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The balance between sources and sinks of molecular oxygen in the
oceans has greatly impacted the composition of Earth’s atmo-
sphere since the evolution of oxygenic photosynthesis, thereby
exerting key influence on Earth’s climate and the redox state of
(sub)surface Earth. The canonical source and sink terms of the
marine oxygen budget include photosynthesis, respiration, photo-
respiration, the Mehler reaction, and other smaller terms. How-
ever, recent advances in understanding cryptic oxygen cycling,
namely the ubiquitous one-electron reduction of O, to superoxide
by microorganisms outside the cell, remains unexplored as a po-
tential player in global oxygen dynamics. Here we show that dark
extracellular superoxide production by marine microbes represents
a previously unconsidered global oxygen flux and sink comparable
in magnitude to other key terms. We estimate that extracellular
superoxide production represents a gross oxygen sink comprising
about a third of marine gross oxygen production, and a net oxygen
sink amounting to 15 to 50% of that. We further demonstrate that
this total marine dark extracellular superoxide flux is consistent with
concentrations of superoxide in marine environments. These find-
ings underscore prolific marine sources of reactive oxygen species
and a complex and dynamic oxygen cycle in which oxygen consump-
tion and corresponding carbon oxidation are not necessarily con-
fined to cell membranes or exclusively related to respiration. This
revised model of the marine oxygen cycle will ultimately allow for
greater reconciliation among estimates of primary production and
respiration and a greater mechanistic understanding of redox cycling
in the ocean.
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Carbon fixation by oxygenic phototrophs produces O, in ma-
rine and terrestrial environments. On short timescales, the
concentration of O, in the atmosphere and dissolved in the
global ocean is maintained by an equal and opposite series of
oxygen-consuming reactions. The preeminent of these O, loss
terms is cellular respiration, although multiple additional loss
processes are operative in oxygenic phototrophs (1-3). These in-
clude photorespiration, which occurs when the enzyme RuBisCO
(ribulose-1,5-bisphosphate carboxylase/oxygenase) uses O, as a
substrate instead of CO, in the reaction with ribulose 1,5-
bisphosphate (RuBP) as part of the normal functioning of the
Calvin-Benson-Bassham cycle. Loss of O, through photorespi-
ration may be as high as 30% of gross oxygen production (GOP)
(4, 5). The Mehler reaction is another significant oxygen loss term
in oxygenic phototrophs, occurring when O, is reduced to super-
oxide (O,") by electrons evolved from reduced ferredoxin in
photosystem I in the presence of light (3). The fraction of O,
evolved from photosystem II that is subsequently lost to reduction
via the Mehler reaction is estimated at 10% of photosynthetically
evolved O, in higher plants (5). These estimates of photosynthetic
oxygen loss are based on model organisms of varying environ-
mental relevance, and a great deal of uncertainty remains con-
cerning how oxygen reduction in the environment is distributed
among these many sinks. In algae, for example, O, photoreduction
appears to be largely insensitive to dissolved inorganic carbon
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concentrations, even when the subject lacked a CO, concentrating
mechanism (2). Studies of Mehler-related oxygen reduction in
some cyanobacteria have been shown to exceed 40% of GOP (6,
7). Altogether, these studies demonstrate that Mehler-related
oxygen loss in marine cyanobacteria and algae likely represents
a larger proportion of total nonrespiratory O, reduction than is
observed in higher plants.

The role of intracellular superoxide production as a significant
sink of oxygen has been recognized since the 1950s for its place in
the Mehler reaction (8); however, the role of extracellular su-
peroxide production as an oxygen sink in both the presence and
absence of light has not been assessed. Yet, dark (light-
independent) particle-associated superoxide production accounts
for a significant fraction of superoxide measured in natural waters
within both the photic and aphotic zone (9, 10). Dark, extracel-
lular superoxide production is in fact prolific among marine het-
erotrophic bacteria, cyanobacteria, and eukaryotes (9, 11-18).
Production of extracellular superoxide proceeds via a one-electron
transfer initiated by transmembrane, outer membrane-bound, or
soluble extracellular enzymes thought to belong generally to
NAD(P)H oxidoreductases (19), and more recently to heme
peroxidases and glutathione reductases (9, 20, 21). At circum-
neutral pH, the superoxide anion (O,°”) dominates over the
conjugate acid HO,® (pK, = 4.8) (22). This short-lived, reactive
anion is highly impermeable to cell membranes (23). Thus, limited
transmembrane diffusion and proportionally low levels of in-
tracellular superoxide are insufficient to account for observed
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extracellular fluxes (9, 23, 24). Superoxide has a half-life on the
order of a few minutes or less (9, 25), with its fate highly de-
pendent on seawater chemistry; superoxide may be reoxidized to
O, or reduced to H,O,, other peroxides, and ultimately water by
reactions with redox-active metals including copper, iron, and
manganese, organic matter, or via (un)catalyzed dismutation
(26, 27).

Extracellular superoxide plays a diverse suite of roles in cell
physiology, including cell signaling, growth, defense, and redox
homeostasis. In microbial eukaryotes, enzymatic extracellular
superoxide production is involved in cell differentiation (19). In
plants, superoxide serves as a pretranscription defense in wound
repair (16). Recently, extracellular superoxide within marine
bacteria was shown to be tightly regulated through the growth
cycle with superoxide eliminated upon entering stationary phase
(28). Addition of superoxide dismutase (SOD), an enzyme that
eliminates superoxide, inhibited growth, suggesting that super-
oxide is involved in growth and proliferation as previously sug-
gested for pathogenic strains of Escherichia coli and Chattonella
marina (29-32). Further, recent evidence indicates that extra-
cellular superoxide production by the diatom Thalassiosira oce-
anica may play a critical role in maintaining the internal redox
conditions in photosynthesizing cells (21). This suite of beneficial
physiological processes all result from or result in the reduction
of molecular oxygen that is not otherwise considered in bio-
geochemical cycles of oxygen and related elements.

Our aim in this study is to leverage recent assessments of dark
extracellular superoxide production rates by globally important
groups of marine microbes to determine the resulting oxygen
sink. Our approach consists of two parts: 1) constrain the gross
oxygen reduction that results from dark, extracellular superoxide
production and 2) estimate the fraction of gross superoxide
produced that is ultimately reduced to water. Generally speak-
ing, the most abundant group of organisms in the global ocean is
heterotrophic bacteria. Alphaproteobacteria and Gammapro-
teobacteria comprise >70% of heterotrophic bacteria in the
water column, and a subset of Alphaproteobacteria, Pelagi-
bacterales (SAR11 clade), makes up nearly 25% of cells in the
ocean (33, 34). Here we compile measured extracellular super-
oxide production rates of several marine Alphaproteobacteria

and Gammaproteobacteria, including SAR11 clade organisms
(Fig. 1). Although far outnumbered by marine heterotrophs in
the global ocean, oxygenic phototrophs have been shown to
produce both light-dependent and -independent extracellular
superoxide up to several orders of magnitude higher than aver-
age marine heterotrophs on a per-cell basis, meaning a repre-
sentative accounting of the superoxide flux from phototrophs is
necessary to adequately constrain superoxide production (9, 13,
35). In this study we include superoxide production rates of the
following organisms: Prochlorococcus and Synechococcus, the
two most abundant photosynthetic organisms in the global
ocean; Trichodesmium, a dominant N,-fixing cyanobacterium in
oligotrophic waters; coccolithophores, the most abundant group
of calcifying microalgae present throughout the global ocean;
several species of diatoms, a diverse group of silicifying algae
found in nutrient rich waters; and Phaeocystis, an alga pre-
dominately found in the Southern Ocean. In constructing this
estimate of superoxide production, we assign measured dark
superoxide production rates to organisms that fall within these
groups of organisms and conservatively consider all others to be
nonproducing.

Marine heterotrophs belonging to Alphaproteobacteria and
Gammaproteobacteria, including two Pelagibacterales members,
produce gross extracellular superoxide within a fairly narrow
range of 0.1 to 3.7 amol-cell”-h~" (Fig. 1). Oxygenic photo-
trophs, with the exception of Prochlorococcus, far exceed het-
erotrophic cell-normalized superoxide production, with net
production rates ranging from 4.3 to 13,400 amol-cell~"-h~" (17).
Prochlorococcus produces significantly less extracellular super-
oxide across four ecotypes, with average gross rates ranging from
0.007 to 0.091 amol-cell™"-h™! (17).

Also shown in Fig. 1 is an estimate for the average marine cell
O, utilization rate assuming a balanced marine oxygen budget
(see SI Appendix for calculation), or in other words the total
amount of oxygen produced in the global ocean, divided by the
number of cells. This estimate demonstrates that dark extracellular
superoxide production of several groups of marine organisms ex-
ceeds the average oxygen utilization rate. Here we use the more
general term “oxygen utilization” instead of “respiration” because
other oxygen-consuming biological reactions (e.g., photorespiration
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Fig. 1. Extracellular superoxide production rates. Cyanobacteria (green) include Synechococcus, Trichodesmium, and Prochlorococcus; eukaryotic algae
(orange) include coccolithophores, diatoms, and Phaeocystis; and heterotrophic bacteria (blue) include Pelagibacterales (SAR11 clade), other Alphaproteo-
bacteria, and Gammaproteobacteria (see S/ Appendix for data, sources, and organism details and S/ Appendix, Table S1 for diatom rates). Average marine cell

oxygen consumption rate is shown in gray (S/ Appendix).
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Table 1. Estimate of global superoxide flux: Summary of cell number estimates, cell specific superoxide production rates, and
contribution of each marine clade toward the marine superoxide flux

Range superoxide

Mean model

value*, Superoxide

Group Cell estimate* production, amol-cell="-h~" amol-cell="-h~’ production, mol-y™’
Synechococcus 7.0 x 10%° 4.3-550 106 6.49 x 10"
Trichodesmium 4.6 x 10?3 ND-1,500 465 1.87 x 10"?
Prochlorococcus 2.9 x 107 0.007-0.091 0.06 1.40 x 10'?
Coccolithophores 2.6 x 10%° ND-5,300 342 7.78 x 10"
Diatoms 2.6 x 10% 75-13,000 47,560" 1.07 x 10"
Phaeocystis 3.9 x 10% 1,700-4,200 2,925 9.99 x 10
Pelagibacterales (SAR11) 2.4 x 108 0.11-0.23 0.15 3.20 x 10"
Alphaproteobacteria 1.9 x 1028 0.1-3.1 0.9 1.51 x 10"
(without SAR11)
Gammaproteobacteria 2.7 x 10% 0.1-3.7 1.1 2.57 x 10™
Total 3.94 x 10"

ND = measurement reported below method detection limit.

*See S/ Appendix for sources, derivations of cell number estimates, and model value assignment.

Calculated using cell surface area normalized rates; see S/ Appendix.

and the Mehler reaction) are each responsible for >10% of the
marine oxygen sink. To extrapolate these superoxide production
values to the global ocean, we provide estimates of total cell
numbers in the water column of each organismal group included in
this study (Table 1). We assigned cells from each group the mean
and standard error (SE) determined from our bootstrapping ap-
proach and used a Monte Carlo approach to determine the mean
and probability distribution for the whole ocean superoxide flux. A
slightly different approach was used for diatoms (Methods). Using
these total cell number estimates and modeled dark extracellular
superoxide production rates for each organismal group, we calcu-
late that gross dark extracellular superoxide production represents
a flux of 3.9 (+ 0.5) x 10" mol O, per year. For comparison, a
central estimate for GOP in all marine environments derived from
estimates of marine productivity is 1.09 x 10'® mol O, y™* (SI
Appendix) (36). Thus, gross light-independent extracellular super-
oxide production by microorganisms represents an O, loss flux ~36
(£ 5)% of marine GOP. This gross superoxide production estimate is
illustrative for demonstrating the size of this reductive flux; however,
it is the net reduction of superoxide that ultimately determines the
weight of this reductive flux on the global oxygen cycle. We provide
constraints on the net reduction of extracellular superoxide below.
While we show that model estimates based on laboratory-
based rates yield a dark superoxide flux that is a substantial and
previously unrecognized part of the global oxygen budget, a
claim that represents such a significant shift in the model of
marine oxygen utilization requires some ground truthing with
environmental data. In particular, we used a bootstrapping ap-
proach to estimate the mean and SE of all extracellular super-
oxide production rates available in the literature for each group
discussed here (SI Appendix, Fig. S1). The available data on
extracellular superoxide production within axenic cultures do not
contain the ideal richness for relying on this numerical approach
alone. Thus, we tested our culture-based estimate by calculating
expected marine superoxide concentrations based on our esti-
mate of global superoxide production and compared these values
to available marine superoxide concentration data. If our esti-
mate for average marine superoxide concentration falls within
observations, this provides an independent line of evidence that
extracellular superoxide production comprises a significant
global oxygen flux, with our reasoning as follows. The mean
pseudo-first-order decay rate constant of superoxide in marine
environments has been previously characterized at 0.0106 s™,
with a 1o confidence interval from 0.0050 s~ to 0.0226 s=* (S/
Appendix, Fig. S3) (35, 37-39). Using these observed decay rate
constants we estimate steady-state superoxide concentrations
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from biological production to be 152 pM (1o confidence interval:
71 to 322 pM) in the surface ocean and 0.6 pM (1o confidence
interval: 0.3 to 1.3 pM) below 200 m (SI Appendix, Table S2). All
available superoxide concentration measurements from the marine
water column are shown in Fig. 2 along with the calculated expected
concentration range based on our model of global superoxide
production (gray bar). As indicated, the expected range of super-
oxide concentrations is largely consistent with measurements col-
lected in the surface ocean, and, in fact, underestimates measured
concentrations in all deep ocean measurements. Although not
shown in Fig. 2, superoxide concentrations in some coastal systems
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Fig. 2. Measured and expected marine superoxide concentration. Compiled
marine superoxide measurements from Rose et al. (35) (green diamond),
Hansard et al. (38) (yellow triangle), Rusak et al. (39) (red square), and Roe
et al. (37) (blue circle). The gray bars indicate the 68% confidence interval for
the expected superoxide concentration based on our total superoxide flux
estimate. The 68% confidence intervals for the expected superoxide con-
centrations in the surface (<200 m) and deep (>200 m) ocean are 71 to 322 pM
and 0.3 to 1.3 pM, respectively.
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have been reported as high as 120 nM, four orders of magnitude
higher than our estimate, underscoring the conservative nature of
our estimate (40).

Additional Sources of Superoxide

This accounting of the marine superoxide flux only considers
extracellular dark superoxide production by dominant organisms
with known production rates. In fact, the total O, flux via all su-
peroxide production pathways in marine environments undoubt-
edly exceeds our estimates here by a sizable margin and would lead
to an even greater contribution of superoxide production on O,
loss. In particular, light-dependent (a)biotic superoxide production
is not included in our present estimate. Within sunlit waters, there
is significant abiotic photochemical production of superoxide, and
extracellular superoxide production rates by marine phototrophs
are significantly higher in the light (13, 41, 42). Indeed, the ex-
tracellular superoxide production exhibited by multiple species of
diatoms more than doubled in the presence of light (42). The same
behavior was observed for the coccolithophore Emiliania Huxleyi
(18) and certain Trichodesmium ecotypes (13), where light-
dependent increases in extracellular superoxide could not be
accounted for by abiotic factors. Since phototrophs as a group are
responsible for most of the dark extracellular superoxide pro-
duction, even modest modulation in extracellular superoxide pro-
duction in the light could produce a substantial increase in our
estimate of the gross superoxide flux and the net oxygen sink that
results, which we discuss in the next section.

Possibly the best-characterized abiotic source of superoxide in the
oceans is the photochemical excitation of chromophoric dissolved
organic matter (CDOM) and subsequent reduction of O, to super-
oxide in the surface ocean (43). One model using a remote sensing
approach to estimate photochemical reactive oxygen species (ROS)
production in the surface ocean estimated that midday superoxide
concentrations resulting from photochemical production and a range
of superoxide sinks ranged from near 10 pM at high latitudes to near
200 pM at low latitudes (41). These results demonstrate that pho-
tochemical production of superoxide can exceed dark biological
production in sunlit surface waters. Notably, contribution of this
photochemical superoxide will vary temporally and decrease with
depth upon the attenuation of photoactive wavelengths (290 to
490 nm), with local variations in productivity and the compositional
nature of surface ocean CDOM also impacting its reactivity.

The Fate of Superoxide

Both laboratory- and field-based measurements converge on the
similar conclusion that dark extracellular superoxide flux is a
substantial component of oxygen turnover in the global ocean.
To further place this process into the context of the global O,
budget, it is important to distinguish gross dark superoxide
production from the net loss of dissolved O,. Superoxide in
aqueous systems may decay by oxidation back to O,, with no net
effect on marine dissolved oxygen, or via reduction, which may
lead to a net loss of oxygen. Superoxide decay is considered the
primary source of hydrogen peroxide (H,0,), and thus much of
what we know and assume about the fate of superoxide is
inferred from studies of hydrogen peroxide concentration and
rate measurements. Nevertheless, other secondary and direct
sources of hydrogen peroxide have also been identified within
microbial cultures (42, 44, 45) and natural waters (10). For the
purposes of this estimate, we accept the general premise that
superoxide decay is the primary source of hydrogen peroxide and
ignore other sources, while recognizing that the foundation of
this premise needs further evaluation. It is also often assumed
that the primary reduction or disproportionation product of su-
peroxide production is H,O,; however, superoxide decay may
also occur through bond-forming redox reactions with dissolved
organic carbon, metals, or through unknown sinks (46-50). Such
reactions will not produce an H,O, intermediate. In fact, it has
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been shown that hydrogen peroxide formation can only account
for 45% of net oxygen loss in photochemical oxidation of marine
waters (50). While photochemical superoxide production is not a
perfect analogy for dark biological superoxide production, the
large body of work investigating the fate of photochemically
derived superoxide offers the most transferable insight into the
likely fate of biologically derived superoxide in seawater. What
follows is our attempt to constrain the net reduction of marine
dissolved oxygen from the estimate of gross extracellular super-
oxide production using a combination of measurements from
photochemical and biogeochemical literature.

Ultimately, the fate of superoxide and hydrogen peroxide is
highly dependent on the availability of dissolved organic matter
(and its reactivity), the abundance of redox-active metals (and
their redox states), and the expression of enzymes that eliminate
ROS such as SOD, catalase, and peroxidases (49, 51, 52). Su-
peroxide can be both oxidized (Eq. 1) and reduced (Eq. 2),
leading to the net consumption of 0 or 1 mol O, per mole su-
peroxide, respectively (Fig. 3). Superoxide can also undergo
uncatalyzed dismutation, a process that results in 50% oxidation
to O, and 50% reduction to H,O, (Eq. 3). Hydrogen peroxide is
more stable than superoxide in natural waters, with pseudo-first-
order decay rate constants approximately three orders of mag-
nitude lower than that of superoxide. Consequently, H,O, has a
lifetime of ~1 to 2 d, and typical concentrations are ~10° higher
for H,O, than for superoxide [from <1 nM in the deep ocean to
~100 nM in sunlight surface water (53, 54)]. Typical production
and decay rates range from 0.8 to 2.4 nM-h™" for dark seawater
(53) and 0.9 to 8.3 nM-h™" in sunlit seawater (55). As for the fate
of H,0,, previous work has shown that light-independent, bi-
ological processes are primarily responsible for its degradation in
marine systems, with 65 to 80% of H,O, degradation resulting
from catalase activity (Eq. 4) and the remainder resulting from
peroxidase activity (Eq. 5) (53):

0 — O, +e (O; oxidation) [1]
O +2H" +e~ — H,0,(O; reduction) 2]

205 +2H" — H,0, + O,(SOD or uncatalyzed dismutation)
[3]

2H,0; — 2H,0 + O,(catalase-based H,O, decay) [4]
H,0; + AH; — 2H,0 + A(peroxidase-based H,O, decay). [5]

Assuming this range of catalase and peroxidase activity holds
throughout the water column, between 60 and 67.5% of H,O, is

Catalase

Reductive
_ Loss

> o . > H 0 Peroxidase H 0

02 B 2 272 2
Oxidative

Dismutation

Enzymatic
Production

Fig. 3. Decay pathways of superoxide in biogeochemical systems. Summary
of superoxide decay pathways in marine environments. Superoxide, once
produced, may be oxidized to O, and/or reduced to H,0, (or other perox-
ides). Peroxides may be oxidized to O, and/or reduced to H,O. The net dis-
solved oxygen sink that results from extracellular superoxide production is
the product of gross production and that fraction of O, that is ultimately
reduced to water.
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ultimately reduced to water. Thus, the theoretical net loss of
oxygen through the superoxide production pathway can range
from 0 (e.g., all superoxide is oxidized back to O,; Eq. 1) to
67.5% (e.g., superoxide reduction to H,O,; Eq. 2), followed by
catalase- and peroxidase-mediated degradation of H,O, (Eqgs. 4
and 5) (Fig. 3).

There are two ways we can use previous data to estimate the
net sink of oxygen that results from the dark biological super-
oxide flux in the ocean. The first, and more conservative, ap-
proach is to multiply the global superoxide production flux by the
ratio of hydrogen peroxide production to superoxide production
observed in natural waters, Py,02/Pos-, followed by the oxida-
tion-reduction ratio observed for hydrogen peroxide. This yields
the total O, reduced to water via an H,O, intermediate and
accounts for dismutation (Eq. 3), univalent oxidation (Eq. 1),
and univalent reduction (Eq. 2). This method will produce a
more conservative estimate of net oxygen loss because it im-
plicitly assumes that all superoxide not reduced to hydrogen
peroxide is reoxidized to O,, when in reality a large fraction of
the superoxide sink may yield products other than hydrogen
peroxide (e.g., organic peroxides or other ROS) (49, 50). The
second approach uses the same Py,0o/Pos- ratio to determine
the hydrogen peroxide flux that results from the superoxide flux,
multiplied by the observed ratio of net oxygen loss to hydrogen
peroxide formation in a marine photochemical system where
superoxide is implicated as the primary oxidant. This approach
may slightly overestimate the net oxygen sink because it ignores
the possibility that some oxygen reduction may occur through
multielectron transfers (50).

For both of these approaches, we need a reasonable estimate
of the production ratio of hydrogen peroxide to that of super-
oxide (Py202/Poz-). In experiments investigating production of
superoxide and hydrogen peroxide during DOM irradiation,
PHo02/Pos- ranged from 0.10 to 0.67, with an average value of
0.24 (55). Another similar study on waters collected from the
transition between terrestrial and marine environment found
that Pyp0o/Poz- ranged from ~0.5 in riverine waters to ~0.30 in
Gulf Stream waters (56). Slightly lower values (0.08 to 0.17) have
been observed in photochemical systems with terrestrial organic
matter (57), possibly due to the differing nature of terrestrial
DOM (aromatic vs. aliphatic). In a brackish and a freshwater
pond, Pyr0o/Pos- sometimes exceeded the stoichiometry of 0.5
expected for dismutation, suggesting there may be other sources
of hydrogen peroxide (10). We use the average value presented
by Powers et al. (55) of 0.24 as the most relevant to the marine
environment and the best choice at this time for a global marine
estimate. Using our first approach and Pp,0,/Pos of 0.24, we
estimate a lower bound for the net oxygen reduction resulting
from superoxide production at 14.4% of the marine superoxide
flux (or 5% of the marine oxygen budget). A significant fraction
of this superoxide (52% of the marine superoxide flux) is un-
accounted for because it does not produce hydrogen peroxide,
meaning the fate of as much as 19% of the marine oxygen budget
that cycles through superoxide remains unknown.

Using the second approach, we assume hydrogen peroxide
formation and net oxygen loss that result from superoxide for-
mation occur with a fixed ratio in seawater [0.45:1 H,O0,:-0O,
(50)]. We find that superoxide production will result in a net
oxygen loss of 53% of the global superoxide flux (or 19% of the
marine oxygen budget).

These two estimation methods suggest dark, biological pro-
duction of extracellular superoxide is a sink between 5 and 19%
in the marine oxygen budget, indicating that the oxygen sink
from dark extracellular superoxide production is similar in
magnitude to the Mehler reaction and photorespiration. Notably,
total superoxide production in photochemical systems has been
shown to correlate with CO, production from DOM (58), sug-
gesting that a significant fraction of the superoxide sink is ultimately
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through reduction tied to organic carbon oxidation, favoring the
higher end of this estimate. Shipboard incubations show that ma-
rine superoxide decay is primarily correlated with dissolved organic
matter and dissolved manganese, both of which allow for a signif-
icant reductive sink of superoxide (26, 51) and subsequent higher
O, loss. Oxygen loss in marine environments has previously been
attributed primarily to a combination of respiration, photorespira-
tion, and the Mehler reaction in the surface ocean and respiration
alone in the deep ocean. We propose that dark extracellular
superoxide production and its net oxygen sink has likely been
overlooked and unintentionally incorporated into other sinks
because separation of this secondary physiological process presents
a methodological challenge. The sinks of marine oxygen resulting
from respiration, photorespiration, and the Mehler reaction should
therefore be revised downward to accommodate for the reductive
sink from extracellular superoxide production.

Further Implications

We anticipate that the identification of an appreciable cryptic
sink of oxygen, and consequently organic carbon, may help rec-
oncile spatiotemporal and methodological discrepancies among
measurements of marine primary productivity arising as variable
contributions of superoxide production to net O, loss. Adding
another layer of complexity, the resulting H,O, produced in
excess during times of increased metabolic activity (e.g., photo-
synthetic organisms under full light) may store oxidizing equiv-
alents that persist in the environment for hours to days. These
processes may lead to heterogeneous O:C reaction stoichiometry
as well as possible complexity in corresponding stable isotope
dynamics. As measurements of primary productivity collected
using multiple methods concurrently can produce primary pro-
ductivity estimates that vary more than an order of magnitude
(59), we propose that cryptic ROS cycling and ROS-related ox-
ygen loss may explain some of these discrepancies (e.g., "*C vs.
triple oxygen isotopes). Studies of respiration, respiration stoi-
chiometries (—0,:C), and respiration isotope effects will also be
impacted if organism-level extracellular superoxide production
rate is an appreciable fraction of respiration rate. The —0,:C
ratio of oxygen utilization in the water column has been observed
to vary by up to 30% across different locations and ocean depths
(60-62). Production of extracellular superoxide (coupled with
the oxidation of intracellular reducing equivalents) may lead to
differential redox evolution of marine carbon reservoirs that are
spatially or functionally separated (e.g., surface vs. deep, par-
ticulate vs. dissolved). While superoxide production will not af-
fect the whole ocean —O,:C, it may drastically influence the
amount and rate of organic carbon that is directly remineralized
to CO, vs. that which proceeds through partially oxidized dis-
solved organic compounds. The exact utility of extracellular su-
peroxide for cells and the magnitude of influence superoxide has
on the global carbon budget (today and throughout Earth his-
tory) both remain important and open questions. Nevertheless,
this newly identified gross flux of superoxide in the global ocean
underscores the critical role ROS play in the global cycling of Oy,
carbon, and redox active elements essential to life.

Methods

The dark superoxide production rates compiled in this study, with the ex-
ception of coccolithophores, were measured from cells grown to mid-
exponential phase under ideal growth conditions using a flow-injection
chemiluminescent approach (9). The study investigating the cell-specific su-
peroxide production rate of coccolithophores measured their production
rate throughout their growth curve, which we converted to a time-weighted
average using trapezoidal integration of the cell superoxide production rate
as a function of time (18). Cell-normalized superoxide production rates
presented in the scientific literature are either presented as net or gross
superoxide production rates, the latter requiring an exogenous spike of
superoxide to determine the proportion of extracellular ROS that is enzy-
matically degraded by the organisms. Gross superoxide production rates

PNAS Latest Articles | 5 of 7

EARTH, ATMOSPHERIC,

AND PLANETARY SCIENCES



Downloaded by Colleen Hansel on February 3, 2020

were used here when available; otherwise, net superoxide production rates
were used. All compiled rates are presented in Fig. 1. Bootstrap resampling
of extracellular superoxide production rates was conducted to estimate the
rate distribution of each organism group (S/ Appendix, Fig. S1), with the
exception of diatoms. Diatom production rate was normalized to cell surface
area and diatom surface area was determined from a database contain-
ing >90,000 georeferenced diatom observations (S/ Appendix, Table S1). Cell
abundances for phototroph and heterotroph groups included in this study
were compiled or calculated from available literature data and are discussed
in greater detail in S/ Appendix. We note that when net primary productivity
(NPP) estimates were used to estimate cell abundances, each group’s frac-
tional contribution to NPP (as opposed to moles of carbon fixed) was given
preference. Fraction contribution to NPP was preferred because it allows for
direct comparison between GOP and total superoxide production in a way
that minimizes the influence of differences in productivity estimates be-
tween studies. Total superoxide flux was estimated using a Monte Carlo
approach incorporating superoxide production rate distribution for each
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Cell Specific Superoxide Production Rate

Cell specific superoxide production rates were compiled from the scientific literature (Kustka et
al. 2005; Rose et al. 2008; Diaz et al. 2013; Hansel et al. 2016; Schneider et al. 2016; Zhang et al.
2016; Plummer et al. 2019; Sutherland et al. 2019). Figure S1 displays estimates for the mean and
standard error (bootstrapping, N=10,000) of each microbial extracellular superoxide production
rate, with the exception of diatoms. Diatoms were calculated using the cell surface area as
discussed below. The (*) in the figure below indicates alternate units of amol/um?/hr. While some
microbial groups data sets contain non-ideal data richness for bootstrapping, we do not rely on
these estimated sample parameters alone to support our conclusion. We present these estimates as
one of two lines of evidence for our superoxide flux estimate, the second being field depth profiles.
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0.3 0.4 0.3
0.2
0.2
0.1
0 0
0 100 200 300 0 500 1000 0 0.05 0.1
- Coccolithophores Diatoms* Phaeocystis
o 0.3 1 0.3
j
@
T
o 0.2 0.2
=
8 0.5
N 0.1 0.1
5
z 0 0 0
0 1000 2000 1 1.5 2 0 2000 4000 6000
0.3 SAR11 O%mer Alphaproteobacteria 0.3 Gammaproteobacteria
0.2 0.2
0.1 0.1
0 0
0.1 0.15 0.2 0.25 0 1 2 0 1 2 3

Extracellular superoxide production rate (amol/cell/hr)

Figure S1- Distribution of mean extracellular superoxide production rates based on bootstrap
estimation. The units of the mean diatom rate are amol/um?/hr, and a more detailed treatment of
diatom extracellular superoxide production estimate is provided below.

Average cell oxygen utilization rate in the global ocean

This estimate was made using a central estimate for marine net primary productivity (NPP) in Field
etal. (1998) of 48.5 Pg C year™!, gross oxygen production to carbon assimilation (GOP:NPP) value
of 2.7 from Marra (2002), an estimate for the total number of prokaryotic cells in the water column
from Whitman et al. (1998) (Field et al. 1998; Whitman et al. 1998; Marra 2002).




48.5 Pg C o 1x10%® g 1mol 2.7mol GOP (0,) 1 1 year

X X X X
year 1Pg 12.01g~ 1molNPP (C) =~ 1.01x 10%*°cells 8760 hr

=1.23x 10_17m_ol =123 amol
cell hr cell hr

Note that the product of the first four terms in the above equation gives marine gross oxygen
production of 1.09x10'¢ mol O, year™..

Cell Number Estimates

The estimates of cell count, net primary production, and cell size have an unknown degree
of uncertainty and likely contain bias toward well-studied regions and microbial groups. To
account for this uncertainty in our estimation of the mean extracellular superoxide flux in the
ocean, we let the cell counts for each biological grouping vary £30% (uniform distribution) about
the cell count estimates that we describe below.

Cell number estimates for each marine group were either obtained directly from previous
estimates or calculated from parameters in relevant scientific literature. Estimates of
Alphaproteobacteria and Gammaproteobacteria were made by multiplying estimates of total
bacteria in the water column (1.01 x 10?° cells) (Whitman et al. 1998) by relative abundances of
each group in the water column (43% and 27%, respectively) (Zinger et al. 2011). The
Pelagibacterales cell number was taken directly from a previous estimate (Giovannoni 2017): 2.4
x 10?8 cells. Cell numbers for Prochlorococcus and Synechococcus were taken from annual mean
global abundance estimates: 2.9 x 10?7 cells and 7.0 x 10%%, respectively (Flombaum et al. 2013).
The data used to estimate diatom abundance was taken from a global diatom database (Leblanc et
al. 2012); a cell estimate of 2.6x10%** diatoms was made using the annual diatom biomass (as
carbon) production and the mean carbon content of each diatom cell (see diatom section below).
The biomass of Trichodesmium in the global ocean is estimated using biomass distributions
available in the Community Earth Systems Model (CESM) Large Ensemble Project using the
following file (Kay et al. 2015): b.e11.B20TRC5CNBDRD.f09 g16.001.pop.h.diazC.185001-
200512. This contains the distribution of carbon from diazotrophs. For simplicity, we assigned
each spatial cell in the model the average carbon content over the ten-year period from January
1995 to December 2005. Trichodesmium cell numbers were derived using the annual average
diazotroph biomass from CESM and Trichodesmium cell carbon content (Goebel et al. 2008) (42
pg C cell'!), producing a total of 4.6 x 10** cells. Similarly, Phaeocystis cell numbers were
calculated using net Phaeocystis primary production (Phaeocystis represents 13% of Southern
ocean net primary production, 4.5 PgC, which yields 0.58 PgC for Phaeocystis NPP) (Arrigo et al.
2008; Wang and Moore 2011; Rousseaux and Gregg 2014) and a mean Phaeocystis cell size (15
pg C cell") (Schoemann et al. 2005; Vogt et al. 2012), producing an annual Phaeocystis cell count
of 3.9x10% cells. Coccolithophore cell counts were determined using the fraction of primary
production attributed to the clade (21%) (Rousseaux and Gregg 2014) times global marine NPP
(48.5 Pg C year") (Field et al. 1998) and the mean Coccolithophore cell biomass (weighted
average of each species from O’brien et al. 2013, 39.3 pg C/cell) (O’Brien et al. 2013) producing
a total cell count of 2.6 x 10%¢ cells.

Diatom extracellular superoxide production
The diatom cell normalized extracellular O™ is much less straightforward to estimate than other
phytoplankton groups, as the classification division of diatoms is coarser than for the other clades




discussed in this study. The biovolume of diatoms span up to 9 orders of magnitude, requiring
discrete accounting for cell size in assigning this group a cell specific superoxide production rate
(Leblanc et al. 2012). Table S1 shows the surface area normalized extracellular superoxide
production rates for the diatoms included in this study.

Table S1
Surface
. area
Superoxllde normalized  Source of surface area
production rate Source of rate .
Organism (amol cell hr'!) rate estimate
(amol cell”!
um hr')
L Hansel et al. 2016 Hansel et al. 2016 (Hansel
Coscinodiscus 900-13,400 (Hansel et al. 2016) 0.18,0.29 ctal. 2016)
o . Schneider et al. 2016 Maldonado et al. 20.01
Thalassiosira oceananica 60 . 0.77 (Maldonado and Price
(Schneider et al. 2016) 2001)
o Schneider et al. 2016 Rose et al. 2008 (Rose et
Thalassiosira pseudonana 75 (Schneider et al. 2016) 1.47 al. 2008)
o Rose et al. 2008 (Rose Rose et al. 2008 (Rose et
Thalassiosira pseudonana (Low Fe) 830 ctal. 2008) 16.27 al. 2008)
. . Rose et al. 2008 (Rose Rose et al. 2008 (Rose et
Thalassiosira pseudonana (High Fe) 450 ctal. 2008) 8.82 al. 2008)
o . . Kustka et al. 2005 Rose et al. 2008 (Rose et
Thalassiosira weissflogii 840 (Kustka et al. 2005) 1.83 al. 2008)
o . . Schneider et al. 2016 Rose et al. 2008 (Rose et
Thalassiosira weissflogii 252 (Schneider et al. 2016) 0.55 al. 2008)
o . . Rose et al. 2008 (Rose Rose et al. 2008 (Rose et
Thalassiosira weissflogii (Low Fe) 1,300 et al. 2008) 2.83 al. 2008)
o . R Rose et al. 2008 (Rose Rose et al. 2008 (Rose et
Thalassiosira weissflogii (High Fe) 800 et al. 2008) 1.74 al. 2008)

The range of extracellular superoxide production rates falls within a much narrower range when
normalized to cell surface area, as shown in the table. For this reason, we estimated the total
extracellular superoxide production from diatoms using the median surface area normalized
production rate listed above (1.6 amol cell'! um™ hr!). To determine the cell abundances and their
relative contribution to the marine superoxide flux, we turned to a diatom database containing
>200,000 georeferenced diatom observations that include estimates of biomass, biovolume, and
surface area (Leblanc et al. 2012). None of these cell parameters can be approximated as a normal
distribution. The cell surface area and biomass all have considerable skew (e.g. mean surface area
=2.9x10* um? vs median surface area = 4825 um?). Using the median cell biomass as an estimator
for calculating diatom abundance will overestimate small cells, which have a higher surface area
to volume ratio, and will therefore contribute more significantly to the superoxide flux. Using the
mean biomass to calculate diatom abundance places significant weight on exceptionally large
diatoms, but will produce a more conservative estimate of global cell count and cell surface area
to volume ratio. We calculate the annual diatom cell count using the fraction of NPP contributed
by diatoms (52%), a central estimate of annual NPP (48.5 PgC), the mean diatom biomass (9,794
pgC/cell), mean diatom surface area 29,632 um?/cell. This estimate produces a mean annual
diatom cell count of 2.6x10?* cells in the top 200 meters of the marine water column.

Estimation of global superoxide flux

Using MATLAB, we simulated the cumulative superoxide flux, or the sum of the 9 major
microbial groups reviewed in this work. Each major group’s contribution to the global superoxide
flux was determined by randomly assigning a cell count from a uniform distribution ranging from
the -30% to +30% of the cell estimates calculated above. This cell number was then randomly




assigned a superoxide production rate, with a probability distribution shown in Figure S1. The
total superoxide production flux of all 9 microbial groups was summed, and the simulation
repeated a total of 1 million times. The histogram of results is shown in figure S2.
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Figure S2-Histogram of the sum of extracellular superoxide production of 9 major marine
microbial groups.

The 5" percentile estimate is 3.1x10'°, and the 95" percentile estimate is 4.8x10'. The 9 microbial
groups each had the following fractional contributions: diatoms: 27.2%, Phaeocystis: 25.3%,
Coccolithophores:  19.8%,  Synechococcus:  16.4%,  Gammaproteobacteria:  6.5%,
Alphaproteobacter (excluding SARI11): 3.8%, SARI11: 0.8%, Trichodesmium: 0.05%,
Prochlorococcus: 0.04%.

Calculation of expected marine superoxide concentration

To test the robustness of our estimate of the global oxygen loss from extracellular superoxide
production, we compare the expected superoxide concentration in the water column (based on our
estimate of global production) against measurements of (dark) superoxide concentration in the
water column. In order to calculate the expected superoxide concentration based on dark
superoxide production, superoxide decay rates in natural water are required, which are well
documented. We compiled superoxide decay rate constants from several studies on natural waters
and present them in Figure S3 (Rose et al. 2008; Hansard et al. 2010; Heller and Croot 2010a; b;
Heller et al. 2016; Roe et al. 2016).




Superoxide Decay Rate Constant (s!)

0.0001 0.001 0.01 0.1 1
0 L e L
°
100 -
200 -
°
*
300 - ©>
A
A *
— A
€ 400 A4 a4 we
e A A
)
o
Q 500 - A °
()]
*
600 - A o
700 - .
® Heller Croot EST 2010 °
800 1 ORoe 2016 A .
A Rose 2008
900 4 A4 Hansard2010
+ Heller 2016
© Heller Croot JGR 2010
1000 -

Figure S3- Compilation of superoxide decay rate constants in seawater versus seawater depth.

The complete set of decay rate constants has an approximately log-normal distribution, which was
determined using one-sample Kolmogorov-Smirnov test (n=157). The mean of the natural log of
all compiled superoxide decay rate constants is -4.5484 + 0.7598 (In(rate) + 1 standard deviation,
rate units are s''). This corresponds to a mean rate of 0.0106 s with a 68% confidence interval
ranging from 0.0050 s! to 0.0226 s™.

To calculate the expected superoxide concentration in seawater we began with an annual estimate
for global superoxide flux. The total global superoxide flux was divided between the surface and
the deep ocean based on estimates from Whitman et al. (1998) for the proportion of non-phototroph
organisms above and below 200 meters (Whitman et al. 1998). The annual gross superoxide
production was divided by the volume of water in the surface and deep ocean, respectively,
yielding volume normalized annual superoxide production rates (mol L™ yr!). Annual production
rates were divided by the superoxide decay rate constant to determine the steady-state
concentration. Given that the half-life superoxide is on the order of 1 minute or less, steady-state
concentrations are achieved quickly. The following table summarizes the calculations:



Table S2

Above 200 m Below 200 m
Surface area of ocean (m?) 3.62x10" 3.62x10"
Volume (m*) 7.24x10'¢ 1.34x10"8
Fraction of phototroph dark superoxide production (%) 100 0
Fraction of heterotroph dark superoxide production (%) 39.5 60.5
Total superoxide produced (mol yr') 3.68x10% 2.67x10"
Total superoxide production rate per volume (mol yr'! m?) 5.08x10? 1.99x10*
Total superoxide production rate per volume (mol L'! 1) 1.61x10 "2 6.31x1071°
Average concentration using k=0.0106 s-1 (pM) 152 0.6
Concentration using 1sd rate below average mean (pM) 322 1.3
Concentration using 1sd rate above average mean (pM) 71 0.3

Our estimates for global dark superoxide production predict the surface ocean will have an average
concentration of 152 pM (68% confidence interval 71 to 322 pM) and the dark ocean a
concentration of 0.6 pM (68% confidence interval 0.3 to 1.3 pM).
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