontinuity). The entire block moves with uniform vertical velocity v. Interpreted 

as a deformation band, rupture layer B1BjBn+1 undergoes shear and volumetric deformation, with 

the velocity discontinuity components of tv  and nv , Fig. 1(c). The rate of volumetric deformation 

is large in the tensile regime, but it drops with an increase in the compressive stress. This variable 

volumetric deformation rate is a consequence of nonlinearity of the strength envelope and the 

normality of the flow rule enforced in limit analysis. The approach taken yields rigorous bounds 

to stability measures, even if the physical deformation of the rock is not well predicted by the 

normality flow rule32. 

After initial plastic deformation, band B1BjBn+1 will form a symmetric half of the 

detachment surface of the polygon-shaped rock block. However, only incipient failure is 

considered in limit analysis. The shape of the block is fully defined by n angles j , and n-1 angles

j (and angle  for circular tunnels). Rupture angle j  for any segment of the deformation band 

jL  is related to the shape of the block through independent variable inclination angles j  as in 

the following formula  
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j j
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     (8) 

This rupture angle relates the specific traction vector on the strength envelope in Fig. 1(c) to every 

segment jL  of the deformation band. The normal and shear components of the traction vector for 

an arbitrary point on the strength envelope can be found following Balmer33 as shown by Kumar34 
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Equations (9) and (10) constitute a parametric form of the Hoek-Brown strength envelope, 

instrumental in the analysis. 

 

4. Stability analyses 

 

4.1. Stability number 

 

The rate of internal (dissipated) work in one symmetric half of the tunnel during incipient 

collapse is computed as integrated rates along all segments of the deformation band  
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where v is the magnitude of block velocity vector v, jL  is the length of  jth segment of the 

deformation band, and n j  j  are given in Eqs. (9) and (10), with j determined for every 

segment from Eq. (8). The rate of work done by the rock weight in one half of the tunnel during 

the tunnel collapse is 
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where jS  is the area of jth triangle OBjBj+1O in Fig. 3, and 
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Requiring a balance of internal (dissipated) and external work rates  

 

 D W   (14) 

the critical value of the dimensionless group σci /γR (stability number in Eq. (7)) can be derived as 
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where K is given in Eqs. (13a) and (13b) for the rectangular and circular cross-section, respectively. 

The kinematic approach of limit analysis yields the lower bound to stability number N in Eq. (15), 

and its critical (maximum) value is found through an optimization procedure with the geometry of 

the block being varied. The details of the process will be given in Section 5.  

 

4.2. Supporting pressure 

 

Safety of tunnels against roof collapse can be improved using rock bolts, or by providing 

support to the interior tunnel surface (for example, structural tunnel lining). This section considers 

the minimum support stress the tunnel lining has to withstand to assure stability. Because the 

supporting stress is a reaction to the rock mass loading, the kinematic approach of limit analysis 

provides the lower bound to the “pressure” that prevents collapse. This supporting pressure, p, is 

assumed to be uniformly distributed (Fig. 2). Once support pressure p is incorporated into the 

collapse mechanisms in Fig. 3, its work rate during an incipient collapse (in one half of the roof 

failure mechanism) can be calculated easily as  

 

 pW pvM    (16) 

where 

 rectangular tunnelM R   (17a) 

 cos circular tunnelM R    (17b) 

 

Note that this work is negative, as the supporting pressure is a reaction to the rock mass loading. 

To find the lower bound to p, the work rate balance in Eq. (14) needs to be amended on the right-
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hand side by the term in Eq. (16). Consequently, the dimensionless supporting pressure for the 

rectangular and circular tunnels can be calculated as  
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where K is given in Eqs. (13a) and (14b), and M in Eqs. (17a) and (17b). The dimensionless group 

σci /γR represents the actual combination of the rock compressive strength and the tunnel geometry, 

and it is not its critical value (stability number). If this dimensionless group is larger than the 

stability number in Eq. (15), no support pressure is necessary.    

 

4.3 Factor of safety 

 

For structures involving soils, the factor of safety is commonly defined as the ratio of shear 

strength   of the soil to shear strength d  necessary to maintain limit equilibrium (shear strength 

demand). The same definition is adopted here for rocks, with the exception that the strength is now 

governed by the Hoek-Brown criterion  

 
d
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Application of the factor of safety so defined for a linear strength envelope is straightforward, but 

using this definition with a nonlinear envelope, such as the Hoek-Brown criterion, is not common 

and is more intricate14. 

The upper curve in Fig. 4 is the Hoek-Brown strength envelope ( )n   , whereas the 

lower curve represents the reduced shear strength ( ) / ( )d n d nF      .  It can be easily shown 



13 

 

that the rupture angle   at a given point on the Hoek-Brown criterion is associated with the rupture 

angle d  on the reduced-strength envelope through the following relationship (Fig. 4)   

 

  arctan tan dF    (20) 

 

Application of the factor of safety in kinematic limit analysis requires the construction of a failure 

mechanism in the material with shear strength reduced by factor F. Factor F will be referred to 

occasionally as the strength reduction factor, and its minimum value is the factor of safety as 

defined in Eq. (19). Consequently, in calculations of the factor of safety, rupture angles   on all 

segments of the rupture surfaces (idealized deformation bands) in Figs. 3(a) and 3(b) need to be 

replaced with reduced angles d . The reduced angle dj on the jth segment of the rupture surface 

is related to independent variable angle j  through an equation analogous to Eq. (8). Components 

nd  and d  of the traction vector on the rupture surface in the material with reduced strength can 

be calculated now by modifying Eqs. (9) and (10)  
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where arctan( tan )j djF  . Traction components , n  and ,d nd  with respective rupture angles 

  and d  are illustrated in Fig. 4 ( nd n  ).   The rate of internal (dissipated) work for the 

symmetric half of the mechanism in the rock with reduced strength can now be found easily from 

a formula analogous to Eq. (11)  
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where  σnd j and τd j are the traction vector components expressed in Eqs. (21) and (22) for the 

respective jth segment of the rupture band, and Ldj is the length of the segment.  

As per Eq. (14), it is now required that the rate of the internal work in Eq. (23) be balanced 

with the rate of external work, Eq. (12), for the mechanism in the rock with reduced strength. 

Consequently, the following equation was developed  
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             (24)  

where arctan( tan )j djF  , /ci R   is the actual combination of the rock properties and tunnel 

geometry, and d jL  and d jS  are the geometrical quantities in the mechanism with reduced strength 

(see Fig. 3). Once the set of independent variable angles j  (j = 1,2...n) in the mechanism of 

failure is selected, the respective angles dj  in Eq. (24) are defined by Eq. (8). Eq. (24) is an 

implicit equation with respect to the strength reduction factor F and it can be solved iteratively (for 

a set of given angles j and j ). Kinematic limit analysis yields an upper bound to factor of safety 

F,  and it is found by minimizing the strength reduction factor with a variable set of angles j and 

j (and β for circular tunnels). A comment on the process of optimization will be included in 

Section 5.  

Calculations can be carried out using Eq. (24) for both the rectangular and circular tunnels, 

though there is a simpler method that can be used for rectangular (flat-ceiling) tunnels. It is 

somewhat peculiar that the rate of work dissipation for the mechanism spanning the width of a 

flat-ceiling tunnel is independent of whether the mechanism is constructed for the true or the 

reduced rock failure criterion (Fig. 4). Consider two failing blocks in Fig. 5, one for given shear 

strength ( )n   with the rock rupture along the dashed line, and one in a rock with reduced strength 

( ) /n F  (solid line). Both are similar to the mechanism in Fig. 3(a), but the rock blocks are now 
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divided into vertical columns. Based on the geometrical relations in Fig. 5, it can be proved that 

the dissipation rate calculated from Eq. (11) and Eq. (23) are identical and independent of F  
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where subscript d denotes the quantities in the mechanism with reduced failure criterion. It can be 

further shown that the rate of work of the rock weight in the mechanism with the strength reduced 

by factor F is equal to that in the mechanism for the true strength criterion decreased by factor F 

 

 
1

d
F

W W    (26)  

 

Consequently, Eqs. (25), (26) and (14) lead to a simple expression for the reduction factor  

 

 
D

F
W

   (27) 

However, this simple expression cannot be used for circular tunnels, because Eqs. (25) and (26) 

are valid only for flat-roof tunnels.  Further manipulation of Eq. (27) leads to  

 

ci

R
F

N




   (28) 

where the numerator is the dimensionless number for the actual tunnel, and the denominator is the 

stability number as defined in Eq. (7) and calculated in Eq. (15). Eq. (28) is very useful as it allows 

calculating the factor of safety for rectangular tunnels in a simple and straightforward manner, 

without solving the implicit Eq. (24). For reasons of validating this approach, both Eqs. (24) and 

(28) were used to calculate the factor of safety for flat-ceiling tunnels (both yield identical results).  

This simpler approach is not applicable to tunnels with arched cross-sections.  
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5. Results of calculations and discussion  

 

5.1. Optimization of results in limit analysis  

 

The three measures of stability (stability number, required supporting pressure, and the 

factor of safety) are all calculated based on the mechanisms illustrated in Fig. 3. Surface B1BjBn+1 

is a symmetric half of a band of deforming material, idealized as a zero thickness layer with 

velocity discontinuity vector v (kinematic discontinuity). This surface is piece-wise linear with n 

segments, and inclination of segment jth described by independent angle j .  The length of the jth 

segment is determined by angles j  and j , as marked in Fig. 3. Preliminary calculations 

indicated that the rupture surface in rectangular cross-section tunnels always originates at the 

corners. Consequently, there are n independent angles j  and n – 1 independent angles j  needed 

to fully describe the shape of the kinematic discontinuity. A circular tunnel requires an additional 

angle  to describe the shape of the falling block. Angles j, j and  are independent variables in 

the optimization process. Kinematic limit analysis provides a lower bound to the stability number 

and the required supporting pressure (passive load), and the upper bound to the factor of safety.  

Independent angles j and j (and   for circular tunnels) were varied with a minimum increment 

of 0.01°, until a maximum of the stability number or required support pressure was found, or the 

minimum of the factor of safety was achieved. The calculations were terminated when the 

difference between two consecutive solutions (dimensionless numbers) was less than 10-6. Because 

of the symmetry of the problem, calculations were carried out for half of the tunnel. Calculations 

were carried out with 15 linear segments, n = 15 (further increase in n led to negligible 

improvement of results).  

 

5.2. Stability number 

 

Rectangular tunnels. Stability numbers for rectangular cross-section (flat-ceiling) tunnels, 

calculated based on Eq. (15), are plotted in Fig. 6, in semi-log scale, as functions of the Geological 

Strength Index (GSI) and parameter mi. The stability numbers decrease as the GSI increases, but 

they also decrease with a decrease in mi, which is counterintuitive. Strength index GSI has a very 
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significant effect on the stability number. The numerically obtained results are compared to those 

based on an analytical procedure that uses limit analysis with a variational approach, suggested by 

Fraldi and Guarracino6. Although Fraldi and Guarracino were more interested in the geometry of 

the falling block and did not calculate stability numbers, their approach was adopted in the present 

study to arrive at the results shown as circular bullets in Fig. 6. For all practical purposes, these 

results are identical to those using the method suggested in this paper. The second set of the results 

used for comparison comes from the finite element limit analysis, both lower and upper bound, 

from a paper by Suchowerska et al.10 The band between lower and upper bound solutions read 

from the chart in Suchowerska et al.10 is quite narrow, yet the stability numbers from the approach 

advocated in this paper plot between the two bounds, as illustrated in Fig. 6.  Some numerical 

values from this study are also given in Table 1.   

In the current study, the Hoek-Brown failure criterion in Eq. (1) was used to arrive at the 

results, whereas the method in the study of Fraldi and Guarracino6 required the use of explicit 

approximation ( )n   of the Hoek-Brown envelope. For that purpose, Eq. (6) was used. In 

calculations of results based on the method of Fraldi and Guarracino, parameters A and B in Eq. (6) 

were estimated using linear regression suggested by Hoek and Brown27.   

To conclude the comparisons, the shape of the rupture surface is plotted in Fig. 7 for three 

cases calculated with a different number of segments in the rupture surface. These are compared 

with the results in Ref.6  If only one-segment is used in each symmetric half to model the collapse, 

the shape of the rupture surface noticeably departs from the shape calculated in Ref.6  However, if 

ten segments are used, the shape of the roof rupture surface in this study is indistinguishable from 

that in the analytical approach6 (corresponding stability numbers are also presented in the figure).   

Circular tunnels. Circular cross-section tunnels are common due to the technology used in 

tunnel construction. The stability numbers of circular tunnels calculated using Eq. (15) are plotted 

in Fig. 8 in semi-log scale. Not surprisingly, the GSI has a very profound influence on the stability 

number, but for the entire range of GSI, the stability numbers are barely distinguishable for 

different rock types described by constant mi. For comparative reasons, some numerical values of 

the stability number for circular tunnels are given in Table 2. When compared to rectangular 

tunnels in Fig. 6, stability numbers are now far lower for the entire range of GSI (and mi).  One 

plausible reason comes from the effects of the block size. The collapse block in a rectangular 

tunnel of given width is larger than that during the failure in a circular tunnel of the same width 



18 

 

(the resistance to failure is proportional to the width of the tunnel, whereas the weight of the block 

increases with the square of the size).  Although limit analysis does not allow for calculations of 

the true stress field, it is possible to inspect the traction (stress vector) on the rupture band in the 

mechanism used in the analysis. This is because the traction vector is uniquely related to a point 

on the strength envelope through angle .  In general, stresses so estimated will not be in 

equilibrium, but they may indicate some tendencies helpful in explaining the trends in the solutions. 

The correlation between the distribution of the traction on the rupture surface and the shape of the 

tunnel (of the same width) is illustrated in Figs. 9(a) and 10(a).  

The curves in Fig. 9(a) illustrate the Hoek-Brown strength envelopes for GSI = 60 and 

various mi, consistent with Eqs. (9) and (10). The bullets on the curves show the dimensionless 

components of traction vectors on the deformation bands in the critical failure mechanisms (each 

bullet represents traction components on one of the 15 segments Lj used in the failure mechanisms, 

Fig. 3). The traction on the deformation band in the neighborhood of the symmetry axis tends to 

be in the tensile regime, with the compression increasing away from the center plane of the 

mechanism. It appears that critical mechanisms of roof failure in rectangular tunnels involve 

traction on the rupture surface in the low range of the normal stress (including the tensile range). 

Traction vectors on rupture surfaces in circular tunnels span a wider range in compression, 

providing for larger confining stress and improved stability (lower stability numbers).   

The reader will notice that the influence of mi on the stability of rectangular tunnels (Fig. 6) 

is more distinct and opposite to that in circular tunnels (Fig. 8). Rocks with a higher value of mi 

are likely to be of higher “quality,” but, contrary to expectations, the stability number for 

rectangular tunnels increases with an increase in mi. A plausible explanation for this peculiarity 

can be found in the described distribution of the traction vector on the rupture band in the two 

types of tunnels shown in Fig. 9(a). As described by Hoek-Brown criterion, for a given GSI, 

carbonate rocks described by mi = 7 appear to have larger tensile strength and shear strength in the 

tensile regime than igneous rocks (mi = 25), while a large portion of the rupture band in flat-ceiling 

tunnels appears to be subjected to traction in the tensile regime. The opposite trend in stability 

number with respect to mi is found for circular tunnels, where traction on the deformation band 

spans a wider range in compression. While this is a plausible reason for the trends in the stability 

number, it needs to be emphasized again that traction vector components calculated from the 

kinematic approach are not true stresses, as the method does not assure equilibrium of the stress 
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field. The influence of parameter mi on the shape of rupture surfaces for GSI = 60 in the two types 

of tunnels are illustrated in Figs. 9(b). The influence of GSI on the shape of the failure mechanism 

for mi = 7 is shown in Figs. 10(b).  

Information about the height of the block in the failure mechanisms is presented in the 

chart in Fig. 11; height h and tunnel size R are illustrated in Fig. 2. Both indices GSI and mi affect 

the height of the block, and the rectangular tunnels involve larger (taller) blocks. The height of the 

block reaches the minimum when the rock’s GSI  is equal to about 25, and it increases with a 

decrease in mi  (mi describes the rock type).     

Stability numbers for roofs in circular tunnels in rocks with strength governed by the Hoek-

Brown criterion have not been reported earlier, hence the results in Fig. 8 could not be compared 

to those from other studies. The study of Fraldi and Guarracino7, for example, focused only on the 

geometry (shape) of the failing block, and not on any measures of stability. However, even the 

shape of the block from that study cannot be reliably compared with that in the present study. This 

is because in Ref.7 an assumption was made that the shape of the surface separating the moving 

block from the stationary rock is independent of the tunnel ceiling shape (this was a sound 

assumption only for flat-ceiling tunnels where the rupture surface always originates from the 

corners).  

 

5.3. Required supporting pressure 

 

As the kinematic approach yields the lower bound to the supporting pressure (passive load), 

the required value was calculated by maximizing dimensionless group p/R in Eq. (18).  The results 

are plotted in Fig. 12. In general, rectangular tunnels characterized by the same dimensionless 

number of σci/γR require greater supporting pressure than circular tunnels do.    

For circular tunnels, Fig. 12(b), the required support pressure increases with a decrease in 

mi, as expected. For rectangular tunnels, however, this trend is true only for larger supporting 

pressures, Fig. 12(a). The source of this curiosity for flat-ceiling tunnels is likely to be in a low 

confining stress (or even tensile stress) on the rupture band separating the moving block from the 

stationary rock. This is confirmed by inspecting the traction vector on the deformation band for 

tunnels that require a support pressure for stability. The open bullets in Fig. 13 show the 

components of the traction vector on the deformation band in flat-ceiling tunnels that are at the 
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verge of collapse. The stability numbers N for these tunnels are 32.65, 38.47 and 46.63 for rocks 

with mi equal to 7, 10 and 15, respectively. The filled bullets illustrate the traction vectors for 

tunnels of twice the width, but in the same rocks. Now the tunnels need a supporting pressure for 

stability (p/R equal to 0.187, 0.148 and 0.118 for rocks of mi = 7, 10 and 15, respectively).  

Introducing the support pressure moves the confining stress on the rupture band into the range 

where the shear stress of rock increases with an increase in mi (as in Fig. 13), reversing the trend 

in Fig. 12(a).  

 

5.4. Factor of safety  

 

Although the stability number is useful in stability assessment of structures, the factor of 

safety is a more intuitive measure. Based on the approach proposed in this study, the factors of 

safety for tunnels can be calculated for either flat-ceiling or circular cross-section tunnels from 

Eq. (24), or from Eq. (28) for rectangular tunnels only. Because the latter provides a 

straightforward approach for rectangular tunnels (utilizing Eq. (15) or the charts in Fig. 6), 

computational results for factors of safety will be presented in a chart for circular tunnels, with 

only limited data for flat-ceiling tunnels in Table 3. 

Factors of safety for circular tunnels were calculated from an implicit expression in 

Eq. (24). They are presented in Fig. 14 as a function of σci/γR for various rock indices GSI and mi. 

Numerical values of the factor of safety are given in Table 4 for selected dimensionless group 

σci/γR and rock indices.  Not surprisingly, the factor of safety increases with an increase in GSI, 

and for given GSI, it increases with σci/γR. Because the critical combination of σci/γR is equal to 

the stability number as defined in Eq. (7), all values on the horizontal axis for F = 1 are equal to 

stability numbers for the particular combinations of GSI and mi.  The Geological Strength Index 

has a profound influence on the factor of safety.  

It is common to consider the factor of safety as a ratio of geomaterial shear strength to the 

demand on the shear strength needed to avoid collapse, as in Eq. (19).  Consequently, it is tempting 

to define the factor of safety for tunnels as the ratio of dimensionless group σci/γR to its critical 

value (stability number N in Eq. (7)). Factors of safety calculated using both the definition in 

Eq. (28) and the one in Eq. (19) are illustrated in Fig. 15. As predicted earlier, for rectangular 

cross-section tunnels both definitions yield identical results, but it is a special case that cannot be 
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generalized. For circular tunnels, the definition in Eq. (28) significantly overestimates the factor 

of safety based on the shear strength demand, Eq. (19), and calculated from Eq. (24).       

 

5.5. Example 

 

Consider a deep circular tunnel with 5 m radius (R = 5 m), with the following rock mass 

properties/indices: γ = 26 kN/m3, σci = 20 MPa, GSI = 20, mi = 5, D = 0 (mb, a and s are calculated 

from Eqs. (2) through (4)). The dimensionless group σci/γR = 153.8, whereas the stability number 

from Fig. 8 is 108.5. Because this tunnel is stable (the lower the stability number compared to the 

dimensionless group σci/γR, the more stable the tunnel), no supporting pressure is required. By 

reading the chart in Fig. 14, the factor of safety can be determined:  F = 1.21.  

The dimensionless number σci/γR  for a tunnel with radius of 10 m in the same rock mass 

would be only 76.9, thus lower than stability number 108.5 (factor of safety from Eq. (24) is 

F = 0.83). A supporting pressure is needed to render the tunnel stable. One can read p/γR = 0.034 

for σci/γR = 76.9 from the chart in Fig. 12(b). The required supporting pressure is then equal to 

0.034R = 8.84 kPa.  This is a lower bound to the pressure needed for limit equilibrium (F = 1). 

Now, if a factor of safety of F = 2.0 was required, one could calculate the required pressure that 

assures F = 2.0 by including the work of the supporting pressure in Eq. (16) into the work rate 

balance in Eq. (14).  Given safety factor F, and following the path used to develop Eq. (24), the 

following expression for the required support pressure is found  
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  (29) 

where arctan( tan )j djF  . This is an explicit equation for the required dimensionless pressure 

p/R, because the factor of safety is given. The maximization of the pressure takes place with 

respect to angles dj, j and  in the mechanism in Fig. 3(b). Calculations indicated that a 

supporting pressure of 131.1 kPa is needed to assure a safety factor of 2 (334.5 kPa when the 

required factor of safety is raised to 3). Notice that setting p/R = 0, Eq. (29) can be transformed 
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into the implicit Eq. (24) for calculating the factor of safety, whereas setting p/R = 0 and F = 1, 

Eq. (15) for calculating the stability number is recovered.  

 

6. Conclusions 

 

The kinematic approach of limit analysis was applied to consider stability of roofs in deep 

tunnels. The collapse mechanism includes a rock block moving downward, separated from the 

stationary rock by a band of deforming material. The rock in the band was assumed to allow 

enough ductility to permit application of plasticity theorems.  The shape of the block is not 

predetermined, and it follows from a straightforward yet effective method using the plastic flow 

rule associated with the Hoek-Brown failure criterion.  

Three measures of stability were calculated: the stability number, required supporting 

pressure, and the factor of safety. In general, the stability number for tunnels of comparable width 

are smaller for tunnels with a circular cross-section compared to rectangular (flat-ceiling) tunnels 

(the lower the stability number compared to the dimensionless group ci/R, the more stable the 

tunnel). Inspection of the traction vector on the band separating the failing block from the 

stationary rock revealed that the ‘confining pressure’ above the tunnel ceiling in circular cross-

section tunnels is larger than that in flat-ceiling tunnels (of comparable size), providing for lower 

stability numbers.  Stability numbers are very strongly dependent on the Geological Strength Index 

(GSI), but less so on the type of rock (mi). The most critical failure mechanisms for rectangular 

cross-section tunnels include a rock block spanning the entire width of the tunnel roof, and the 

block is larger than those in circular tunnels of comparable width. In both cases, the height (size) 

of the block is dependent on the GSI, with the smallest block for the GSI equal to about 25. The 

size of the block tends to increase substantially with an increase of parameter mi, which describes 

the type of rock.  

The definition of the factor of safety adopted here was the ratio of the rock shear strength 

to the demand on the shear strength assuring the roof is stable. While straightforward for failure 

envelopes linear in the first invariant of the stress tensor, its application is more elaborate for 

nonlinear criteria. Calculations require solving an implicit equation, and the details of the specific 

procedure for calculating the factor of safety for the tunnels with rock strength governed by the 

Hoek-Brown criterion are described in the paper. Not surprisingly, factors of safety strongly 
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depend on the dimensionless group that involves the compressive strength of the rock and the size 

of the tunnel (ci/R), and for a given ci/R, it is strongly dependent on the GSI.  Factors of safety 

for flat-ceiling tunnels can be alternatively calculated as a ratio of ci/R to stability number N. 

This peculiarity is a consequence of the geometry of the failure mechanism in the tunnels with flat 

ceilings, and cannot be used for tunnels with ceilings of finite radius of curvature.  
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Figure Captions 

Figure  1. Hoek-Brown strength criterion: (a) failure surface in Haigh-Westergaard space, 

(b) cross-section on octahedral plane, and (c) strength envelope on n   plane.   

Figure  2. Problem geometry (H >> h), including supporting pressure p: (a) rectangular (flat-

ceiling) tunnel, and (b) circular tunnel. 

Figure  3. Schematics of roof collapse mechanisms: (a) rectangular tunnel, and (b) circular 

tunnel. 

Figure  4. Hoek-Brown strength envelope and the strength envelope reduced by factor F.  

Figure  5. Geometric relations in flat-ceiling tunnel mechanisms for full rock strength and 

reduced rock strength.   

Figure  6. Stability numbers obtained in this study for rectangular tunnels (rock disturbance 

factor D = 0), and comparison with results from Suchowerska et al. (2012) and those 

based on approach of Fraldi and Guarracino (2009). 

Figure 7. Comparison of the shape of the rupture surface from this study and Fraldi and 

Guarracino (2009), and associated stability numbers (n – number of linear segments 

describing the shape of a symmetric half of the block; GSI = 80, mi = 7, D = 0). 

Figure  8. Stability numbers as functions of GSI and mi for circular tunnels (D = 0). 

Figure  9. The influence of tunnel geometry and mi (GSI = 60, D = 0) on the solution: (a) traction 

vector on the rupture surface, and (b) profiles of collapsing blocks. 

Figure 10. The influence of tunnel geometry and GSI (mi = 7, D = 0) on the solution: (a) traction 

vector on the rupture surface, and (b) profiles of collapsing blocks.   

Figure  11. The height of the failed mass (rock block). 

Figure  12. Required supporting pressure: (a) rectangular tunnels, and (b) circular tunnels. 

Figure  13. Traction vector on the rupture surface for flat-roof tunnels with and without 

supporting pressure. 

Figure  14. Factors of safety for circular tunnels.  
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Figure  15. Comparison of factors of safety defined by the shear strength demand, Eq. (19), and 

uniaxial compressive strength, Eq. (28).  
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Table 1. Stability numbers for rectangular tunnels (D = 0) 

GSI 
mi 

5 10 15 20 25 

10 1136.45 1565.30 1900.41 2184.49 2434.90 

20 460.87 639.24 777.70 895.10 998.71 

30 213.60 296.26 360.49 414.87 462.90 

40 105.70 146.28 177.86 204.61 228.27 

50 54.00 74.47 90.42 103.96 115.94 

60 28.03 38.47 46.63 53.57 59.71 

70 14.68 20.02 24.22 27.79 30.96 

80 7.73 10.46 12.62 14.47 16.10 

90 4.08 5.48 6.60 7.55 8.39 

100 2.17 2.88 3.45 3.94 4.38 

 

 

Table 2. Stability numbers for circular tunnels (D = 0) 

GSI 
mi 

5 10 15 20 25 

10 299.31 293.68 291.42 289.77 289.47 

20 108.58 106.66 105.94 105.45 105.33 

30 50.63 49.70 49.34 49.11 49.04 

40 26.55 25.99 25.79 25.66 25.62 

50 14.71 14.36 14.23 14.14 14.11 

60 8.36 8.13 8.04 7.99 7.97 

70 4.81 4.66 4.60 4.56 4.55 

80 2.78 2.68 2.64 2.62 2.61 

90 1.61 1.55 1.52 1.51 1.50 

100 0.94 0.90 0.88 0.87 0.86 
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Table 3.  Factors of safety for rectangular tunnels (D = 0) 

σci/γR GSI 
mi 

5 10 15 20 25 

5000 10 4.399 3.194 2.631 2.288 2.053 

 20 10.848 7.821 6.429 5.585 5.006 

500 30 2.340 1.687 1.386 1.205 1.080 

 40 4.730 3.418 2.811 2.443 2.190 

 50 9.258 6.714 5.529 4.809 4.312 

50 60 1.783 1.299 1.072 0.933 0.837 

 70 3.405 2.496 2.064 1.798 1.614 

 80 6.467 4.776 3.959 3.454 3.104 

 90 12.229 9.111 7.575 6.621 5.954 

5 100 2.302 1.733 1.446 1.266 1.140 

 

 

Table 4. Factors of safety for circular tunnels (D = 0) 

σci/γR GSI 
mi 

5 10 15 20 25 

1000 10 2.004 1.945 1.922 1.910 1.902 

 20 3.790 3.498 3.382 3.319 3.278 

100 30 1.458 1.448 1.444 1.442 1.440 

 40 2.155 2.082 2.054 2.038 2.029 

 50 3.232 3.005 2.912 2.861 2.829 

10 60 1.106 1.117 1.121 1.123 1.124 

 70 1.549 1.528 1.519 1.514 1.511 

 80 2.256 2.149 2.102 2.075 2.058 

 90 3.464 3.152 3.013 2.932 2.879 

1 100 1.038 1.062 1.071 1.075 1.078 
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