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Octahedral tilting transitions are observed in most inorganic halide perovskites and play an impor-
tant role in determining their functional and thermodynamic properties. Despite existing near room
temperature, the cubic and tetragonal forms of halide perovskites become dynamically unstable at
low temperature, making it impossible to study their thermodynamic properties with commonly
used quasi-harmonic models. An anharmonic vibrational Hamiltonian is constructed that accu-
rately reproduces the low-energy portion of the potential energy surface of the halide perovskite
CsPbBr3. The Hamiltonian is validated using a large first-principles dataset of energies calcu-
lated within density functional theory for large-amplitude deformations of the CsPbBr3 crystal.
Monte Carlo simulations performed on the Hamiltonian reproduce the orthorhombic–tetragonal–
cubic phase transitions observed in CsPbBr3 and many other halide perovskites, demonstrating
the importance of anharmonic vibrational excitations in stabilizing the tetragonal and cubic phases
in these materials. Measures of local structure and octahedral tilting in the cubic and tetragonal
phases, obtained from Monte Carlo simulations, confirm the connection between large anisotropic
displacement factors and octahedral tilting, as observed experimentally.

I. INTRODUCTION

The past decade has seen impressive increases in power
conversion efficiencies of halide perovskite based photo-
voltaic devices. [1] Halide perovskites differ from most
other electronic materials in that their unique electronic
properties are strongly affected by vibrational excita-
tions. Their soft anharmonic crystals result in Rashba-
Dresslhaus splitting of the conduction band [2–7] and
give rise to strong electron-phonon interactions that al-
low for large polaron formation. [8–10] Anharmonic vi-
brational excitations also play a key role in the structural
phase transitions of halide perovskites. Most halide per-
ovskites undergo a series of group/subgroup structural
phase transitions upon cooling as a result of symmetry
breaking octahedral tilts. The inorganic CsPbBr3 per-
ovskite, for example, is stable in the cubic Pm3̄m phase
at elevated temperature, but transforms to a tetragonal
phase having P4/mbm symmetry at intermediate tem-
perature and an orthrhombic phase with Pnma symme-
try at very low temperatures[11–19].

The cubic and tetragonal forms of halide perovskites
distinguish themselves from most other room tempera-
ture phases in that they are usually dynamically unsta-
ble at zero Kelvin with respect to octahedral tilt modes
[5, 14, 20–25]. Figure 1, for example, shows an energy
landscape, as calculated with an approximation to den-
sity functional theory, of CsPbBr3 in the perovskite crys-
tal structure as a function of two collective octahedral tilt
modes. [20] The cubic form, referred to as α, resides at
the origin in Figure 1 and its energy corresponds to a
local maximum. The tetragonal phase, β, is obtained
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from the cubic phase by the activation of in-phase tilt
modes about the z-rotation axis with amplitude a, de-
noted (00a+) in Glazer notation[26]. Its energy is a sad-
dle point. The low temperature orthorhombic phase, γ,
emerges from the tetragonal phase by the activation of
two simultaneous anti-phase tilts about the x and y ro-
tation axes resulting in the (b−b−a+) tilt pattern. As is
clear from Figure 1, only the orthorhombic phase resides
in an energy well. The negative curvatures in the energy
landscape for the cubic and tetragonal symmetries show
that these phases are dynamically unstable and cannot
be described with harmonic vibrational Hamiltonians,
where the potential energy is expanded to only second
order in terms of atomic displacements. The emergence
of the cubic and tetragonal forms of CsPbBr3 at elevated
temperature must therefore arise from large anharmonic
vibrational excitations.

Several approaches exist to model anharmonic lattice
dynamics and temperature-dependent structural phase
transitions. A direct approach is to perform ab ini-
tio molecular dynamics (AIMD) simulations to calcu-
late thermodynamic averages as a function of temper-
ature. [25, 27–29] AIMD, however, is computationally
expensive and limited to short times and small super-
cell sizes. Approaches that rely on self-consistent[30] or
constrained[31, 32] extensions of harmonic phonon anal-
yses have shown promise for approximating the free en-
ergies of anharmonically stabilized phases, although at
the expense of discarding information about dynamical
phenomena in the high-temperature phase. Still other
approaches rely on anharmonic effective Hamiltonians
to interpolate and extrapolate expensive first-principles
calculations within large-scale Monte Carlo simulations.
These were developed early on to study polar and octa-
hedral tilt distortions in oxide perovskites [33–45] and
have been refined in recent years to study other classes
of group/subgroup structural phase transitions. [46–49]
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The aim of this study is to elucidate the
group/subgroup structural phase transitions involv-
ing octahedral tilts in inorganic halide perovskites. To
this end, we develop a minimal anharmonic vibrational
Hamiltonian that captures the essential physics of the
orthorhombic to tetragonal to cubic structural transi-
tions of inorganic halide perovskites such as CsPbBr3.
We parametrize the Hamiltonian to approximate the
first-principles potential-energy surface of CsPbBr3 near
its observed perovskite phases to develop a model that
faithfully reproduces the dynamical instabilities exhib-
ited by common halide perovskites. We then explore the
finite temperature behavior of this Hamiltonian with
Monte Carlo simulations and demonstrate that the cubic
and tetragonal phases emerge at elevated temperature
in spite of the fact that they reside at local maxima or
saddle points on the zero Kelvin energy landscape. The
use of a minimal anharmonic vibrational Hamiltonian
allows us to parametrically isolate the role of particular
interactions in affecting the nature of structural phase
transitions in halide perovskites due to octahedral tilt
modes. We explore how small changes in the energy
surface of Figure 1 manifest themselves in the finite
temperature behavior and find that changes in the
interaction strength between halides of neighboring
octahedra can have a strong influence on the finite
temperature stability of the intermediate tetragonal
form.

II. METHOD

We express the potential energy surface of a crystal as
a sum of contributions due to individual clusters of sites,
according to [51]

E (..., u⃗i, ...) = E0 +
∑
α

Φα

(
qα1 , ..., q

α
nα

)
(1)

E0 is the energy of a specified reference crystal and the
u⃗i are displacement vectors of the sites i relative to their
position in the reference crystal. The contribution from
a cluster α is a function of variables qα1 , ..., q

α
nα

that mea-
sure the degree to which the cluster is distorted relative to
its state in the reference crystal. The set of clusters {α}
typically comprise pair clusters and compact multi-body
clusters such as tetrahedra and octahedra. Defining the
variables qα1 , ..., q

α
nα

to be invariant to rigid translations
and rotations of the distorted cluster ensures that the
energy expression is itself invariant to rigid translations
and rotations of the crystal. In studying group/subgroup
structural phase transitions, it is common to use the high
symmetry phase as the reference crystal. The symme-
try of the reference crystal then imposes additional con-
straints on the cluster functions Φα to ensure that any
two displacement fields that are equivalent under a sym-
metry operation of the reference crystal have the same
energy.

FIG. 1. (a) Many halide perovskites such as CsPbBr3 undergo
a series of structural transitions upon cooling, starting in a
cubic form at high temperature and transforming to tetrag-
onal and orthorhombic forms at low temperature as a result
of octahedral tilts. (b) The energy surface of CsPbBr3 as a
function of octahedral tilts, calculated with density functional
theory for configurations with orthorhombic lattice parame-
ters. For each configuration, the PbBr6 sublattice and lattice
parameters were held fixed while the Cs sublattice was allowed
to relax. The energy surface shows that the cubic phase, α,
coincides with a local maximum, the tetragonal phase, β, re-
sides at a saddle point, and the ground state orthorhombic
phase, γ, corresponds to a stable minimum. (Crystal struc-
tures visualized using the VESTA program suite [50])

There are multiple ways to arrive at variables that rig-
orously describe deformations of a cluster α relative to
its undistorted shape in a reference crystal [47, 51]. One
is to rely on distances, dl, between each constituent pair,
l, of sites within cluster α in its deformed state. Each
pair distance dl is invariant to rigid translations and ro-
tations of cluster α, and knowledge of all pair distances
of a cluster is sufficient to reconstruct the cluster up to a
rigid translation and rotation. Since we are interested in
deformations of a cluster relative to its undistorted state
in a reference crystal, it is more convenient to work with
functions of pair distances, f (dl), that are zero in the
reference state. Several possible functional forms for f
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include

flin =

√
d2l
d̃2l

− 1 (2)

fquad =
1

2
(
d2l
d̃2l

− 1) (3)

flog =
1

2
ln
d2l
d̃2l
. (4)

where d̃l represents the reference pair distance. A suit-
able pair-deformation function satisfies three constraints:
(1) f is monotonic; (2) the slope of f at dl = d̃l is 1/d̃l;

and (3) f(d̃l) = 0. As is evident from Figure 2, the
log function is particularly useful to model the energy of
a crystal since it penalizes pair contraction more heav-
ily than pair expansion, thereby naturally accounting for
the typical behavior of solids to become softer upon vol-
umetric expansion.

While the f(dl) evaluated for all constituent pairs of
the cluster could by themselves serve as descriptors of the
cluster deformation, it is more convenient to work with
collective cluster deformation (CCD) variables, which are
symmetry-adapted linear combinations of the f(dl) ac-
cording to

qk =
∑
l

Uklf(dl). (5)

The Ukl are elements of a matrix U that transforms a
vector having elements {f(dl)} to a new vector Q⃗α =
(qα1 , . . . , q

α
k . . . ) representing collective distortions of the

cluster α. The matrix U is chosen such that the re-
sulting CCD variables can be grouped into distinct sub-
spaces corresponding to irreducible representations (ir-
reps) of the cluster point group Pα (this is the subgroup
of the crystal space group that maps the reference clus-
ter α onto itself). As an example, Figure 3 illustrates the
CCDs generated in this manner for an octahedral cluster
and a pair cluster. The octahedron CCDs q1, q2, and
q3 of Figure 3, for instance, define a three-dimensional
CCD subspace corresponding to an individual irrep. A
symmetry operation acting on a CCD vector within this
subspace can map it to a new vector within the sub-
space having the same length, but it cannot map it to
a new vector having a component corresponding to any
other irreducible representation. Similarly, any volumet-
ric deformation is completely encompassed by the one-
dimensional irrep corresponding to the q0 CCD. Detailed
definitions of the octahedral CCD variables, including
the geometry of the undeformed reference cluster, are
provided in the supplementary information[52].

With robust collective cluster deformation variables
that are both translation and rotation invariant, we next
establish a functional form for the cluster functions Φα

of Eq. 1. Similar to the anharmonic vibrational cluster
expansion [47], we express Φα as a linear expansion of

FIG. 2. (a) Linear (blue), quadratic (green), and logarithmic
(red) pair functors plotted as a function of pair distance. The
reference pair distance is denoted as d0 and the dotted line
represents f(d) = 0. (b) The square of the different pair
functors are plotted. The log functor is used in this study in
order to penalize pair contraction over pair expansion giving
rise to volumetric expansion upon heating.

FIG. 3. Collective cluster deformations (CCDs) for (a) an
octahedron and (b) a pair. The octahedral CCDs are orga-
nized by irreducible representations, with one 1D irrep, one
2D irrep and four 3D irreps. A pair cluster has only one CCD
corresponding to the pair distance.

polynomials of the Q⃗α = qα1 , ..., q
α
nα

according to

Φα(Q⃗
α) =

∑
n

V α
n ϕ

α
n(Q⃗

α) (6)

where the V α
n are expansion coefficients that are deter-

mined by the chemistry of the crystal, and the ϕαn(Q⃗
α)

are polynomials of the elements of Q⃗α. The polyno-
mials must be invariant to the symmetry of the cluster
within the reference crystal. For instance, although the
second order functions, q21 of the octahedral cluster is
not symmetry-invariant, the function (q21 + q22 + q23) is
symmetry-invariant, since deformations along q1, q2 and
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q3 are related by symmetry. A complete set of polynomi-

als
{
ϕαn(Q⃗)

}
that are invariant to the relevant symme-

tries of the parent phase can be constructed systemati-
cally using the Reynold’s operator, as described in [47].

In general, it is necessary to include several different
cluster types in the expansion of Eq. 1. For the per-
ovskite crystal structure, for example, a minimal Hamil-
tonian should include the octahedron, along with a vari-
ety of pairs not already included in the octahedron. All
clusters β that can be mapped onto a prototype cluster
α by a symmetry operation of the parent crystal struc-
ture are said to belong to the orbit of α, denoted as Ωα.
Any two cluster functions ϕβn and ϕβ

′

n corresponding to
clusters belonging to the same orbit, Ωα, have the same
set of expansion coefficients V α

n . The total energy of the
crystal can then be expressed as:

E (..., u⃗i, ...) = E0 +
∑
α

∑
β∈Ωα

∑
n

V α
n ϕ

β
n(Q⃗

β) (7)

where α indexes the unique cluster types, β indexes the
symmetrically equivalent copies of the cluster within the
orbit Ωα, and n indexes the basis functions for that type
of cluster, α. In principle, there are an infinite num-
ber of basis functions per cluster, but, in practice, basis
functions up to second, fourth, or sixth order are used.
An example of the basis functions, ϕαn, and fitting coef-
ficients used in this study are presented in Table I. The
expansion coefficients, V α

n , can be determined by train-
ing the energy expression, Eq. 7, to a large dataset of
energies calculated for many different distorted states of
the crystal.

III. RESULTS

A. Anharmonic vibrational cluster expansion
model for perovskites

We formulated a model Hamiltonian for CsPbBr3
within the anharmonic potential cluster-expansion
framework[47] as a linear expansion of polynomial basis
functions according to Eq. (7). The minimal anharmonic
vibrational Hamiltonian was constructed starting from a
neural-network model of the CsPbBr3 potential-energy
surface described in [51]. Each cluster-based interaction
in that model is computed via an artificial neural net-
work, which is a hierarchical model comprising layers of
simple nonlinear functions weighted by free parameters.
The free parameters can be adjusted to approximate ar-
bitrary functions, allowing high fidelity to the training
data, though with nontrivial computational overhead and
a tendency towards overfitting. Details of how various
neural network architectures may be formulated for a
crystalline system are provided in [51].

We parametrized the minimal anharmonic vibrational
Hamiltonian utilized in this work by fitting the polyno-
mial interaction of each cluster to data generated by its

TABLE I. Basis functions and fitting coefficients as
parametrized from the neural network model.

Cluster function ECI ECI value (meV) basis function
ΦCsBr V0 70.035 q0

V1 -14.314 q20
V2 -19.616 q30
V3 9.093 q40

ΦCsPb V0 -4.236 q0
V1 11.276 q20

ΦBrBr V0 -3.620 q0
V1 8.687 q20

ΦCsCs V0 -24.677 q0
V1 49.844 q20

ΦPbBr6 V0 -267.550 q0
V1 215.810 q20
V2 -32.585 q30
V3 5.605 q40
V4 157.590 q21 + q22 + q23
V5 23.388 (q21 + q22 + q23)2

V6 121.620 q24 + q25
V7 6.324 (q24 + q25)2

V8 25.468 q26 + q27 + q28
V9 0.986 (q26 + q27 + q28)2

V10 16.996 q29 + q210 + q211
V11 0.102 (q29 + q210 + q211)2

V12 7.177 q212 + q213 + q214
V13 0.045 (q212 + q213 + q214)2

corresponding neural network from [51]. In doing so, we
obtain a computationally efficient energy expression that
captures salient features of the potential energy surface of
CsPbBr3 while avoiding overfitting. The error of the re-
sulting Hamiltonian was tested against the validation set
of over 30,000 DFT-calculated energies utilized to train
the original neural-network model[53]. This procedure
resulted in a model with total root-mean-square error of
0.0277 eV/atom for all validation samples and of 0.0024
eV/atom for validation samples having DFT-calculated
energies below the reference cubic energy. The CASM li-
brary was employed for constructing symmetry-invariant
basis functions and parameterizing the anharmonic vi-
brational Hamiltonian[47, 54–56].

The results of the fitting procedure are the effective
cluster interaction coefficients listed in Table I. The an-
harmonic vibrational Hamiltonian includes terms for the
PbBr6 octahedron cluster and for four pair clusters:
Cs−Br, Cs−Pb, Cs−Cs, and Br−Br. Several polyno-
mial basis functions in terms of the cluster CCD’s are
included for each cluster. As shown in Table I, the near-
est neighbor CsBr pair energy and the octahedral cluster
energy were expanded to fourth order in terms of their
CCDs while the remaining pairs were only expanded to
second order. Figure 4(a-e) shows the clusters that are in-
cluded in the anharmonic vibrational Hamiltonian along
with depictions of their contribution to the total energy
as a function of q0, which is a measure of a symmetry-
invariant deformation of each cluster.
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FIG. 4. (a-e) Symmetrically equivalent clusters (top panel) and evaluated cluster energy function (bottom panel) as a function
of q0 (volumetric deformation) for each cluster included in the anharmonic vibrational Hamiltonian.

Figure 5 shows that the anharmonic vibrational Hamil-
tonian reproduces many of the qualitative features of the
DFT energy surface of CsPbBr3 within the subspace of
octahedral tilt modes that connects γ, β and α (fixing
the unit cell dimensions to those of the orthorhombic unit
cell). The Hamiltonian, based upon only four pairs and
one octahedral cluster, is capable of reproducing the min-
ima corresponding to orthorhombic γ, the saddle point
for tetragonal β and the local maximum for cubic α. Fur-
thermore, it also correctly predicts a saddle point for the
orthorhombic distortion corresponding to the ϵ-phase,
which, in a manner that is similar to tetragonal β, sep-
arates pairs of translational variants of the ground state
γ phase. The energy of this saddle point, however, is
overestimated by 7.6 meV relative to the DFT-calculated
value. At regions of large tilts the minimal anharmonic
model severely overestimates the energy. This is likely an
artifact of fitting only to deformations near the minima,
thereby resulting in an overestimation of the energy for
large deformations. The comparison in Figure 5 shows
that the anharmonic cluster expansion qualitatively re-
produces the DFT energy landscape in a small, but im-
portant subspace of all possible vibrational excitations
that are possible relative to a cubic perovskite crystal.
We emphasize that the validation dataset includes a large
number of energies corresponding to homogeneous dis-
tortions and internal displacements that reside outside
of the subspace shown in Figure 5. More details can be
found in [51].

B. Finite temperature properties

The energy surface of Figure 1 gives preliminary in-
sights about the types of structural phase transitions that
can occur as a function of temperature. At low tempera-
tures, the crystal will sample states within an energy well
corresponding to the orthorhombic γ-phase ground state.
Figure 1 shows four of these energy wells corresponding

to the translational variants of the same orthorhombic
orientational variant, of which there are six [20]. At
sufficiently low temperatures, the vibrational excitations
are harmonic and restricted to the bottom of one of the
wells. Upon heating, the crystal is able to sample more
energetically unfavorable states. The shallow and highly
anharmonic energy surface of Figure 1 indicates that an-
harmonic vibrational excitations should already become
important at low temperatures. Above a particular tem-
perature, there is sufficient thermal energy for the crystal
to no longer be constrained to a single orthorhombic well.
Figure 1 shows the existence of shallow valleys connect-
ing pairs of translational variants of γ with a tetragonal
β residing at a saddle point separating each pair of γ
variants. We can expect the emergence of an averaged
crystal having tetragonal β symmetry once the available
thermal energy allows the crystal to escape a particular
orthorhombic well of Figure 1. At even higher temper-
ature, the crystal is able to escape the valley centered
around the tetragonal β symmetry and start sampling
a larger part of phase space that has on average cubic
symmetry.

It is important to note that the energy surface in Fig-
ure 1 represents homogenous deformations to the crystal,
while a real crystal will sample a much higher dimen-
sional space of microstates since each local environment
is free to sample states relatively independently of other
local environments. The anharmonic vibrational Hamil-
tonian allows us to sample this high dimensional space of
microstates within Monte Carlo simulations where ther-
modynamic averages and local correlations can be calcu-
lated. These averages provide insight about the nature of
anharmonic vibrations that stabilize the tetragonal and
cubic phases at elevated temperature.

Finite temperature Monte Carlo simulations using the
Metropolis-Hastings algorithm were performed on the
anharmonic cluster expansion to investigate structural
phase transitions as a function of temperature. During
each Monte Carlo pass, atomic displacement perturba-
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FIG. 5. Linearized model energy landscape (surface) com-
pared to the DFT energy landscape (mesh). Energy barri-
ers through the ϵ-phase and β-phases are depicted and la-
beled ∆Eγ→ϵ and ∆Eγ→β respectively. The linear model
reproduces many of the qualitative features of the DFT en-
ergy landscape; however it overestimates the energy barrier
∆Eγ→ϵ.

tions and homogenous strain perturbations are proposed
such that, on average, each site in the crystal is visited
once. Strain perturbations are proposed in a ratio of
1:100 to atomic perturbations. Thermodynamic averages
are computed once the system has equilibrated, typically
around 2000-4000 passes, and averages are taken for 4000
passes. Monte Carlo simulations were initialized at low
temperature with the ground state structure. Thermo-
dynamic averages of the deformation tensor, ⟨F ⟩, from
which strains can be calculated, [47, 57] and atomic dis-
placements, ⟨u⃗⟩, were used to analyze the evolution of
local and average structure as a function of temperature.
Simulations were performed in a 8640-atom 12× 12× 12
supercell of the CsPbBr3 primitive cell, except where
noted.

Figure 6 shows the temperature dependence of av-
eraged strain order parameters [58] as calculated with
Monte Carlo simulations applied to the anharmonic clus-
ter expansion of Table I. The strain order parameters,
e1, ..., e6, are symmetry-adapted linear combinations of
the Hencky strains measured relative to a cubic refer-
ence state of perovskite, with the Cartesian axes aligned
parallel to the cubic perovskite primitive unit cell vec-
tors [58]. The first strain order parameter, e1, mea-
sures shape-preserving volumetric change. The other five
strain order parameters measure symmetry changes rela-
tive to the cubic reference and are zero in the cubic phase.
The pair of order parameters (e2, e3) describe tetrag-
onal and/or orthorhombic symmetry-breaking, with e3
describing tetragonal deformations along the z axis.
The subspace (e4, e5, e6) describes shear strain, with e6
describing tetragonal–orthorhombic symmetry-breaking

FIG. 6. (a) Thermodynamically averaged strain order pa-
rameters as calculated with Monte Carlo simulations applied
to the anharmonic cluster expansion of Table I. (b) Ther-
modynamically averaged displacement covariances were used
to compute the atomic displacement parameters (ADP). The
ADP ellipsoids enclose 90% of the cumulative probability den-
sity of atomic motion.

relative to the z-oriented tetragonal phase. In short, the
tetragonal phase, β, can be distinguished from the cu-
bic phase by a non-zero e3 order parameter, while the
orthorhombic phase, γ, has non-zero e3 and e6 order
parameters [20]. Figure 6 shows that the orthorhom-
bic phase is predicted to be stable at low temperature
where e3 and e6 differ from zero. At high temperature,
the crystal adopts an average cubic structure as only the
volumetric strain order parameter, e1, is non zero. While
it is not immediately evident from the Figure 6, the inset
suggests a very narrow temperature interval centered at
270 K in which the tetragonal phase becomes stable, as
manifested by a non-zero e3.

In addition to tracking variations in average lattice pa-
rameters and symmetries with temperature, we can also
analyze local atomic displacements. To this end, we col-
lected thermodynamically averaged atomic coordinates
and displacement covariance matrices, Uij = ⟨uiuj⟩ −
⟨ui⟩⟨uj⟩ for each atom (where i and j represent Cartesian
components of the atomic displacement vector u⃗). The
displacement covariance matrices define an anisotropic
Gaussian probability distribution for atomic displace-
ments and are used to compute thermal ellispoids at 90%
probability contours in Figure 6(d) for the observed or-
thorhombic, tetragonal and cubic phases. The structures
reproduce the tilt modes and A-cation displacements of
the experimentally observed γ and α phases. Remark-
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FIG. 7. (a) Energies of γ, β and ϵ relative to undistorted
α (set equal to zero) as a function of V BrBr

0 while keeping
the relative values of all other coefficients of the anharmonic
vibrational Hamiltonian of Table I constant (all Hamiltonian
coefficients were rescaled to maintain a constant difference in
energy between γ and α ). (b) Transition temperatures as
a function of V BrBr

0 . The temperature interval in which the
tetragonal β phase is stable increases as the energies of β and
ϵ decrease relative to that of γ. The dashed gray line indicates
an ECI value of 0.018 eV and is the model used to investigate
local octahedral tilt environments.

ably, the atomic displacement parameters show excellent
qualitative agreement to those observed experimentally
for the halide perovskite CsSnBr3[14]. In particular the
high temperature cubic phase shows very large pancake-
shaped Br atomic displacement parameters (ADPs), in-
dicating a high degree of motion in only one plane. These
correspond to large amplitude and highly anharmonic
lattice dynamics associated with octahedral tilting of the
PbBr6 inorganic sublattice.

C. Stabilizing the Tetragonal Phase

The anharmonic vibrational Hamiltonian of Table I,
while reproducing the experimentally observed γ to β and
the β to α structural phase transitions exhibited by many
inorganic halide perovskites, only stabilizes the tetrago-
nal β phase in a very narrow temperature interval (Fig-
ure 6). Experimental studies of halide perovskites usually
show a larger temperature interval in which the tetrago-
nal phase is stable. It is possible to increase the predicted
stability window of the tetragonal β phase by paramet-
rically adjusting the expansion coefficients of the anhar-
monic vibrational Hamiltonian of Table I. Figure 7(a),
for example, shows that the stability of β relative to γ
and α can be enhanced by an increase in the first order
term, V BrBr

0 , of the Br-Br pair cluster function (i.e. V0
in ΦBrBr (q0) = V0q0 + V1q

2
0). An increase in the value

of V BrBr
0 has the effect of shifting the minimum in the

Br-Br pair cluster function to smaller distances relative
to its reference distance in the cubic phase. As is clear
from Figure 7(b) an increase in V BrBr

0 lowers the saddle
point energy of β relative to that of γ and α. It also
lowers the energy of the other saddle point correspond-
ing to the orthorhombic ϵ variant, but slightly increases

FIG. 8. (a) Thermodynamically averaged strain order pa-
rameters from Monte Carlo simulations using an anharmonic
vibrational Hamiltonian that stabilizes the β phase over a
wide temperature interval (see text for more details). Repre-
sentative structures are shown in (b), along with thermody-
namically averaged ADP ellipsoids, which enclose 90% of the
cumulative probability density of atomic motion.

the gap between β and ϵ. In varying V BrBr
0 parameteri-

cally, we rescaled all other parameters of the anharmonic
vibrational Hamiltonian such that the energy difference
between γ and α remains constant. Monte Carlo simula-
tions performed on supercells containing 1728 unit cells
at 5K temperature increments show that an increase in
V BrBr
0 results in a divergence of the γ to β and the β to
α transition temperatures, thereby widening the temper-
ature interval in which β is stable (Figure 7(b)).

Figure 8 shows thermodynamically averaged strain or-
der parameters as calculated with an anharmonic vibra-
tional Hamiltonian in which V BrBr

0 has a value corre-
sponding to the dashed line in Figure 7 and all other
parameters of Table I are rescaled to maintain a con-
stant energy difference between γ and α. Also shown
in Figure 8 is the average structure at different tem-
peratures along with the ADPs derived from the ther-
modynamically averaged displacement covariance matri-
ces. This reparametrized anharmonic vibrational Hamil-
tonian exhibits a much more robust range of stability
for the tetragonal β phase. Both the orthorhombic and
cubic phases show the same distinctive behavior as pre-
dicted by the original Hamiltonian of Table I; however,
the tetragonal phase shows an additional anisotropy of
the Cs displacements with a football shaped thermal el-
lipsoid.
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D. Octahedral Tilts across Transitions

The phase transitions in inorganic halide perovskites
are often described in terms of the collective tilt modes
of the halide sublattice. We explored the local environ-
ment due to octahedral tilts as shown in Figure 9 with
the anharmonic vibrational Hamiltonian used to calcu-
late the properties of Figure 8. At each temperature, we
collected extrinsic Euler rotation angles for all octahe-
dra in the simulation cell after every Monte Carlo pass.
Euler angles were extracted by first applying the Kabsch
algorithm to each octahedron to find the optimal rotation
matrix that minimizes the squared distances between the
rotated and non-rotated octahedron. The rotation ma-
trix was then decomposed into elementary extrinsic Euler
angles, Rx(ϕ), Ry(θ), and Rz(ψ), which represent rota-
tions about the Cartesian x, y, and z axes, respectively.
Figure 9(b) shows histograms of the individual octahe-

dral rotations in each phase. In the orthorhombic phase
there exist bimodal peaks in the distribution for each
Euler angle. In these simulations the in-phase rotation
takes place about the z-axis, while the out-of-phase ro-
tations occur along the x and y axes. There is a pro-
gression in octahedral rotations between the orthorhom-
bic and tetragonal phases as the bimodal peaks along x
and y combine to a single peak centered at zero in the
tetragonal phase. Likewise, the in-phase tilting peaks co-
alesce into one peak centered at 0 upon heating to the
cubic phase. The distributions are shown as a function
of temperature in Figure 9(e) where the average rotation
angles can serve as order parameters through the two
phase transitions.

IV. DISCUSSION

The cubic and tetragonal forms of many halide per-
ovskites are predicted to be dynamically unstable at zero
Kelvin by DFT electronic structure methods. Never-
theless, these phases exist at finite temperature, often
even at room temperature. The anharmonic vibrational
Hamiltonians introduced in this study allow us to un-
derstand the finite temperature properties of halide per-
ovskites. They faithfully reproduce important features
of the energy surface of typical inorganic halide per-
ovskites and are validated against a large database of
first-principles energies for large-amplitude deformation
states of CsPbBr3 perovskite[51]. Remarkably, Monte
Carlo simulations utilizing this Hamiltonian predict the
thermodynamic stability of the cubic and tetragonal
phases at elevated temperature, in spite of the fact that
they are dynamically unstable at zero Kelvin.

The Monte Carlo simulations also enable characteriza-
tion of local structural features as a function of temper-
ature. The bimodal distribution of thermodynamically
averaged octahedral tilt angles coalesce into one peak,
centered at zero, upon passing through the tetragonal-
cubic phase transition. Although the average octahedral

FIG. 9. (a) Diagram of the extrinsic Euler rotations about
the x, y, and z rotation axes denoted by ψ, ϕ, and θ, respec-
tively. Histograms of octahedral rotation angles are shown for
(b) 400 K, (c) 300 K and (d) 200 K representing the distribu-
tion of tilts in the cubic, tetragonal, and orthorhombic phase,
respectively. Histogram data was averaged for a 8×8×8 sim-
ulation cell and fit with Gaussian kernel density estimation.
(e) Order parameter plots show the maxima of the octahedral
tilt histograms as a function of temperature. In the cubic to
tetragonal transition the tilts along x and y go to zero, while
the tilts along z only go to zero during the tetragonal to cubic
transition.

rotation angles are zero in the cubic phase, their distribu-
tions indicate large local deviations from the high sym-
metry phase. Hence our Monte Carlo simulations suggest
that the material is on average cubic, but large octahedral
tilt modes are still present, consistent with experimental
observations. [5] Moreover, the calculated thermal ellip-
soids qualitatively match those observed experimentally
in similar halide-perovskite chemistries. These results
suggest that anharmonic vibrational excitations play a
determining role in the wide variety of electronic and
mechanical properties of halide perovskites and should
be explicitly accounted for when studying these proper-
ties.
The anharmonic vibrational Hamiltonian of the
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present study can be viewed as a cousin of other lattice
Hamiltonians, such as the Ising model, the Heisenberg
model, and the rigid rotor cluster expansion[59–66]. It
is remarkable that the rich physics of structural phase
transitions in perovskites due to octahedral tilts can be
predicted with a Hamiltonian consisting of only an elas-
tically deformable octahedron and four pair interactions.
Although the interaction potential for the PbBr6 octahe-
dron is globally convex and nearly harmonic, the CsBr
pair cluster interaction shown in Figure 4(a) has a min-
imum at a bond length that is shorter than in the refer-
ence cubic crystal. The low-temperature dynamical in-
stability of the α and β phases thus appears to arise
wholly due to pairs whose optimal bond-length cannot
be realized in either high-temperature phase, in quali-
tative agreement with perspectives on perovskite struc-
tural phase transitions based on the Goldschmidt toler-
ance factor. The parametrized Hamiltonian corresponds
to a Goldschmidt tolerance factor that is less than 1 for
CsPbBr3, which indicates that the A-site cation (Cs in
CsPbBr3) is undersized and therefore under-coordinated
in the cubic symmetry. Octahedral tilting occurs in the
perovskites with a Goldschmidt factor less than 1 upon
cooling in order to satisfy the coordination environment
of the A-site cation.

While the anharmonic vibrational Hamiltonians of this
work are capable of predicting the essential physics of
the structural transitions of halide perovskites, further
refinements of the Hamiltonian are possible. As an ex-
ample, our parametric study of the anharmonic vibra-
tional Hamiltonian indicates that a decrease in the op-
timal length of Br–Br pairs, achieved by increasing the
first-order coefficient V BrBr

0 , enhances the stability of the
tetragonal phase relative to the cubic phase. Other co-
efficients are likely to affect the sequence of octahedral
tilt-phase transformations in different ways. The inclu-
sion of more or higher-order cluster interactions may re-
sult in models that can capture more complex symmetry-
breaking phenomena while also achieving higher fidelity
to ab initio validation data. A higher-order interaction
function for the PbBr6 octahedron would be able to de-
scribe instabilities within the octahedron itself, for ex-
ample, due to Pb off-centering. As presented, the mini-
mal anharmonic Hamiltonian does not account for elec-
trostatic interactions, which are important in more ionic
crystals and tend to die off more slowly than those due to
covalent bonds. These can be captured by adding longer-
range pair clusters or by explicitly correcting for dipole-
dipole interactions, which follow well-known functional
forms in reciprocal space[67]. The qualitative changes
in the phonon dispersion near Γ, such as LO-TO split-
ting, that result from explicit consideration of electro-

static effects have minimal impact on the phonon density
of states and therefore on integrated properties such as
free energies. Consequently, it is typically unnecessary to
incorporate a rigorous electrostatic treatment in a model
Hamiltonian to accurately predict thermodynamic equa-
tions of state. The minimal anharmonic Hamiltonian can
also be combined with tight-binding Hamiltonians to de-
velop a Hamiltonian that describes both electronic and
anharmonic vibrational degrees of freedom. These are
left to future studies.

V. CONCLUSIONS

In this work, we developed an anharmonic vibrational
Hamiltonian based on descriptors of cluster deformations
that is capable of capturing the qualitative features of
tilt transitions in halide perovskites. The Hamiltonian
is able to reproduce low energy DFT configurations with
a high degree of accuracy and qualitatively reproduce
the energy landscape associated with octahedral tilts.
Monte Carlo simulations showed that a minimal anhar-
monic vibrational Hamiltonian is capable of predicting
the complex phase sequence of octahedral tilt modes in
halide perovskites observed experimentally. The simula-
tions demonstrated that the cubic and tetragonal forms
of CsPbBr3, which are predicted to be dynamically un-
stable at zero Kelvin, emerge at finite temperature as a
result of large anharmonic vibrational excitations. An
analysis of octahedral tilt statistics in Monte Carlo sim-
ulations shows that the cubic and tetragonal phases only
adopt those symmetries on average, exhibiting large octa-
hedral tilts around their average tilt angles. These results
suggest the importance of anharmonic vibrational excita-
tions in determining the electronic, thermodynamic and
mechanical properties of room temperature halide per-
ovskites.

VI. ACKNOWLEDGEMENT

This material is based upon work supported by the
National Science Foundation, Grant No. OAC-1642433.
Computational resources provided by the National En-
ergy Research Scientific Computing Center (NERSC),
supported by the Office of Science and U.S. Department
of Energy, under Contract DE-AC02-05CH11231, are
gratefully acknowledged in addition to support from the
Center for Scientific Computing from the CNSI, MRL:
an NSF MRSEC (DMR-1720256).

[1] M. A. Green and A. Ho-Baillie, ACS Energy Letters 2,
822 (2017).

[2] F. Zheng, L. Z. Tan, S. Liu, and A. M. Rappe, Nano
Lett. 15, 7794 (2015), arXiv:1505.04212.

http://dx.doi.org/ 10.1021/acs.nanolett.5b01854
http://dx.doi.org/ 10.1021/acs.nanolett.5b01854
http://arxiv.org/abs/1505.04212


10

[3] T. Etienne, E. Mosconi, and F. De Angelis, J. Phys.
Chem. Lett. 7, 1638 (2016).

[4] C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi,
and S. Sanvito, Nat. Commun. 6, 7026 (2015).

[5] A. N. Beecher, O. E. Semonin, J. M. Skelton, J. M. Frost,
M. W. Terban, H. Zhai, A. Alatas, J. S. Owen, A. Walsh,
and S. J. L. Billinge, ACS Energy Lett. 1, 880 (2016),
arXiv:arXiv:1606.09267v1.

[6] P. Azarhoosh, S. McKechnie, J. M. Frost, A. Walsh,
and M. Van Schilfgaarde, APL Mater. 4 (2016),
10.1063/1.4955028, arXiv:1604.04500.

[7] D. Niesner, M. Wilhelm, I. Levchuk, A. Osvet,
S. Shrestha, M. Batentschuk, C. Brabec, and T. Fauster,
Phys. Rev. Lett. 117, 126401 (2016).

[8] H. Zhu, K. Miyata, Y. Fu, J. Wang, P. P. Joshi, D. Nies-
ner, K. W. Williams, S. Jin, and X.-Y. Zhu, Science 353,
1409 (2016).

[9] X. Y. Zhu and V. Podzorov, J. Phys. Chem. Lett. 6, 4758
(2015), arXiv:arXiv:1507.02179v1.

[10] H. Zhu, M. T. Trinh, J. Wang, Y. Fu, P. P. Joshi, K. Miy-
ata, S. Jin, and X. Y. Zhu, Adv. Mater. 29, 1 (2017).

[11] C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu,
M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo,
D. Y. Chung, A. J. Freeman, B. W. Wessels, and M. G.
Kanatzidis, Cryst. Growth Des. 13, 27222727 (2013).

[12] L. Kubičár, V. Vretenár, and V. Boháč, Solid State Phe-
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