Using Rating Arrays to Estimate Score Distributions for
Player-versus-Level Matchmaking

Anurag Sarkar
Northeastern University
sarkar.an@husky.neu.edu

ABSTRACT

Rating systems (like Elo and Glicko-2) have previously been used
for predicting the expected score that a player will achieve on a
level. We present an approach that predicts not a single score, but an
approximate cumulative distribution function over possible scores.
This approach assigns each level an array of multiple ratings for
different score thresholds. Our long-term goal is twofold: first, to
dynamically change level difficulty for each player by using this
CDF to tailor the target score required to complete a level; second,
in human computation games (HCGs), to identify players capable of
setting new high scores that could correspond to improved solutions
to underlying tasks. To move towards this goal, we explore the
rating array approach using two datasets: one gathered from the
HCG Paradox, and one generated from idealized players and levels.
We examine the accuracy of the CDF and the expected scores it
predicts, as well as its use in serving levels to players who could
set new high scores.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI).

KEYWORDS

rating systems; matchmaking; human computation games; score
prediction; dynamic difficulty adjustment

ACM Reference Format:

Anurag Sarkar and Seth Cooper. 2019. Using Rating Arrays to Estimate
Score Distributions for Player-versus-Level Matchmaking. In The Fourteenth
International Conference on the Foundations of Digital Games (FDG ’19),
August 26-30, 2019, San Luis Obispo, CA, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3337722.3337758

1 INTRODUCTION

Human computation games (HCGs) are games that seek to leverage
the collective abilities of humans in order to help solve problems
that are computationally intractable or cannot readily be solved
using automated methods. Previous work [6] has demonstrated
the feasibility of using rating systems for matchmaking between
players and levels of HCGs as a means of overcoming the difficulty

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FDG 19, August 26-30, 2019, San Luis Obispo, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7217-6/19/08...$15.00
https://doi.org/10.1145/3337722.3337758

Seth Cooper
Northeastern University
se.cooper@northeastern.edu

balancing challenges inherent within such games. These challenges
stem from levels in HCGs not being suitable to modification for
difficulty adjustment since they model real world problems and
any changes could compromise the validity of a level’s link to the
underlying problem. More recent work [25, 28] has attempted to
circumvent these issues by assigning Glicko-2 ratings to players
based on skill and to levels based on difficulty and then using a
matchmaking algorithm to pair players and levels of comparable
skills and difficulties respectively. This achieves difficulty balancing
by modifying the order in which levels are served rather than by
modifying the levels themselves. While these methods have shown
improved player engagement, they require fixing a single target
score cutoff for each level to determine if a player wins or loses
based on if they score higher or lower than this cutoff.

In this work, we introduce the concept of rating arrays to avoid
having to use a single predetermined score cutoff for a level to
decide win/loss outcomes. The idea behind this approach is to treat
each level not as a single player, as in past work, but as a group
of multiple players, each representing a different score threshold.
Assigning a rating to each such threshold for a level (using the
rating array), rather than to the level as a whole, allows us to per-
form matchmaking not just between players and levels as before,
but between players and (level, score threshold) pairs. This further
enables us to match players with levels at dynamically assigned
thresholds based on player skill rather than with levels at the same
fixed cutoffs for all players, as in past work. Additionally, having
an assigned rating for each score threshold of a level allows us
to model a cumulative distribution function (CDF) over possible
scores that the player can achieve on that level. This gives us the
added ability of predicting not just a single score that a player is
likely to achieve on a level, but their probability of achieving any
possible score. These benefits can prove particularly useful in the
context of HCGs where new high scores for levels represent novel
and/or improved solutions to the underlying problems. Further-
more, combining the rating array method with past approaches for
ratings-based matchmaking [25, 28] in HCGs could also identify
players able to set new high scores and match them with levels at ap-
propriate score thresholds while additionally performing dynamic
difficulty adjustment.

In order to test these potential benefits and evaluate the accuracy
of the proposed CDF, we applied the rating array approach to
match data from the HCG Paradox (shown in Figure 1) as well as
to synthetically generated match data. This work contributes 1)
a description of the new rating array-based approach to player-
versus-level matchmaking and 2) a three-part evaluation of the
approach in terms of its accuracy and usefulness for player-versus-
level matchmaking.

https://doi.org/10.1145/3337722.3337758
https://doi.org/10.1145/3337722.3337758

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

2 BACKGROUND

2.1 Player Rating Systems

Rating systems such as Elo [9], Glicko [10] and Glicko-2 [11] assign
skill-based ratings to players in order to produce fair matches by
pairing up players of similar skill. While primarily employed in
competitive player-versus-player settings like chess, such systems
have found increasing use in other situations involving pairwise
[13] or setwise [27] comparisons.

Additionally, these systems have also been used in the player-
versus-level (PvL) domain for matching players with levels of a
certain difficulty rather than with other players of a certain skill.
For example, the platformer Jumpcraft [29] applies Microsoft’s
TrueSkill [14] rating system on the outcomes of player attempts for
ordering levels according to difficulty. In such PvL usage, each level
is assigned a single rating indicating how difficult it is to complete
that level. In this work, we extend this by assigning multiple ratings
to a level, with each rating indicating how difficult it is to achieve
a corresponding score on a level.

2.2 Difficulty Balancing

Due to the previously discussed constraints imposed by HCGs,
common methods for dynamic difficulty adjustment such as modi-
fying in-game parameters [17], changing the design of a level [7],
generating level segments of specific difficulties [20] and player
modeling [33] are not readily applicable within HCGs. Aside from
using rating system-based matchmaking, other techniques have
been used to balance difficulty in such games. For example, both
Xylem [22] and Binary Fission [4] used task size as a rough heuristic
to determine the difficulty of levels. Relatedly, though educational
games benefit from having known solutions to levels (which is
not the case for HCGs), they suffer from similar obstacles to dif-
ficulty adjustment in having to balance fun and difficulty with a
specific underlying objective. Within such games, Butler et al. [3]
combined player data with solution features for levels to dynami-
cally order levels in increasing difficulty commensurate with player
skill. Similarly, Liu et al. [21] balanced difficulty using a system that
adaptively generates new levels based on player performance on
earlier levels. Though such progression-based balancing may not be
directly applicable within HCGs, it may be utilized for onboarding
and improving tutorial sections, as shown by Horn et al. [15, 16]
who combined learning progressions with the skill chain model [5]
to analyze tutorial sections for both Paradox and the HCG Foldit.

Difficulty balancing in HCGs using rating systems involves as-
signing ratings to players and levels and performing matchmaking
to serve levels to players accordingly [25, 28]. Thus, based on a
player’s rating, they are dynamically served a level based on how
difficult it is expected to be for that player to complete that level.
Though effective, this approach does not give us information about
how difficult it is for players to partially complete levels, which in
an HCG would represent partial solutions to problems and thus
may still be useful. Using rating arrays as proposed in this work
enables us to determine how difficult a level is for a player at var-
ious stages of completion. Hence, this may enable more granular
dynamic difficulty adjustment.

A. Sarkar and S. Cooper

Figure 1: A screenshot of Paradox.

2.3 Score Prediction and Difficulty Estimation

In addition to matchmaking, rating systems have also been used
to predict player scores on HCG levels. Williams et al. [32] used
both Glicko-2 and Elo to predict outcomes of player-versus-level
matches in Paradox, finding that Glicko-2 outperformed Elo and
other baseline measures in terms of prediction accuracy. While we
use a similar method for making predictions to test the accuracy
of the CDF, the rating array approach gives the added ability of
estimating the probability that a player will achieve a certain score
(e.g. a new high score) on a given level. Outside of HCGs, Isaksen
et al. [18] used survival analysis to predict a player’s likelihood
of achieving a certain score which in turn was used to estimate
hazard rate and level difficulty. This approach is similar to our use
of the CDF to estimate the probability of a player getting less than
or equal to a given score. Similar to score prediction, Mourato et
al. [23] predicted player success and failure rates for completing
platformer levels using estimates of challenge posed by level el-
ements. In general, score prediction and difficulty estimation are
inherently related since player scores on levels depend on the de-
gree of challenge offered by the levels. Difficulty estimation is an
important game design problem [1] and has seen a wide variety
of research across different types of games. In educational games,
Szabo et al. [30] estimated the difficulty of in-game tasks using
a method based on Bayesian probability theory. Puzzle games in
particular have proven to be a popular testbed for difficulty esti-
mation research. Ashlock et al. [2] used evolution to determine
the difficulty of Sokoban levels, using mean time-to-solution and
number of failures of the evolutionary algorithm as heuristics for
estimating difficulty. Isaksen et al. [19] used models of strategy
and dexterity to perform score analysis on the puzzle games Tetris
and Puzzle Bobble as a means of difficulty estimation. On the other
hand, van Kreveld et al. [31] analyzed various features of puzzle
game levels to estimate their difficulty. Sarkar et al. [24] used a
similar methodology to estimate level difficulty within the context
of HCGs. Focusing on the difficulty of tasks in general rather than
game levels, Guid et al. [12] modeled difficulty estimation as a prob-
lem of searching through solution alternatives and the relations
between them, evaluating their model on chess.

Using Rating Arrays...

3 METHOD

Here we describe our approach to using a rating array to estimate
and update score cumulative distribution functions (CDFs). We
assume possible scores are in the range [0, 1]. For a player-level
pairing, the score CDF gives a function from a score to the prob-
ability that the player will not get higher than that score on that
level. Thus, given a player p, and level [, we want to determine the
cumulative distribution of the score s, ; that player p achieves on
level I (for clarity, we omit the subscripts p, [from s), given as:

Fy(x) = P(s < x) ¢Y)

Our approach is to use a rating system to predict the probability
of a player passing certain score thresholds on a level. We used
the Glicko-2 rating system [10, 11] to predict these probabilities
(although other systems could be used). We use 6 to refer to a set
of Glicko-2 rating parameters and y for the rating mean.

Each player p has a rating 6, with i, initialized to the Glicko-2
default rating of 1500.

Instead of a single rating, each level [has an array of n ratings
9{ , using the superscript t € {1,2,...,n} as an index into this array.
Across all levels, there is an associated array of score thresholds 7/
for these ratings. We assume that the score thresholds in this array
are valid scores but not the maximum possible score (r¥ € [0, 1))
and strictly increasing (% < r/*1).

In this work, we used an array of size n = 10, and score thresholds
evenly spaced at increments 0.1 apart (¥ = (¢—1)/10). We initialized
the level rating array for a level [as a smoothly increasing curve
around 1500, using the function ylt = 1500 — 260 In((1 — z%)/7?).

Given a player’s rating and a level rating array, we can begin
to construct the score CDF with the probabilities that the player
will pass each of the score thresholds. We use F! to refer to the
probability that score threshold ¢ will not be passed by the player
(that is, ﬁst = P(s < r?)). These can be considered as paired com-
parisons between the player and a level’s score thresholds, giving
the probability that the player will not pass each score threshold.
To estimate the outcome of the comparison between the player and
a level threshold, we use the Glicko-2 E; function:

1
14+ e_y(‘ﬁ;z;)(lllt_llp)

E{ = Eqrolp} pp» $5) = @

where the rating means y and variances $>—both parts of the
rating 6—as well as the outcome y and the function g are all as
used by the Glicko-2 system [11].

Since it is not possible for the player to pass the maximum score
for a level (P(s < 1) = 1), we define an additional threshold, with
"1 = 1 and F*! = 1, for convenience.

Given all the Ff, we construct Fg(x) by linear interpolation be-
tween them:

Fy(x) = (1= a)F§ + afg™! 3)
where 7! < x < ' land a = (x — %) /(r*™! — 7).

After a player attempt at a level, we update the player’s rating
and all the ratings in the level’s rating array as though the player had
played simultaneous matches against all the thresholds; i.e., if the
player scores s, the player loses against all ratings with thresholds
where s < ! and wins against all ratings with thresholds where

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

]

P(s £ x) (probability of not passing score)

P

2

01

X (score)

Figure 2: Example score CDFs for a player from Paradox.
Each line is the CDF of a different level for that player.

P(s < x) (probability of not passing score)

01 0.2 03 04 06 07 08 08 10

X (score)

Figure 3: Example score CDFs for a level from Paradox. Each
line is the CDF of a different player for that level.

s > t!.In practice, we found that this update could sometimes lead
to cases where the ratings for score thresholds were not strictly
increasing (that is, could lead to ,u; > ,ult“). In order to ensure that
ratings were strictly increasing, we performed a post-processing
step that adjusted ratings if needed. The post-processing increased
ratings for thresholds above s and decreased ratings for thresholds
below s (if needed) such that ylt +1 < ,ult“. More specifically,

for thresholds below s, if we had an instance of ylt > yl”l, we

set ylt = plt *1 _ 1. Similarly, for thresholds above s, if we had an

t+1

instance ofpl“rl < plt, we set = plt + 1.

4 DATA SETS

We evaluated the rating array approach on two sets of match data:
one gathered from Paradox and another generated from idealized
players and levels using Elo. Each data set consisted of a time-
ordered list of matches with each match consisting of a player, a
level, the result (i.e. complete/forfeit/skip) and the player’s score
on that level.

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

0.8
0.6
0.4

0.2

Observed Probability in Bin

0
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Center of Probability Bin

A. Sarkar and S. Cooper

0.8

0.6

0.4

0.2 -

Observed Probability in Bin

o
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Center of Probability Bin

Figure 4: Plots of the centers of predicted probability bins and the observed probabilities for those bins for the Paradox (left)

and Elo (right) data sets.

4.1 Paradox

Paradox is a 2D puzzle game where each level represents a MAX-
SAT constraint satisfaction problem. The player’s score for a level
corresponds to the percentage of constraints in the underlying
problem that they are able to satisfy by assigning boolean values
using different tools. A player completes a level by reaching the
target score for that level. More detailed descriptions of the game-
play and how levels model MAX-SAT problems are given in prior
work [8, 28].

To gather match data from Paradox, we ran a Human Intelligence
Task (HIT) on Amazon Mechanical Turk. We recruited 100 players
with each being paid $2 upon completing the HIT. Players had to
complete eight tutorial levels. These levels were used to familiarize
players with the mechanics of the game and data from these levels
was not used in our evaluations. After the tutorial phase, players
proceeded to the challenge phase which consisted of 50 levels served
in random order, each of which the players could skip (i.e. move
to the next level without making a move), complete (i.e. reach the
target score for that level) or forfeit (i.e. move to the next level
having made at least one move but fail to complete the level). Each
player could see each level only once during the playthrough. In
the version of Paradox used in this work, the target score for each
challenge level was set to 100%, which was not attainable for some
of the levels. Players were able to exit the game, complete the HIT
and receive payment once they had skipped/forfeited at least 5
challenge levels. Out of the 100 recruited players, we excluded from
our evaluations one player who had errors in their data and another
who just skipped through all 50 levels. Thus, the final gathered data
set consisted of 98 players taking part in a total of 691 matches.

For the match data, each instance of a player seeing a level was
treated as a match. Scoring in Paradox is based on the number of
constraints a player has satisfied. For the purposes of analysis in
this work, we normalized scores using the highest score a player
achieved on a level such that having the initial number of con-
straints solved (the level’s in-game starting score) was a score of
0 and solving all the constraints (an in-game score of 100%) was
a score of 1. This ensured that scores remained in the range [0, 1]
and allowed players to cover a wider range of possible scores for

a level. If a player skipped a level, their score for that match was
taken to be 0.

4.2 Idealized Elo

We also used a data set generated by simulating idealized players
and levels with the Elo rating system [9]. We chose the Elo rating
system to generate idealized data as it is a similar rating system to
Glicko-2. To create this data set, we generated 100 players and 50
levels with Elo ratings selected uniformly at random between 900
and 2100. We then simulated 1000 matches by randomly selecting
a player and level. The player’s score for the match was their Elo
expected score based on the Elo rating of the player (Rp) and level
(R;). This score is given by the equation: 1/(1+ IO(RI_RP)/‘*OO)A There
were no skips in this data set.

5 EVALUATIONS

To evaluate the rating array method, we looked into: 1) measuring
the accuracy of the cumulative distribution function in predicting
probabilities of events; 2) computing the error between expected
and actual scores; and 3) deciding if we could serve a player a level
that they would set a new high score on.

For both data sets, we played back the matches, and used our
rating array approach to update the ratings for the players and level
arrays. For evaluation, predictions were only made for matches in
which both the player and level had been involved in 3 prior at-
tempted matches (i.e. matches where the player made at least one
move). Note that during playback, the ratings updates and CDF
computations were done using all the matches up until that point
of the playback, and predictions were made only on future matches
whose results had not yet been incorporated into the updates and
computations. That is, the matches until the current point of play-
back when the computations and updates were calculated can be
viewed as the training data and the future matches which were
used for evaluation can be viewed as the test data. An example
of some resulting score CDFs are shown in Figures 2 and 3. Each
evaluation method is described below.

Using Rating Arrays...

Errcar Errgi, Dijﬁdffng
Paradox 0.407 0.401 0.058
Elo 0.115 0.126 0.066

Table 1: Root mean squared difference (RMSD) of expected
score predictions.

5.1 CDF Accuracy

To examine the accuracy of the CDF, we wanted to examine if
scores happened as often as they were predicted to by the CDF. In
order to do so, we looked at the probability that scores would fall
into ranges as predicted by the CDF. For each predicted match, we
looked at all ranges of scores between intervals at multiples of 0.1.
If the lower end of the interval was 0 it was inclusive, otherwise it
was exclusive. Thus, we looked at the score ranges [0.0, 0.1], [0.0,
0.2], [0.0, 0.3], ... (0.8, 0.9], (0.8, 1.0], (0.9, 1.0]. We then used the CDF
to compute the probability that the score would fall in each range.
We then grouped these probabilities into bins by 10% and counted
the percent of times each happened—i.e. counting how often scores
that were predicted to happen between 0-10%, 10-20%, ..., 90-100%
of the time actually happened within the predicted range.

As evaluation, we compared the center of the predicted probabil-
ities within each bin (e.g. 5% or 0.05 for the bin from 0-10%) with
the observed probabilities within that bin. A plot for each data set is
given in Figure 4. We computed the Pearson’s correlation between
the center of the predicted probably bin and observed probabilities
for each data set. For the Paradox data set, we found a correlation
0f 0.980 (p < 0.001), and for the Elo data set, we found a correlation
0f 0.995 (p < 0.001).

5.2 Estimating Scores

In addition to determining the accuracy of the CDF, we also wanted
to examine the accuracy of the player scores predicted using it,
specifically in comparison to using a single Glicko-2 rating per
level as in Williams et al. [32].

For this evaluation, for both data sets, we computed the root
mean square difference (RMSD) between the actual score achieved
by players on levels and both the expected score E(s) predicted by
the score CDF as well as the expected score predicted using a single
Glicko-2 rating per level, denoted as Err4rand Erryj; respectively.
We also looked directly at the RMSD between the CDF and Glicko-2
score predictions, denoted as Diffogf_giz-

The expected score E(s) predicted using the CDF is given by:

1
EGs) = /0 (1 - Fy(x)) dx @

Since our construction of E(s) is piecewise linear, we can compute
its integral as the sum of trapezoid areas:

E(s)=) 0.5(2— F{Y = B (' *! = 1))
1

Results are given in Table 1.

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

5.3 Setting New High Scores

For our final evaluation, we wanted to look at how well the rating
arrays can be used to decide how to serve levels to players with
the aim of setting new high scores, while also performing dynamic
difficulty adjustment. This is particularly useful in HCGs as new
high scores for levels could represent potential novel solutions to
the underlying problems that levels represent.

In previous work, dynamic difficulty adjustment in Paradox has
been done by adjusting the “desired loss rate” (DLR) for players. The
DLR for a player is the likelihood of losing against levels that we
would like for that player and is used to match players with levels
of appropriate difficulty. The player’s DLR is computed based on
their skill as indicated by their current Glicko-2 rating. As a player’s
rating goes up, so does their DLR, causing them to be matched up
with harder levels. This loss rate is discussed in more detail in prior
work involving Paradox [25, 28].

A benefit of using a score CDF is that we could adjust the diffi-
culty of any given level for a player by changing the target score
required for that player to complete that level when we serve it to
them (e.g. a player with a higher rating will have a higher target
score and thus a higher DLR for that level). Used in-game, such a
target score represents the score a player needs to pass in order
to complete the level; thus, we might expect that players would
work to pass their given target score for a level and then move on
to the next level if they are successful. Thus, we are interested in
target scores that are greater than the maximum score seen on a
level since if the player were to achieve them, it would be a new
high score.

We explored two possible approaches to selecting the next level
to serve to a player with regard to setting a new high score. First, a
level could be served to a player simply if their expected score for
that level sexp, as predicted by the CDF using Equation 5, is greater
than that level’s current high score s, 4x. This approach may work
well for setting new high scores, but does not take into account the
player’s DLR for dynamically adjusting the difficulty. To account
for this rate, we also consider that a level could be served to a player
if both their expected score is greater than the level’s current high
score and their desired loss rate score sy;, is greater than or equal to
the level’s high score sy 4x (as a player must pass sg;,- to complete
the level). This additional constraint on the sy;, means that in some
cases, we would not serve levels to players where we expect them
to set a new high score since a low target score may cause them
to stop playing before they achieve a high score. Thus, we might
miss out on some potential new high scores, but might also benefit
from engagement effects of dynamic difficulty adjustment when
incorporating the sy,

To compute the player’s s;;,., we first compute their desired loss
rate DLR, as in prior work involving Paradox, using the equation:

DLR = ; (6)
h 1+ e“(ﬂ_,up)

where o = 0.00628 and = 1850. This is done so as to give the
player a DLR of 10% at the starting rating of 1500.

We then use each level’s rating array to determine the player’s
expected value of crossing each of the level’s score thresholds. These
expected values combined with the player’s current DLR allows
us to use interpolation to find the player’s sy;, for that level (i.e.

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

Sact > Smax Sact < Smax

Sexp > Smax 34 61
Sexp < Smax 13 681
Sexp > Smax N Sdlr = Smax 38 57
Sexp < Smax V Sdlr < Smax 228 466

Table 2: Results of comparisons between predicted and ac-
tual player scores for Paradox match data

Sact > Smax Sact < Smax

Sexp > Smax 130 54
Sexp < Smax 84 2161
Sexp > Smax N Sdlr 2 Smax 111 27
Sexp < Smax V Sdlr < Smax 184 2107

Table 3: Results of comparisons between predicted and ac-
tual player scores for Elo match data

sqir= F;1(DLR)). The player’s sexp for that level is simply their
expected score for the level (i.e. sexp= E(s)).

To test if these scores are useful in deciding which levels could
be served to players for setting new high scores, we played back
the matches while keeping track of the highest score seen for each
level s;qx. These were initialized to 0 for each level and so it was
easier to set high scores earlier on. During the processing of each
match, we used the player’s current rating to compute their sexp and
s41r against each level in the game to compare the two previously
discussed approaches. For each level, as a proxy to see what would
have happened if we decided to serve that level, we then checked
all of that player’s future matches to see if they went on to play
that level, and if so, compared the score they achieved sq; to see if
it would have set a new high score for that level. Results of these
comparisons for both data sets are given in Tables 2 and 3. Since
for each match in the data, we can make these comparisons for
multiple future matches, the total number of comparisons exceeds
the total number of matches. Note that instances of sexp being
greater than a level’s s;;;4x represent predictions that the player
will be able to increase that level’s high score. However, with the
added constraint on sg;, , we are no longer simply serving levels to
players whenever they are expected to improve the high score since
we may decide not to serve such a level for the purpose of dynamic
difficulty adjustment. However, we can still evaluate the properties
of when we decide we could serve a level to a player based on if they
would have improved the high score. Thus, instances where we
decided we could have served a level to a player because they were
expected to improve the high score, and the player’s sq¢; turns out
to be greater or lower than s;,4x, can be regarded as true positives
and false positives respectively. Similarly, decisions to not serve a
level because the player is not expected to improve the high score
and the player’s sq¢; turns out to be greater or lower than s,,4x, can
be regarded as false negatives and true negatives respectively. To
better evaluate these decisions, we used the following metrics with

A. Sarkar and S. Cooper

Sexp > Smax Sexp > Smax N Sdlr 2 Smax

Precision 0.358 0.400
Recall 0.723 0.143
FOR 0.019 0.329
Accuracy 0.906 0.639

Table 4: Metrics for Paradox match data. Values range from
0to 1.

Sexp > Smax Sexp > Smax N Sdlr 2 Smax

Precision 0.707 0.804
Recall 0.607 0.376
FOR 0.037 0.080
Accuracy 0.943 0.913

Table 5: Metrics for Elo match data. Values range from 0 to 1.

TP, FP, TN and FN representing the total number of true positives,
false positives, true negatives and false negatives respectively:

e Precision: probability that a player who could be served a level
to improve the high score, does improve it when served that
level: TP/(TP+FP)

Recall: probability that a player who improved the high score
could have been served that level to improve the high score:
TP/(TP+FN)

False Omission Rate (FOR): probability of missing a player who
would have set a new high score on a level: FN/(FN+TN)

e Accuracy: probability that the decision to serve or not serve a
level to improve the high score, was correct overall:
(TP+TN)/(TP+TN+FP+EN)

Metric values for both data sets are given in Tables 4 and 5.

6 DISCUSSION

Based on our evaluations, the CDF was able to predict score ranges
for players with a reasonably high level of accuracy. For both data
sets, the predicted probabilities were shown to be highly correlated
with the observed probabilities. Moreover, based on our results for
computing error in score estimation, we found that the estimation
error when using the CDF was very similar to that when using
a single rating per level, being slightly lower for the Elo data set
and slightly higher for the Paradox data set. The expected scores
predicted by each approach were also relatively close to each other.
Thus, in demonstrating that the CDF accurately predicts player
score ranges and performs similarly to using a single level rating in
terms of estimating specific player scores, these results help validate
the CDF, and in turn, the rating array method used to derive it.

In terms of decisions about serving levels to players to set new
high scores, we found that the metrics in Tables 4 and 5 (except for
Precision) get worse upon adding the additional constraint involving
sqlr- As mentioned in the previous section, we would expect this
since by including the s;;,-based constraint for dynamic difficulty
adjustment, we withhold serving certain levels where we expect
players to improve the high score. Thus, there is a trade-off between

Using Rating Arrays...

increased accuracy using only sexp and the ability to perform dy-
namic matchmaking when also using s4;,.. Ultimately, the goal of
player-versus-level matchmaking systems in HCGs is to balance
player engagement with finding new solutions to problems. Hence,
in addition to helping derive CDFs and estimating player scores, the
rating array method was also motivated by its potential in helping
identify players able to set new high scores while also keeping
the game sufficiently challenging. Though the s x-based method
may more accurately suggest which levels players are capable of
setting new high scores for, in not taking the player’s current skill
into account, it ignores the fact that a suggested level may be too
difficult or not difficult enough for the player. Thus, combining
Sexp and sqj, allows us to retain the ability to adapt the game’s
difficulty to the player while still serving players with levels whose
high scores they are expected to improve.

7 CONCLUSION AND FUTURE WORK

This work presented the concept of using level rating arrays for
the purpose of improved player-versus-level score prediction and
matchmaking, particularly within the context of human computa-
tion games. Using this approach enables us to derive cumulative
distribution functions for estimating probabilities of player scores
on levels as well as decide if a level should be served to a player to
try to set a new high score.

Since this work focused on describing the approach and testing
it by playing back previously gathered match data, necessary future
work is to evaluate this approach via an online experiment that
uses rating arrays to perform matchmaking. The motivation for
incorporating rating arrays into existing matchmaking systems for
HCGs is to be better able to find new solutions by serving players
levels that are both comparable to their skill as well as ones whose
high scores they are likely to improve. Thus, performing a live
matchmaking experiment using rating arrays to determine which
levels to serve to players would be the natural next step for this
research. This could involve more precisely defining the process of
dynamically setting target scores for levels and of updating player
and level ratings when players succeed or fail in reaching said
targets, as discussed earlier in this paper, ultimately helping in
validating and/or improving these processes. Examining players in
this dynamic setting could also offer important insights into player
behavior such as if players keep playing after reaching the target
and if they exhibit more engagement when we use dynamic target
scores rather than fixed targets like in past work.

Future work could also look at improving upon the prediction
metrics when incorporating the desired loss rate. In addition to the
loss rate function given in this paper, prior work in Paradox has
examined other, potentially more engaging, difficulty curves [26]
which might lead to better results when used with rating arrays.

Finally, we applied the rating array method to just Paradox so it
would be worth investigating how this method works when applied
to other games. It would also be interesting to explore if rating
arrays could be applied in other types of games. For example, it
may be possible to apply rating arrays to levels in educational games
where increasing score thresholds could represent progressively
harder concepts to be learned.

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Sci-
ence Foundation under grant no. 1652537. We would like to thank
the players, and the University of Washington’s Center for Game
Science for initial Paradox development.

REFERENCES

[1] Maria-Virginia Aponte, Guillaume Levieux, and Stephane Natkin. 2011. Measur-
ing the level of difficulty in single player video games. Entertainment Computing
2 (2011).

Daniel Ashlock and Justin Schonfeld. 2010. Evolution for automatic assess-

ment of the difficulty of Sokoban boards. In 2010 IEEE Congress on Evolutionary

Computation (CEC). 1-8.

Eric Butler, Erik Andersen, Adam M. Smith, Sumit Gulwani, and Zoran Popovié.

2015. Automatic game progression design through analysis of solution features.

In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing

Systems (CHI ’15). 2407-2416.

[4] Kate Compton, Heather Logas, Joseph C. Osborn, Chandranil Chakrabortti, Kelsey
Coffman, Daniel Fava, Dylan Lederle-Ensign, Zhongpeng Lin, Jo Mazeika, Afshin
Mobramaein, Johnathan Pagnutti, Husacar Sanchez, Jim Whitehead, and Brenda
Laurel. 2016. Design lessons from Binary Fission: a crowd sourced game for
precondition discovery. In Proceedings of the 1st International Joint Conference of
DiGRA and FDG.

[5] Daniel Cook. 2007. The chemistry of game design. (2007). http://www.gamasutra.
com/view/feature/1524/the_chemistry_of game_design.php

[6] Seth Cooper, Sebastian Deterding, and Theo Tsapakos. 2016. Player rating systems
for balancing human computation games: testing the effect of bipartiteness. In
Proceedings of the 1st International Joint Conference of DiGRA and FDG.

[7] Valve Corporation. 2008. Left 4 Dead. Game.

[8] Drew Dean, Sean Gaurino, Leonard Eusebi, Andrew Keplinger, Tim Pavlik, Ronald
Watro, Aaron Cammarata, John Murray, Kelly McLaughlin, John Cheng, and
Thomas Maddern. 2015. Lessons learned in game development for crowdsourced
software formal verification. In Proceedings of the 2015 USENIX Summit on Gaming,
Games, and Gamification in Security Education.

[9] ArpadE. Elo. 1978. The rating of chessplayers, past and present. Arco.

[10] Mark E. Glickman. 1999. Parameter estimation in large dynamic paired com-
parison experiments. Journal of the Royal Statistical Society: Series C (Applied
Statistics) 48, 3 (1999), 377-394.

[11] Mark E. Glickman. 2001. Dynamic paired comparison models with stochastic
variances. Journal of Applied Statistics 28, 6 (Aug. 2001), 673-689.

[12] Matej Guid and Ivan Bratko. 2013. Search-based estimation of problem difficulty

for humans. In International Conference on Artificial Intelligence in Education.

860-863.

Severin Hacker and Luis von Ahn. 2009. Matchin: eliciting user preferences with

an online game. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. 1207-1216.

Ralf Herbrich, Tom Minka, and Thore Graepel. 2007. TrueSkill(TM): a Bayesian

skill rating system. In Advances in Neural Information Processing Systems 20.

569-576.

Britton Horn, Seth Cooper, and Sebastian Deterding. 2017. Adapting cognitive

task analysis to elicit the skill chain of a game. In Proceedings of the Annual

Symposium on Computer-Human Interaction in Play. 277-289.

Britton Horn, Josh Aaron Miller, Gillian Smith, and Seth Cooper. 2018. A Monte

Carlo approach to skill-based automated playtesting. In Proceedings of the Thir-

teenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-

ment.

Robin Hunicke. 2005. The case for dynamic difficulty adjustment in games. In

Proceedings of the 2005 ACM SIGCHI International Conference on Advances in

Computer Entertainment Technology. ACM, 429-433.

Aaron Isaksen, Dan Gopstein, Julian Togelius, and Andy Nealen. 2018. Exploring

game space of minimal action games via parameter tuning and survival analysis.

IEEE Transactions on Games 10, 2 (2018), 182—-194.

Aaron Isaksen, Drew Wallace, Adam Finkelstein, and Andy Nealen. 2017. Sim-

ulating strategy and dexterity for puzzle games. In 2017 IEEE Conference on

Computational Intelligence and Games (CIG). 142-149.

Martin Jennings-Teats, Gillian Smith, and Noah Wardrip-Fruin. 2010. Polymorph:

dynamic difficulty adjustment through level generation. In Proceedings of the

2010 Workshop on Procedural Content Generation in Games. 11:1-11:4.

Yun-En Liu, Christy Ballweber, Eleanor O’Rourke, Eric Butler, Phonraphee

Thummaphan, and Zoran Popovi¢. 2015. Large-scale educational campaigns.

ACM Transactions on Computer-Human Interaction 22, 2 (March 2015), 8:1-8:24.

Heather Logas, Jim Whitehead, Michael Mateas, Richard Vallejos, Lauren Scott,

Dan Shapiro, John Murray, Kate Compton, Joseph Osborn, Orlando Salvatore,

Zhongpeng Lin, Huascar Sanchez, Michael Shavlovsky, Daniel Cetina, Shayne

Clementi, and Chris Lewis. 2014. Software verification games: designing Xylem,

[2

B3

=
&

[14

[15

=
&

[17

(18

[19

[20

[21

[22

http://www.gamasutra.com/view/feature/1524/the_chemistry_of_game_design.php
http://www.gamasutra.com/view/feature/1524/the_chemistry_of_game_design.php

FDG ’19, August 26-30, 2019, San Luis Obispo, CA, USA

[23

[24

[25

[27

[28

[29
[30

[31

[32

[33

]

]

]

]

]
]

]

The Code of Plants. In Proceedings of the 9th International Conference on the
Foundations of Digital Games.

Fausto Mourato, Fernando Birra, and Manuel Prospero dos Santos. 2014. Difficulty
in action based challenges: success prediction, players’ strategies and profiling.
In Proceedings of the 11th Conference on Advances in Computer Entertainment
Technology.

Anurag Sarkar and Seth Cooper. 2017. Level Difficulty and Player Skill Prediction
in Human Computation Games. In Proceedings of the Thirteenth AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment.

Anurag Sarkar and Seth Cooper. 2018. Meet Your Match Rating: Providing Skill
Information and Choice in Player-versus-Level Matchmaking. In Proceedings of
the 13th International Conference on the Foundations of Digital Games.

Anurag Sarkar and Seth Cooper. 2019. Transforming Game Difficulty Curves
Using Function Composition. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 551:1-551:7.

Advait Sarkar, Cecily Morrison, Jonas F. Dorn, Rishi Bedi, Saskia Steinheimer,
Jacques Boisvert, Jessica Burggraaff, Marcus D’Souza, Peter Kontschieder, Samuel
Rota Bulo, Lorcan Walsh, Christian P. Kamm, Yordan Zaykov, Abigail Sellen, and
Sian Lindley. 2016. Setwise comparison: consistent, scalable, continuum labels
for computer vision. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems. ACM, 261-271.

Anurag Sarkar, Michael Williams, Sebastian Deterding, and Seth Cooper. 2017.
Engagement effects of player rating system-based matchmaking for level ordering
in human computation games. In Proceedings of the 12th International Conference
on the Foundations of Digital Games.

Alex Cho Snyder and Mario Izquierdo. 2014. Jumpcraft. Game.

Maté Szabo, Krisztian Daniel Pomazi, Bertalan Radostyéan, Luca Szegletes, and
Bertalan Forstner. 2016. Estimating task difficulty in educational games. In 2016
7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom).
397-402.

Mark van Kreveld, Maarten Loffler, and Paul Mutser. 2015. Automated Puzzle
Dificulty Estimation. In 2015 IEEE Conference on Computational Intelligence and
Games (CIG). 415-422.

Michael Williams, Anurag Sarkar, and Seth Cooper. 2017. Predicting Human
Computation Game Scores with Player Rating Systems. In Predicting Human
Computation Game Scores with Player Rating Systems. In: Munekata N., Kunita L,
Hoshino . (eds) Entertainment Computing — ICEC 2017. ICEC 2017.

Alexander Zook and Mark Riedl. 2012. A Temporal Data-Driven Player Model
for Dynamic Difficulty Adjustment. In Proceedings of the Eighth AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment.

A. Sarkar and S. Cooper

	Abstract
	1 Introduction
	2 Background
	2.1 Player Rating Systems
	2.2 Difficulty Balancing
	2.3 Score Prediction and Difficulty Estimation

	3 Method
	4 Data Sets
	4.1 Paradox
	4.2 Idealized Elo

	5 Evaluations
	5.1 CDF Accuracy
	5.2 Estimating Scores
	5.3 Setting New High Scores

	6 Discussion
	7 Conclusion and Future Work
	References

