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Randomized Sensor Selection for Nonlinear Systems

With Application to Target Localization
Shaunak D. Bopardikar , Osama Ennasr , and Xiaobo Tan

Abstract—Given a nonlinear dynamical system, this letter con-
siders the problem of selecting a subset of the total set of sensors
that has provable guarantees on standard metrics related to the
nonlinear observability Gramian. The key contribution is a simple
randomized algorithm that samples the sensors uniformly without
replacement, and yields probabilistic guarantees on the minimum
eigenvalue or the inverse of the condition number of the nonlinear
observability Gramian relative to that of the complete set of sensors.
Numerical studies reveal that the utility of the theoretical results
lies in the regime of large total number of sensors wherein the
combinatorial nature of the problem presents a significant compu-
tational challenge. The results are demonstrated numerically on a
problem of moving target localization using an extended Kalman
filter in two scenarios: one using range sensors and another with
time-difference-of-arrival measurements. A graceful degradation
of performance with a decreased number of sensors is observed
when compared to the use of all of the sensors for localization.
It is also observed that for certain metrics, the proposed approach
provides an improvement over a heuristic that selects the sensors in
a greedy manner based on the contribution of an additional sensor
toward the observability Gramian metric.

Index Terms—Localization, probability and statistical methods,
sensor networks, randomized algorithms.

I. INTRODUCTION

S
ENSOR selection is a classic problem arising in robotics
wherein the goal is to choose sensors out of a set in or-

der to efficiently and effectively perform tasks such as target
tracking, localization and estimation. In several applications,
it is essential to understand fundamental limits on how the
quality of the estimate varies with the number of sensors. This
letter considers the problem of analyzing the observability of a
general smooth nonlinear system as a function of the number of
sensors selected. We analyze a simple randomized scheme based
on uniform sampling without replacement, derive probabilistic
lower bounds on two widely-used metrics of observability, and
evaluate the scheme on a target tracking scenario using two
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types of sensors – range sensing and time difference of arrival
(TDOA). The sensor selection problem addressed in this letter
is closely related to the deployment of mobile (robotic) sensors
wherein all potential locations can be treated as the total set of
sensors and the sampled subset comprises the locations chosen
for deployment.

A. Related Work

Sensor selection is a well studied problem within the robotics
community. Early works include reference [1] that proposes
stochastic dynamic programming to predict and evaluate dif-
ferent robot actions, reference [2] that uses mobile sensors to
track multiple targets, and references [3], [4] that propose the use
of bounded uncertainty models to compute near-optimal sensor
placements. More recent contributions include reference [5]
which addresses selection of sensors with Boolean outputs,
reference [6], which uses the knowledge of target tracks in
a multi-objective framework to perform sensor selection, and
reference [7], which employs optimization of hinge-loss func-
tions in an application to indoor localization, to name a few.
Sensor selection has also been studied extensively in the control
community (see survey [8]). Recently there has been a large body
of work such as [9]–[11] in the area of sensor and/or actuator
selection in order to optimize several metrics for linear systems.
Also related is a line of work extending these ideas to the problem
of sensor or actuator scheduling as addressed in [12]–[14]. Our
recent work in [15] applied randomized sampling with replace-
ment to provide lower bounds on several eigenvalue-based met-
rics of the observability Gramian for linear dynamical systems.

While there has been a lot of work around linear systems,
extensions to nonlinear settings have been fewer. In this context,
references [16] and [17] propose the use of the inverse of the con-
dition number to study the observability of a nonlinear system
and for target tracking. Reference [18] uses the Cramer-Rao
lower bound for optimizing the sensor array for source local-
ization using TDOA measurements. In references [19], [20],
distributed localization of a moving target using TDOA was
proposed. Reference [21] addresses the sensor selection problem
wherein the dynamics is modeled using a partial differential
equation. For systems in which one can excite the initial state
in different directions, there is a rich literature on the use of
empirical Gramians that are constructed using the trajectories of
outputs [22], [23]. Reference [24] uses these empirical Gramians
to perform sensor placement, but the problem of optimal choice
of sensors has not been solved with theoretical guarantees. One
limitation of existing works is that, to prove theoretical prop-
erties on (sub)-optimality of greedy approaches, one requires a
submodularity property [9], which is not satisfied by the metrics
relevant to sensor selection such as the ones considered in this
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letter. Reference [25] has applied submodular optimization for
selecting input nodes for consensus of networks with negative
edges to maximize the minimum eigenvalue of the graph Lapla-
cian, which is non submodular.

The randomization viewpoint has been used extensively to
solve complex control design problems over the past two
decades; see [26], [27] and [28], to name a few. These techniques
adopt a sampling-based approach and provide probabilistic
bounds on the resulting controller performance. In contrast, our
approach leverages insights and analysis techniques from the
field of random matrix theory. We refer the interested reader to
the tutorial letter [29] for a detailed survey in the field.

B. Contributions

Given a nonlinear dynamical system, we consider the problem
of selecting a subset of the sensors out of the total set in
order to guarantee observability of the resulting system. We
first formalize the performance of a simple randomized scheme
based on uniform sampling without replacement and derive high-
probability lower bounds on the minimum eigenvalue and the
inverse of the condition number of the observability Gramian.
The lower bounds are dependent on the state of the system
and are relative to the global value obtained by using all of
the available sensors. This is a key distinction with respect to
the literature on sensor selection where the performance has
largely been characterized relative to the optimal (but difficult
to compute) subset of a given cardinality. The difference with
respect to our recent work [15] is that the latter work relies
on sampling with replacement, which cannot guarantee that a
sensor does not get chosen more than once, and therefore, that
work is more appropriate for the sensor placement problem.

We then illustrate the approach and the results in an example
of tracking a moving target using range sensors and TDOA
sensors, respectively. In particular, the location of the target, i.e.,
the state of the target dynamics, is estimated with an Extended
Kalman Filter (EKF) based on the sensor measurements. We
present studies that provide insight into the range of problem
parameters (e.g., the size of the domain, the total number of
sensors used, etc.) for which the lower bound on each of the
considered Gramian metrics holds with high probability. In
particular, the utility of our theoretical results lies in the regime of
large total number of sensors wherein the combinatorial nature
of the problem presents a significant computational challenge.
We compare the steady-state estimation error covariance of the
EKF applied to the subset of sensors to that of the EKF applied
to all of the sensors, and observe a graceful degradation of per-
formance with respect to the number of sensors selected. Finally,
we provide a comparison of the empirical performance of our
approach with that of a heuristic, which selects the sensors in a
greedy manner based on the contribution of an additional sensor
toward the observability Gramian metrics, and an improvement
with respect to certain metrics is observed.

C. Organization of This Paper

This letter is organized as follows. Section II provides a
formal statement of the problem and reviews an existing result
from randomized Gramian computation. Section III formalizes
our algorithm and includes the main theoretical results and their
mathematical proofs. Section IV describes the application of the

proposed method for localization and presents numerical results
of the proposed approach. Finally, Section V summarizes our
findings and identifies directions for future research.

II. PROBLEM FORMULATION AND BACKGROUND

In this section, we present the mathematical description of the
sensor selection problem considered in this letter and provide
some background information on observability of nonlinear
dynamical systems.

A. Model

Consider a network of sensors placed in an environment. The
state of the underlying system to be estimated at time t is denoted
by xt ∈ X ⊆ R

n, whose evolution is modeled as

xt+1 = f(xt) + wt,

yi,t = hi(xt) + vi,t,
(1)

where yi,t ∈ R
m, denotes the vector of measurements from the

i-th sensor at time t, wt ∼ N (0, Q), vi,t ∼ N (0, R) represent
the process noise and the measurement noise, respectively. We
assume that there are M sensors in total.

B. Nonlinear Observability

Given model (1), one can define the observability matrix,

O :=
[

OT
1 OT

2 . . . OT
M

]T
, where

Oi :=

⎡

⎢

⎢

⎢

⎢

⎣

∇L0
f (hi)

∇L1
f (hi)

...

∇Ldi

f (hi)

⎤

⎥

⎥

⎥

⎥

⎦

, (2)

for each i ∈ {1, . . . ,M}, and di is the smallest positive integer
for which rank(Oi) = n. The operator

Lk
f (hi) = (∇Lk−1

f (hi))
T f, with L0

f (hi) = hi.

Here, ∇ denotes the partial derivative with respect to x. If (1)
is linear time-invariant, then Oi reduces to the standard time-
invariant observability matrix.

For ease of exposition, we assume a homogeneous sensor net-
work (i.e., sensors with identical attributes), d1 = · · · = dM =
d. It can be checked that for M ≥ 4, with the choice of di = 1,
the matrix O has full rank in n = 2 dimensions. Note that Oi is
a function of the state x, since hi is a nonlinear function of x,
which implies that O is also a function of x.

Given a subset, S = {i1, i2, . . . , iN} ⊆ {1, . . . ,M}, where
N ≤ M , the observability matrix for the set S is

OS(xt) :=

⎡

⎢

⎢

⎢

⎢

⎣

Oi1(xt)

Oi2(xt)

...

OiN (xt)

⎤

⎥

⎥

⎥

⎥

⎦

.
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C. Observability Metrics

This letter analyzes two metrics for observability of sys-
tem (1), namely the minimum eigenvalue λmin(·) of the observ-
ability Gramian and the inverse of the condition number of the
observability Gramian, i.e.,

µ(OS(xt)) :=
σmin(OS(xt))

σmax(OS(xt))
=

√

λmin(WS)

λmax(WS)
,

whereσmin(·)/σmax(·) are the minimum / maximum singular val-
ues, λmin(·)/λmax(·) are the minimum / maximum eigenvalues,
and WS := OT

SOS . Since the condition number is a function of
xt, it is unreasonable to expect that one can find a sensor subset
S such that for a given α ∈ [0, 1),

µ(OS(x)) ≥ α, ∀x ∈ X .

Instead, what we can expect is, given any x ∈ X in the domain
of interest, we would like to select S ⊆ {1, . . . ,M} so that

µ(OS(x)) ≥ αµ(O(x)). (3)

In other words, can we find a subset S of the sensors that will
function at least within a certain fraction of the observability
using all of the sensors? Even this formulation is a combinatorial
optimization problem and, without any additional assumptions
on the sensing models, it is computationally complex to solve
(3). In what follows, we present an approach based on random-
ized selection that can provide probabilistic guarantees on a
solution to (3).

III. RANDOMIZED ALGORITHM AND ITS ANALYSIS

This section formalizes a randomized sampling approach and
presents the theoretical properties along with formal proofs of
the claims.

A. Algorithm and Results

We propose a very simple randomized selection algorithm
without replacement. The key idea is to select the first sensor
uniformly randomly out of theM sensors. Then select the second
sensor uniformly randomly out of the remaining M − 1, and so
on. The result is a randomly chosen subset S = {i1, . . . , iN},
for which

σmin(OS) =
√

λmin(WS), µ(OS) =

√

λmin(WS)

λmax(WS)
.

This procedure is formalized in Algorithm 1.
While Algorithm 1 is very simple and does not seem to make

use of the distinction between sensors, its major advantage
is that we obtain the following probabilistic guarantee on its
performance.

Theorem III.1: For any given x ∈ X , let B(x) :=

maxi∈{1,...,M} λmax(Wi(x)) and W (x) :=
∑M

i=1 Wi(x).
Then, with Algorithm 1, the matrix OS satisfies the following
guarantees for any given ǫ ∈ (0, 1):

1) With the minimum eigenvalue metric,

P (λmin(OS(x)) ≥ (1− ǫ)λmin(O(x)))

≥ 1− n

(

e
−ǫ

(1− ǫ)1−ǫ

)

Nλmin(W (x))

MB(x)

.

Algorithm 1: Randomized Sensor Selection.

1: Input: Matrices Oi, ∀i ∈ {1, . . . ,M} defined in (2),
number N of samples of sensors.

2: Initialize S = ∅.
3: while |S| ≤ N do
4: Uniformly randomly choose i ∈ {1, . . . ,M} \ S.
5: S = S ∪ {i}.
6: end while
7: Output: The matrix OS ∈ R

Nd×n.

2) With the inverse condition number metric,

P

(

µ(OS(x)) ≥

√

1− ǫ

1 + ǫ
µ(O(x))

)

≥ 1

− n

(

e
−ǫ

(1− ǫ)1−ǫ

)

Nλmin(W (x))

MB(x)

− n

(

e
ǫ

(1 + ǫ)1+ǫ

)
Nλmax(W (x))

B(x)M

.

(4)

We highlight a few remarks about this result below.

Remark III.2 (Role of ǫ): The choice of the accuracy param-
eter ǫ ∈ (0, 1) is arbitrary and therefore, can be treated as user
defined. If we seek to make ǫ closer to 1, then the probability
of achieving (3) increases, but the lower bound becomes con-
servative in practice, and vice versa when ǫ is chosen closer to
0. Further discussion on this aspect is provided in the numerical
studies presented in Section IV.

Remark III.3 (Dependence on x): Theorem III.1 holds for
any fixed value of x ∈ X . This fact is reflected in the value
of the parameter B which is dependent on x and in particular,
on the ratio λmin(W (x))/B(x), and therefore, the probability
that Problem 3 is solved will be different for each x. To obtain
a uniform probability, one needs to take a supremum over all
allowable x ∈ X , which may lead to conservativeness in the
number of sensors N required to achieve a desired accuracy.

Remark III.4 (Sensor fraction): The probabilistic guarantee
of the approach depends on the fractionN/M of sensors selected
and is quantified in the level of probabilistic guarantee. The
fraction N/M does not affect the lower bound on µ(OS(x)),
which depends only on the choice of ǫ. This observation will be
evident in the numerical studies.

Theorem III.1 immediately yields the following sample com-
plexity bounds for N .

Corollary III.5 (Sample complexity bounds): For any δ ∈
(0, 1), Algorithm 1 solves Problem (3) with probability 1− δ
if, for the minimum eigenvalue metric,

N ≥
M

ǫ+ (1− ǫ) ln(1− ǫ)
ln

n

δ
sup
x∈X

B(x)

λmin(W (x))
,

and for the inverse condition number as metric,

N ≥
M

−ǫ+ (1 + ǫ) ln(1 + ǫ)
ln

2n

δ
sup
x∈X

B(x)

λmin(W (x))
.

IfN satisfies the bound in Corollary III.5, then the probabilis-
tic guarantee in Theorem III.1 is satisfied for any operating point
x. The result does not say anything about the probability that for
all x ∈ X , the matrices OS(x) simultaneously are as desired.
It now remains to be seen how useful this bound will turn out
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to be for specific sensor and motion models in applications of
interest and for what problem parameter values these bounds
lead to non-trivial values. This will be the focus of Section IV.

As will be evident in the proof of Theorem III.1, to the best
of our knowledge, the analysis tools provide a compact bound
on the probability of satisfaction only for the case of uniform
sampling. Extension of these tools to the case of non-uniform
selection probabilities is a topic of current research and requires
a non-trivial extension of a key result in randomized matrix
approximation.

B. Proofs of the Theoretical Claims

We begin with a useful result from randomized matrix ap-
proximation to conclude about properties of the extreme eigen-
values of sums of random matrices. Most matrix concentration
inequalities, e.g., Ahlswede-Winter or Bernstein [29], are valid
for sampling with replacement. The inequality below is a tech-
nique originally by Gross and Nesme, based on Hoeffding-like
inequalities, for transferring results from sampling with replace-
ment to sampling without replacement.

Theorem III.6: (Matrix Chernoff [30]). LetX denote a finite
set of symmetric positive semi-definite matrices with dimension
n and suppose that

max
X∈X

λmax(X) ≤ B.

Sample c matrices X1, X2, . . . , Xc, uniformly at random from
X and without replacement. Compute,

µmin := cλmin(E[X1]), and µmax := cλmax(E[X1]).

Then, for any ǫ ∈ [0, 1),

P

⎛

⎝λmin

⎛

⎝

c
∑

j=1

Xj

⎞

⎠ ≤ (1− ǫ)µmin

⎞

⎠ ≤ n

(

e
−ǫ

(1− ǫ)1−ǫ

)

µmin
B

,

and for any ǫ ≥ 0,

P

⎛

⎝λmax

⎛

⎝

c
∑

j=1

Xj

⎞

⎠ ≥ (1 + ǫ)µmax

⎞

⎠≤n

(

e
ǫ

(1 + ǫ)1+ǫ

)
µmax
B

.

We now present the proof of Theorem III.1.
Proof of Theorem III.1: For the sake of brevity, we drop the

dependence of x in WS . We begin with

WS = OT
SOS =

N
∑

j=1

OT
ij
Oij

where Wj = OT
ij
Oij ∈ R

n×n is a randomly chosen ma-

trix out of the set of matrices X := {W1, . . . ,WM}\
{Wi1 , . . . ,Wij−1

}.

Using Theorem III.6 for the matrices in OT
SOS , we have

µmin = Nλmin

(

1

M
W

)

=
N

M
λmin(W ),

µmax = Nλmax

(

1

M
W

)

=
N

M
λmax(W ).

The first claim now follows directly by applying the inequality
for λmin. For the second claim, we use Boole’s inequality (union

bound) and conclude that

P

(

λmin

(

N
∑

j=1

OT
ij
Oij

)

> (1− ǫ)
N

M
λmin(W )

⋂

λmax

(

N
∑

j=1

OT
ij
Oij

)

< (1 + ǫ)
N

M
λmax(W )

)

≥ 1

− n

(

e
−ǫ

(1− ǫ)1−ǫ

)

Nλmin(W )

MB

− n

(

e
ǫ

(1 + ǫ)1+ǫ

)
Nλmax(W )

BM

,

for any ǫ ∈ (0, 1). The claim now follows from algebra. �

We now present the proof of Corollary III.5.
Proof of Corollary III.5: The first claim follows by imposing

the requirement that

n

(

e
−ǫ

(1− ǫ)1−ǫ

)

Nλmin(W (x))

MB(x)

= δ

⇔ ln
n

δ
=

Nλmin(W (x))

MB(x)
ln

(

(1− ǫ)1−ǫ

e
−ǫ

)

⇔ ln
n

δ
=

Nλmin(W (x))

MB(x)
(ǫ+ (1− ǫ) ln(1− ǫ)),

which, upon taking the supremum over x, yields the desired
sample complexity bound.

For the second claim, observe that

e
−ǫ

(1− ǫ)1−ǫ
≤

e
ǫ

(1 + ǫ)1+ǫ

⇒ −

(

e
−ǫ

(1− ǫ)1−ǫ

)

Nλmin(W )

MB

≥ −

(

e
ǫ

(1 + ǫ)1+ǫ

)

Nλmin(W )

MB

from which it follows that the right hand side of (4) is lower
bounded by

1− n

(

e
ǫ

(1 + ǫ)1+ǫ

)

Nλmin(W )

MB

− n

(

e
ǫ

(1 + ǫ)1+ǫ

)
Nλmax(W )

BM

≥ 1− 2n

(

e
ǫ

(1 + ǫ)1+ǫ

)

Nλmin(W )

MB

,

where we used the fact that λmin(·) ≤ λmax(·). Imposing the
requirement that the second term equals δ and upon following
similar algebra as in the proof of the first claim, we obtain the
following sufficient condition on N ,

N ≥
M

−ǫ+ (1 + ǫ) ln(1 + ǫ)
ln

2n

δ

B(x)

λmin(W (x))
.

The claim now follows by taking a supremum over x. �

IV. APPLICATION TO TARGET LOCALIZATION

In this section, we numerically study the effectiveness of
Algorithm 1 with nonlinear observation functions in two sce-
narios. The first scenario includes the use of range sensors while
the second scenario uses TDOA sensors. In both scenarios, we
compare the estimation performance of the resulting EKF with
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Fig. 1. The ratio,
µ(OS)
µ(O)

for different sizes ofS for the range sensors scenario.

The empirical curve corresponds to the 95 percentile, i.e., only 5% of the
realizations lie below this curve.

that of using all of the sensors. Without any loss of generality, we
consider a linear motion model in the examples, which is inspired
out of similar motion models for mobile targets considered
in [19], [20].

A. Range Sensors

We first study the probabilistic guarantees provided by Al-
gorithm 1. In this numerical study, we assume a simple linear
model for the state evolution, i.e.,

xt+1 = f(xt) = Axt + wt,

with A equal to the identity within a square environment, i.e.,
X ∈ [0, 1]× [0, 1]. The observation model is assumed to be the
square of the distance between the state xt and the location of
the range sensor xi ∈ X , ∀i ∈ {1, . . . ,M}, i.e.,

yi(x) = hi(x) + vi,t = (xi − x)T (xi − x) + vi,t.

The observability matrix for the i-th sensor is given by

Oi =

[

∇hi

∇(∇hT
i f)

]

= 2

[

x− xi

(2x− xi)TA

]

.

We assume that the ranging sensors are located uniformly
randomly in X . Applying the randomized sampling scheme, we
obtain a sensor set S whose inverse condition number has been
compared empirically with that of the entire set in Figures 1

and 2. To generate one value of
µ(OS)
µ(O) , we evaluated 100 Monte

Carlo realizations of the sampling algorithm each yielding a
different set S. As highlighted in Remark III.4, the curve for

the theoretical lower bound
√

(1− ǫ)/(1 + ǫ) in Figure 1 is flat
because it depends only on the choice of ǫ, which was fixed
to 0.7 in these simulations. We observe that for a higher value
of M , the accuracy plot remains approximately similar, but the
probabilistic lower bound from Theorem III.1 improves signif-
icantly, suggesting that this simple sampling scheme provides
useful high probability guarantees when the density of sensors
is high in a region, such as in applications that involve networks
of inexpensive sensors for indoor localization. As discussed in
Remark III.2, since the choice of ǫ is arbitrary, if we were to

Fig. 2. Probabilistic lower bound from Theorem III.1 for the range sensors
scenario. The error bars indicate ±1 standard deviation.

Fig. 3. The ratio,
λmax(PS,T )

λmax(PT )
for different sizes of S for the range sensors

scenario. The error bars indicate ±1 standard deviation. In this simulation, total
number of sensors M = 100, the number of steps T = 10 and 20 Monte Carlo
runs of Algorithm 1 were carried out for every value of N .

decrease ǫ further, then the lower bound in Figure 1 will increase
thereby making the approximation more accurate, but at the
expense of a weaker bound on the probabilistic guarantee.

We now present the results of application of Algorithm 1 to
state estimation using an EKF. If PS,t denotes the estimation
error covariance of the EKF using the sensor set S at time t, then
the performance of an EKF is measured using λmax(PS,T ), where
T is the estimation horizon. We compared the performance of
the EKF using the set S computed using Algorithm 1 to that
of the EKF using all of the M sensors in terms of the ratio
λmax(PS,T )/λmax(PT ).

The trend is summarized in Figure 3, wherein a lower value
on the y-axis indicates better performance. We observe that the
ratio improves with increasing N as is expected. In particular,
with 45% of the total number of sensors, we obtain only a factor
of 2 degradation in performance.

We finally compared the performance of the EKF using the
set S computed out of Algorithm 1 to that of the EKF using a
greedy algorithm described as follows:
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Fig. 4. The ratio,
λmax(PS,T )

λmax(PG,T )
for different sizes of S for the range sensors

scenario. Here, PG,T denotes the estimation error covariance of the EKF using
the output of the greedy algorithm. A ratio less than unity indicates improvement
performance of Algorithm 1 over the greedy heuristic. The error bars indicate
±1 standard deviation. In this simulation, total number of sensorsM = 100, the
number of steps T = 10 and 20 Monte Carlo runs of Algorithm 1 were carried
out for every value of x and 20 Monte Carlo runs for every value of N .

1) Start with a set of 3 arbitrarily chosen sensors and a fixed
value of x such as the initial estimate of the target location.

2) Select the next sensor that maximizes the metric if that
sensor is to be added to the existing subset.

3) Continue until the number of sensors equals N .
The greedy algorithm terminates in finite number of iterations,

but does not possess any known theoretical guarantees. We
used the same number of sensors in our proposed randomized
approach. The results are summarized in Figure 4 using both
metrics considered in this letter. The choice of the initial target
positionx is selected uniformly randomly from the environment.
We observe that the EKF error is comparable between the
two approaches and in particular, using the condition number
metric, our approach provides an improvement over the greedy
algorithm. We conjecture that this may be attributed to the
fact that the greedy algorithm relies greatly on the choice of
the point x in the computation of the observability Gramian,
whereas our sampling algorithm is agnostic to the choice of
x. Therefore, over a trajectory, there may be target locations
that lead to a higher estimation error on average for the greedy
approach.

B. TDOA Sensors

We now present the results in a scenario that involves the
use of TDOA measurements. The model is equivalent to range
difference between two sensors when the signal speed is known.
Given any two neighboring sensors i and j, the observation
model is assumed to be the difference of the distance between the
statext and the location of the sensorxi and the distance between
the xt and the location of its neighbor xj , ∀j ∈ {1, . . . ,M}, i.e.,

yi,j(x) = hi,j(x) + vij,t = ‖xi − x‖ − ‖xj − x‖+ vij,t.

In this approach, a sensor is used as a reference node, and the
range differences are computed with respect to that reference

Fig. 5. The ratio,
µ(OS)
µ(O)

for different sizes of S using the TDOA sensors. The

empirical curve corresponds to the 95 percentile, i.e., only 5% of the realizations
lie below this curve.

Fig. 6. Probability of validity of the analytic bound using TDOA sensors. The
error bars indicate ±1 standard deviation.

node. If sensor i is used as the reference, the nonlinear observ-
ability matrix for its j-th neighbor is given by

Oi,j =

[

∇hi,j

∇(∇hT
i,jf)

]

=

[

x−xi

‖x−xi‖ −
x−xj

‖x−xj‖

A(2x−xi)
‖x−xi‖ − (x−xi)Ax(x−xi)

‖x−xi‖3 −A(2x−xj)
‖x−xj‖ + (x−xj)Ax(x−xj)

‖x−xj‖3

]

.

Akin to the previous subsection, we first present the proba-
bilistic guarantees similar to those for the ranging sensors, as
summarized in Figures 5 and 6. In this setup, we assumed a
circular arrangement for the TDOA sensors (cf. Figure 8), i.e.,
the sensors are placed on the vertices of a regular polygon of
radius equal to 100 units, with one of the sensors identified as
the reference sensor. The numerical procedure is identical to that
for the range sensors and with ǫ = 0.7. These results also suggest
a similar conclusion as in the case of the range sensors that the



BOPARDIKAR et al.: RANDOMIZED SENSOR SELECTION FOR NONLINEAR SYSTEMS WITH APPLICATION TO TARGET LOCALIZATION 3559

Fig. 7. The ratio,
λmax(PS,T )

λmax(PG,T )
for different sizes of S for the TDOA sensors.

The error bars indicate ±1 standard deviation. In this simulation, total number
of sensors M = 100, the number of steps T = 10 and 20 Monte Carlo runs of
Algorithm 1 were carried out for every value of x and 20 Monte Carlo runs for
every value of N .

Fig. 8. Simulation setup for evaluation of Algorithm 1 using TDOA mea-
surements. Blue squares represent the available sensors, while the gray square
represents the reference node. Straight lines between square indicates that the
TDOA measurements is part of the subset selected by Algorithm 1. Error ellipses
are plotted around the target (red circle), where the blue ellipse represents the
confidence bound using the subset, while the gray ellipse shows the confidence
bound using the entire set of measurement.

sampling scheme provides useful high probability guarantees
when the density of sensors is high in a region.

We also compared the performance of Algorithm 1 to that of
the greedy algorithm outlined in the previous sub-section. The
results are summarized in Figure 7 and we see that our approach
provides an improvement over the greedy algorithm, in both
metrics over a wide range of the fraction of sensors. The choice
of the initial target position x is selected uniformly randomly
from the environment.

Finally, we present the results of application of Algorithm 1
to state estimation using an EKF. As before, the performance
of an EKF is measured using λmax(PS,T ). The simulation setup
is shown in Figure 8 where the estimation performance using
a subset of the measurements is compared to that using the

Fig. 9. The ratio,
λmax(PS,T )

λmax(PT )
for different sizes ofS for TDOA measurements.

The errorbars indicate ±1 standard deviation.

full set. The total number of sensors used in the simulation
is 11, resulting in 10 range-difference links for the reference
node. Algorithm 1 was applied to randomly select a subset
of the available range-difference links. Two error ellipses are
shown in Figure 8. As expected, the error ellipse for using the
complete set of range-differences is tighter than that using a
subset of measurements. A video illustrating this approach has
been uploaded as an attachment to this submission.

For each size of S, the process was repeated 100 times before
increasing the size of the set by one. We compared the perfor-
mance of the EKF using the set S computed using Algorithm 1
to that of the EKF using all of the M sensors in terms of the ratio
λmax(PS,T )
λmax(PT ) . The trend is summarized in Figure 9, wherein a lower

value on the y-axis indicates better performance. We observe that
the ratio improves with increasing N as is expected.

Localization using range-difference measurements heavily
relies on the relative positions between target and sensors [18],
[20]. This explains the large variations in the data in Figure 9
when only 2 or 3 TDOA links are used, as it becomes more likely
to select an unfavorable configuration for TDOA localization.
Further, we observe that the performance is fairly flat beyond
40 percent of the sensors used suggesting that the marginal
improvement in the quality of the estimate decreases with a
high confidence with increasing number of TDOA links. We
also repeated this simulation with the choice of the trace of the
estimation error covariance matrix as metric leading to the ratio,
Tr(PS,T )/Tr(PT ). We obtain qualitatively similar results with
a large variance for 2 or 3 TDOA links, but with mean ratio much
closer to one than in Figure 9. We skip the details in the interest
of space.

V. CONCLUSION AND FUTURE DIRECTIONS

This letter considered the problem of randomly sampling
sensors out of the total set in order to provide probabilistic guar-
antees on the minimum eigenvalue and inverse condition number
of the observability Gramian. We analyzed a simple randomized
algorithm based on uniform sampling without replacement and
derived novel high-probability lower bounds on the two metrics.
These lower bounds are relative to the observability Gramian
constructed out of all of the sensors. The utility of our theoret-
ical results lies in the regime of large total number of sensors
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thereby providing an alternative to the combinatorially complex
formulation of the sensor selection problem. The empirical per-
formance of proposed approach showed a graceful degradation
of performance with respect to the use of an EKF with all of
the available sensors. We also observe an improvement over a
greedy heuristic for specific choice of the metrics, especially in
the regime of low number of samples of sensors.

We are presently studying the case of sampling sensors with
non-uniform probability. Longer term extensions include prob-
lems involving sensor scheduling for nonlinear systems, an
improved analysis especially in the regime of low number of
sensors, and characterization of the error of the randomized
algorithm relative to the best set of a given cardinality. Also
of interest are the applications to non-homogeneous sensor
networks and applicability to specific sensors such as bearing
along with a limited field of view.
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