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Contrary to previous assumptions that most mutations are
deleterious, there is increasing evidence for persistence of large-
effect mutations in natural populations. A possible explanation for
these observations is that mutant phenotypes and fitness may
depend upon the specific environmental conditions to which a
mutant is exposed. Here, we tested this hypothesis by growing
large-effect flowering time mutants of Arabidopsis thaliana in
multiple field sites and seasons to quantify their fitness effects in
realistic natural conditions. By constructing environment-specific fit-
ness landscapes based on flowering time and branching architec-
ture, we observed that a subset of mutations increased fitness, but
only in specific environments. These mutations increased fitness via
different paths: through shifting flowering time, branching, or both.
Branching was under stronger selection, but flowering time was
more genetically variable, pointing to the importance of indirect
selection on mutations through their pleiotropic effects on multi-
ple phenotypes. Finally, mutations in hub genes with greater con-
nectedness in their regulatory networks had greater effects on both
phenotypes and fitness. Together, these findings indicate that large-
effect mutations may persist in populations because they influence
traits that are adaptive only under specific environmental condi-
tions. Understanding their evolutionary dynamics therefore requires
measuring their effects in multiple natural environments.

fitness landscape | flowering time | branching | natural selection |
mutation

Throughout much of the 20th century, mutations were as-
sumed to be largely deleterious, diminishing the adaptive

value of a trait in a particular environment (1–3). However, more
recently, a robust empirical body of work has shown that the
frequency of beneficial mutations considerably exceeds previous
assumptions (4–10). Many mutations, even of large effect, are
known to have become resident in populations and persist as
segregating alleles (11–16). The few experiments testing muta-
tions’ fitness effects in nature have revealed complex patterns
among environments, with effects in one environment poorly
predicting them in another (6, 17–19). A major reason for this
complexity may be that environments affect trait expression,
but few, if any, studies have gauged the mutation–phenotype
relationship in multiple natural environments. Rather than ex-
amining unbiased mutation spectra consisting of many neutral
mutations present in mutation accumulation lines (19), one way
to test this is to examine targeted mutations known to affect
ecologically important phenotypes. Here, we do this by con-
structing genotype–phenotype–fitness landscapes of Arabidopsis
thaliana mutants harboring large-effect mutations targeted to
known flowering-time genes in common gardens across its Eu-
ropean climate range.
Fitness landscapes were introduced as a metaphor to con-

ceptualize how populations evolve through states of low fitness
to high fitness (20) and have since been extended and formalized

to express mathematically the relationships among genotypes,
traits, and fitness (21–23). In practice, empirical fitness landscapes
often examine only one-half of the genotype–phenotype–fitness
relationship. In the phenotype–fitness approach, landscapes relate
trait values to fitness so that a peak represents a combination of
trait values that is highly fit. However, these landscapes are usually
constructed without reference to specific genes that underlie these
traits (24–36). Genotype–fitness landscapes, on the other hand,
relate combinations of alleles to fitness so that a peak represents a
highly fit genotype. While powerful for understanding evolution,
measurements of genotype–fitness landscapes have been rare in
multicellular organisms, and most do not consider higher order
traits directly related to fitness (20, 37–50).
A major goal in evolutionary biology is to synthesize these

approaches in a complete genotype–phenotype–fitness landscape.
However, in eukaryotic organisms, combining phenotype–fitness
and genotype–fitness landscapes is frequently limited by either a
lack of knowledge of adaptive traits or of genes that control them.
The genetic model species A. thaliana provides a valuable system
to tackle this challenge: The genetic control of ecologically im-
portant phenotypic traits is well studied (51–54), and field exper-
iments allow the measurement of phenotypic selection in natural
environments (55–61).
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Both flowering time and branching architecture are potentially
important adaptive traits in A. thaliana and other annual plants.
The timing of flowering determines the critical transition from
vegetative to reproductive growth; aligning this transition with
favorable environmental conditions is critical to successful re-
production. Flowering time varies clinally across the species’
range (53, 56, 60, 62–66), evidence for adaptive differentiation in
this trait across different environments. This clinal differentia-
tion is due to natural variation in responses to environmental
signals like temperature and day length (66–69). Flowering time
is closely linked to branching architecture through development.
Prior to flowering, Arabidopsis plants produce rosette leaves
and rarely secondary branches. However, after commitment to
flowering, side branches are produced from axillary meristems,
and these side branches also produce flowers (70, 71). The
number of axillary meristems and branches available to produce
seeds depends upon flowering time since prolonged vegetative
growth due to delayed flowering allows a plant to develop
more leaves and axillary meristems (72–74). Thus fecundity is at
least partially a function of flowering time-dependent branching
architecture (75). Importantly, the hormone gibberellin (GA)
partially decouples branching from fecundity since it promotes
branching but simultaneously inhibits flower formation (76). This
decoupling enables branching and reproductive phenology to act
as partially independent developmental modules that may be
independently selected upon but that are still partially united.
Thus, plant fitness depends on a balance between branching and
the timing of flowering to determine fitness in morphological
and phenological space. Since both flowering time and gibber-
ellin flux depend upon growing conditions (77–79), this balance
is likely to shift among environments.
The genotype–phenotype map is further complicated by the

complex and nonlinear relationships among genes, especially for
quantitative traits like branching and flowering time with highly
polygenic bases. Genes influencing these traits interact through
multilevel networks. Some are hubs that influence a large number
of other genes, but others are subject to multiple inputs. These

highly connected genes within regulatory networks may allow
mutations in them to be buffered against producing pernicious
phenotypes (80–82). The degree of this buffering is a function of
both a gene’s network connectedness and redundancy permitting
increases or decreases in these factors, respectively, to lead to
more severe deviation in phenotype when mutated (80, 83–86).
Together, this implies that potentially adaptive mutations may be
masked due to network topography, robustness, and redundancy.
Thus, adaptive zones in fitness landscapes may be accessible only
through mutations in large-effect hub genes. On the other hand,
such robustness is also a function of the environment so that
mutations buffered in one environment may be exposed in an-
other (87–90). In this way, genetic network position can interact
with environment to shift mutants in fitness landscapes.
Although the accumulation of many small-effect mutations

can collectively alter phenotypes, we focus on individual large-
effect allelic variants induced by chemical and radiation muta-
genesis. Single, large-effect mutations represent a crucial evo-
lutionary step by which a lineage can explore more distant
regions of the fitness landscape than it can by single small-effect
mutations (91). We define “large-effect” as mutations that cause
specific, replicable, and major changes in flowering time and
have been extensively experimentally validated (Table 1 and SI
Appendix, Table S1). The majority of our mutations were loss-of-
function, ascertained at the gene expression and protein levels
(SI Appendix, Table S1). This is realistic for alleles segregating in
natural populations of A. thaliana that underlie adaptive phe-
notypic variation in metabolic, defensive, morphometric, and
phenological traits (14–16, 92–100). We also included a single
instance of gain-of-function through introgression of a strong
functional allele to replace a nonfunctional variant of the gene
FRIGIDA in the reference ecotype (101). We do not speculate
about the precise nature of DNA sequence-level change since
there are many potential paths to large effect, but rather we
seek to understand how large-effect mutations interact with the
environment to influence selection on phenotypes. In order
to disentangle the effects of correlated environmental signals

Table 1. Description of genes mutant in this experiment with their classical pathway
designation

Gene Pathway Effect on flowering time

FVE* Autonomous Pos. regulator that suppresses FLC expression
HUA2*,† Autonomous Neg. regulator that enhances late flowering in FRI functionals
LD* Autonomous Pos. regulator that suppresses FLC expression
FT* Integrator Florigen integrating all pathways to activate floral meristem genes
TFL2* Integrator Floral meristem identity; maintains high FLC despite brief warmth
GAI* Hormone Pos. regulator by up-regulating FT and gibberellin synthesis
SPY* Hormone Neg. regulator downstream of GAI that suppresses gibberellin
CO* Photoperiod Sensor of inductive long days, downstream of PHYs
CRY1* Photoperiod Pos. regulator of CO; perceives blue light of long days
GI* Photoperiod Integrates circadian clock information to perceive long days
PHYA* Photoperiod Pos. regulator of CO; perceives red light of long days
PHYB* Photoperiod Neg. regulator of CO; perceives red:far-red ratio of light of long day
PHYD* Photoperiod Neg. regulator of CO; obligately interacts with PHYB
PHYE* Photoperiod Neg. regulator of CO; obligately interacts with PHYB
FRL† Vernalization Constituent of FRI activation complex; up-regulates FLC
FRI‡ Vernalization Activates FLC, conferring vernalization requirement
FLC† Vernalization FT repressor that is epigenetically down-regulated by vernalization
VIN3† Vernalization Required for vernalization response in FRI:FLC functionals

Pathways are not exclusive since some genes act in multiple pathways simultaneously. Some mutant
genotypes harbored multiple mutations. For example, phyabde is a quadruple mutant with LoF in PHYA, PHYB,
PHYD, and PHYE. Neg., negative; Pos., positive.
*Mutations in this gene were not combined with any natural allele.
†Mutations in this gene were induced in a background with a functional FRI allele introgressed from the Sf-2
ecotype.
‡Natural alleles only by introgressing a functional Sf-2 version without induced mutation.
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like day length and temperature, we selected field sites in a
latitudinal gradient, in which day length and temperature covary;
a longitudinal gradient, in which temperature varies independent
of day length; and a seasonal gradient, in which plantings were
repeated within a site for several seasons (SI Appendix, Fig. S1 A
and C) (55, 58, 102, 103). We report morphometric, phenologi-
cal, and fecundity data from this common garden experiment to
answer 3 main questions:

1) How do large-effect mutations in flowering time genes affect
phenology, morphology, and fitness in different natural
environments?

2) How do phenotype–fitness and genotype–phenotype–fitness
landscapes change with the environment?

3) How does gene position within a regulatory network modulate
mutational effects on the genotype–phenotype–fitness map?

Results
Here, we analyze subsets of the genotype–phenotype–fitness
map across environments and then combine these components.
First, we examine the genotype–phenotype landscape by quanti-
fying genotype-phenology and genotype-branching relationships in
each environment. Second, we examine the phenotype–fitness
landscape by quantifying phenology-fitness and branching-fitness

relationships in each environment. Finally, we synthesize these
across environments to describe the environmental dependence
of mutational effects on phenology, branching, and fitness.
Large-effect mutations in environmental signaling pathways are
especially useful in these environmental comparisons because
plants harboring these mutations are unable to respond to spe-
cific environmental inputs. By comparing their phenotypes to
those of the same background genotype without the mutation,
these mutants can be used as phytometers to gauge the relative
importance of specific environmental cues for determining phe-
nology and branching (103).

Phenology. To describe how these mutations affected phenolog-
ical traits relative to ecotype background across 8 natural envi-
ronments, we used a 2-part hierarchical clustering algorithm to
uncover environmental and mutant trends (Fig. 1). A linear model
detected significant heterogeneity in mutant bolting times mea-
sured in photothermal units (BPTUs) among plantings, among
genotypes, and among multifactorial combinations of planting
and genotype (SI Appendix, Table S2). In particular, we identi-
fied genotype × environment interactions, with the majority of
mutants showing magnitude differences in mutant effects in
different environments and several showing both magnitude and
directional differences (SI Appendix, Table S3). Together, these

Cologne Fall
Halle Fall

Valencia Fall

Norwich Spring

Cologne Spring

Norwich Fall

Oulu Summer

Norwich Summer

Vernalization FRI:flc Col
Vernalization hua:FRI Col
Vernalization FRI:frl Col
Photoperiod phybde Ler
Photoperiod phybe Ler
Photoperiod phyabd Ler
Photoperiod phybd Ler
Integrator tfl2 Col
Photoperiod phyb Ler
Photoperiod phyad Ler
Hormone spy Col
Vernalization hua Col
Photoperiod phyabde Ler
Photoperiod phyd Ler
Hormone gai Col
Photoperiod phye Ler
Photoperiod phya Ler
Photoperiod co Col
Photoperiod phyabe Ler
Photoperiod phyab Ler
Photoperiod phyb Col
Photoperiod phyd Col
Vernalization FLC Ler
Photoperiod gi Ler
Photoperiod cry1 Ler
Vernalization FRI:vin3 Col
Photoperiod gi Col
Photoperiod co Ler
Integrator ft Ler
Autonomous ld Col
Autonomous fve Col
Vernalization FRI Col

0.2 0.1
log relative BPTU

Fig. 1. Heat map of least-square means of accumulated photothermal units to bolting (BPTUs) in mutants relative to ecotype background on a log2 scale,
centered within plantings, visualizing two-step hierarchical cluster by a Euclidian distance, average-based algorithm for both genotype (rows) and planting
(columns). All mutant pathways are represented, although not all genotypes, since some were not planted in all 8 sites and seasons. The first word of the row
identifiers shows which pathway was manipulated in a mutant, as defined by FLOR-ID (51). Lowercase gene names indicate diminished function alleles, and
uppercase, functional. Colons between pathways or genes indicate multiple genetic manipulations within a line, not gene fusions. Col and Ler indicate each
line’s ecotype background, Col-0 and Ler-1, respectively. Genotypes with an induced mutation combined with a functional FRIGIDA (denoted by “FRI”) were
relativized against FRI Col instead of Col-0.
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results quantify the environmental contingency of genetic effects
in determining bolting time among these different environments.
Specifically, we identified 3 distinct mutant classes: late-bolting,

early-bolting, and sign plasticity clusters (Fig. 1). The late-bolting
cluster was dominated by mutations in the vernalization and au-
tonomous pathways known to enhance the expression of the floral
repressor FLOWERING LOCUS C (FLC) or to impair its down-
regulation (i.e., FRIGIDA:vernalization insensitive 3 [FRI:vin3],
FRI, fve, ld), as well as mutants impaired in photoperiod response
and signal integration (i.e., ft, cry1). The early-bolting cluster
showed a mix of pathways. Many upstream photoperiod mutants
accelerated bolting, the most consistent of which were deficient in
PHYTOCHROME B (PHYB) in the Ler background. The hor-
mone pathway mutant spy showed accelerated phenology, and
gibberellic acid insensitive (gai) did not. Acceleration of bolting in
the spy mutant was expected because functional SPY is a repressor
of inductive gibberellins (104). The hormone pathway’s impor-
tance for accelerated flowering has often been emphasized in
short days (105), but spy also accelerated flowering in summer and
spring plantings that mainly experienced long days. The vernali-
zation pathway mutations fri, hua, and flc accelerated bolting in
the Col-FRI background. These loss-of-function mutations all re-
duce expression of FLC, allowing flowering without vernaliza-
tion. Finally, the sign plasticity group consisted of genotypes that
accelerated flowering in some environments and delayed flower-
ing in others. Genotypes showing this sign plasticity most strongly
included 4 mutants deficient in phytochromes (phyb, phyabe,
phyad, phyabe) which are involved in photoperiod and ambient
temperature sensing (106–108) as well as the photoperiod in-
tegrators gi and co (SI Appendix, Table S3). A detailed dis-
cussion of gene-specific results is presented in the SI Appendix,
Supplemental Results.

Branching. Flowering time mutants pleiotropically expanded
variation in branching in both ecotypic backgrounds, and, similarly
to bolting time, mutant branching varied among seasons, sites, and
genotypes (SI Appendix, Fig. S5). Most late-bolting mutants, es-
pecially in the vernalization pathway, produced more branches,
and most early-bolting mutants in the photoperiod and hormone
pathways produced fewer branches than their parental ecotypes.
Specifically, gai had fewer branches than its ecotype background,
and the spy mutant consistently had the fewest branches across
plantings (SI Appendix, Fig. S6). Several phytochrome mutants
had many fewer branches than either the parental ecotypes or
most other mutants, consistent with the constitutive shade avoid-
ance phenotype expected with loss of photoreceptor function.
Combined with their bolting time effects, it is also possible that
these mutants had fewer branches because they flowered rapidly
and therefore developed fewer nodes from which branches could
emerge. Several mutants also exhibited sign plasticity for branch
production, including the phytochrome mutants phya, phyd, phyad,
and phybe, and the vernalization mutant FRI:vin3. Flowering time
mutants generated in the Col-0 background had more branches
than those in Ler-1 in most plantings (SI Appendix, Fig. S6). This is
likely because Ler-1 harbors a loss-of-function allele of ERECTA,
a positive regulator of aerial organogenesis (109), and has fewer
branches than Col-0.

Univariate Selection. The fitness effects of flowering time muta-
tions differed in sign and magnitude across the 5 plantings for
which fecundity data were collected: Norwich fall, Norwich spring,
Norwich summer, Halle fall, and Valencia fall (SI Appendix, Fig.
S7). In particular, nearly half of all mutant genotypes switched
between positive or negative relative fitness among environments
(SI Appendix, Fig. S7). We quantified phenotype–fitness land-
scapes separately for the phenology and morphometric traits for
each planting. Univariate directional selection for earlier bolting
and flowering occurred in 4 plantings while delayed flowering was

favored in the Norwich summer planting (Table 2). Furthermore,
selection for phenology measured in calendar time was stronger
than for photothermal time (SI Appendix, Table S4), which we
used to scale environmentally dependent phenologies across sites
(SI Appendix, Supplemental Methods). We did not detect signifi-
cant stabilizing selection in most of the plantings. Significant
negative quadratic selection was detected for calendar days to
bolting in Valencia, which indicated monotonic selection toward a
theoretical maximum on the selection surface for an extremely
early bolting time that did not fall within the range expressed by
any genotype (Table 2). Directional selection consistently favored
increased branching in all sites, with no evidence of stabilizing
selection on branching traits (Table 2 and SI Appendix, Table S4).

Multivariate Selection. Taken together, univariate selection gra-
dients indicated that fast-developing and highly branched phe-
notypes were generally favored. One possible genetic mechanism
for reaching this optimal fitness zone is gibberellin’s simultaneous
promotion of a more branched architecture and fast development;
however, high gibberellin activity also suppresses flower formation
early in development, which could decrease fecundity. To de-
termine how bivariate selection on phenology and branching oc-
curred, we modeled both in a multivariate generalized additive
model (GAM) (Table 3). This showed that directional selection
for greater branching was strong in all sites, but direct selection for
phenology was significant in only 2 sites: Later flowering was fa-
vored in Norwich summer, and earlier flowering in Halle fall. No γ
terms, which denote stabilizing, disruptive, or correlative selection,
were significant. Together, this implicates the role of indirect se-
lection on phenology while selection operated more strongly on
branching (110). However, consistent with previous findings of
high heritability for phenology traits and low heritability for fitness
estimates (111), the ratio of genetic variation to phenotypic vari-
ation of morphometric and fitness traits (0.27 to 0.5) was much
lower than phenological traits (>0.7) (SI Appendix, Table S5).
Since these mutants were selected for their effects on flowering
time, phenology’s stronger genetic basis was expected but allows
us to gauge the relative contribution of these underlying mutations
in determining phenotype and fitness values.

Genotype–Phenotype–Fitness Landscapes.Modeling genotype means
in 2D fitness landscapes revealed remarkable variation in the ge-
notype–fitness map among environments (Fig. 2). Ecotype back-
ground fitness relative to mutant fitness changed dramatically
among environments. Although generally more fit than mutants,
our reference ecotypes (Col-0 and Ler-1) showed lower relative
fitness than specific mutants in certain environments. For exam-
ple, in Valencia and Halle, the Col-0 ecotype was more fit than all
of its mutants except one, but, in Norwich fall, both ecotypes were
less fit than the majority of their mutants. Together, these patterns
show that mutants achieved higher fitness through alternate
phenotypic paths. For example, some mutants were invariant in
phenology in certain environments but were more highly branched
whereas others bolted in the direction of higher fitness but were
invariant in branching. The mutations underlying these phenotypic
shifts were adaptive in conditions that shifted phenotypic expres-
sion toward fitness peaks.

Network Effect of Mutational Perturbation. We were interested in
how gene network connectivity affected mutational perturbations
on phenotypes independent of the pathway in which a mutation
was induced. To answer this question, we first assessed how con-
nected the genes in a mutant line were, summing these connec-
tions for multiple mutants. We then regressed this metric of
connectivity against relativized phenotypic perturbation. Although
only 3 of 15 regressions were significant after Bonferroni correc-
tion, all showed negative relationships between connectivity and
phenotypic perturbation across all 3 traits and all 5 environments
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(Fig. 3). Overall, the magnitude of bolting time change was con-
siderably dampened relative to branching or fitness. This indicates
that bolting time is relatively robust to genetic perturbation in
flowering time networks, but that branching and fitness are much
less robust. In particular, mutations in more highly connected
genes led to consistent and, in at least one environment, significant
decreases in fitness.

Discussion
A major goal in evolutionary biology is to understand the rela-
tionship among mutations, traits, and fitness in natural environ-
ments. Directly inferring these relationships is frequently constrained
by limited knowledge of genetic mechanisms in ecological systems
and by the difficulty of testing mutants in multiple natural envi-
ronments. However, by leveraging the well-characterized genetic
architecture of flowering time and branching in the model or-
ganism A. thaliana, we investigated how mutations in multiple
flowering time pathways altered the distribution of A. thaliana
genotypes across fitness landscapes, the traits that composed these
landscapes, and how they depended upon the environment a plant
experienced.
Phenology, branching, and fitness all expressed both magni-

tude and sign plasticity to growth environment (Fig. 2 and SI
Appendix, Figs. S5 and S7). The largest number of lines showed
clear sign plasticity for fitness and the fewest for phenology,
evidence that fitness was more environmentally labile than
phenology. Overall, mutants were more frequently less fit than
their parental backgrounds. However, for several mutants, we
identified specific natural environments in which they actually
had greater fitness. There are 2 explanations for this finding of
greater mutant fitness only in certain environments: 1) Muta-
tions’ phenotypic effects might differ between environments, and
2) the underlying selection surface might change. Here, we de-
tected evidence for both mechanisms since certain environments
selected for different directions and magnitudes of trait values

(evidence of changing selection surfaces) and mutants’ pheno-
logical and branching effects differed among plantings (evidence
of different mutant effects). Thus, we explain our patterns of
conditional fitness advantage in terms of the dramatically dif-
ferent positions in phenotypic and fitness space that the mutants
occupied upon exposure to new environments, as well as of those
environments’ different selection regimes. This finding points to
the importance of empirical tests of fitness in the field. While
phenotypic effects may be predictable under limited laboratory
conditions, the ramification of genetic perturbation on fitness in
nature, mediated by environmentally influenced phenotypes, is
highly environmentally contingent.

Mutation Effects on Traits. Natural environments are far more
complex than the controlled laboratory conditions in which most
mutations are assessed so we might expect the unexpected when
observing mutants in the wild. For example, for A. thaliana
flowering time, recent empirical work showed that realistic daily
amplitudes in temperature considerably decreased the delay
caused by introgressing a strong FRI allele to a nonfunctional
background compared to the extreme delay that occurred in
constant laboratory temperatures (112). Many of our experi-
mental mutants altered flowering in the direction we expected,
but others showed complex and unexpected patterns and were
likely responding to multivariate cues in their natural environ-
ments that have not yet been tested for these genes. For exam-
ple, the autonomous pathway mutants lumindependens (ld) and
fve were constitutively late-bolting (Figs. 1 and 2). LD and FVE
down-regulate the floral repressor FLC in an environmentally
insensitive manner (113–115) so we expected mutations in those
genes to delay flowering in all sites. However, HUA2 is also an
activator of FLC; the hua2 mutant in the low FLC ecotype
background Col caused acceleration but, in the high FLC Col
FRI background, switched between slight delays in Cologne,
Halle, and Valencia falls and acceleration in the other plantings.

Table 2. Univariate selection coefficients for A. thaliana traits in 5 field environments,
analogous to partial derivatives of polynomial regression techniques

Planting

DTB BPTU Branching

β SE γ SE β SE γ SE β SE γ SE

Halle fall −0.144 0.023 −0.517* 0.062 −0.083 0.07 −4.222 3.180 0.766* 0.067 0.174 0.380
Norwich fall 0.204 0.13 0.021 0.08 0.192 0.092 10.014 11.045 1.136* 0.157 0.620 0.846
Norwich spring −0.350* 0.087 −0.001 0.043 −0.270* 0.050 0.000 8.310 0.789* 0.044 −0.106 0.165
Norwich summer 0.151* 0.040 −0.071 0.038 0.159* 0.042 −6.998 6.013 0.530* 0.041 0.085 0.169
Valencia fall −0.214* 0.060 −0.230* 0.029 −0.180* 0.057 −17.385 15.921 0.740* 0.082 0.044 0.323

β, analogous to the directional selection coefficient; BPTU, accumulated photothermal units to bolting;
Branching, total branch number; DTB, calendar days to bolting; γ, analogous to the stabilizing or disruptive
coefficient; SE, numerically approximated SE for the term immediately to the left.
*Bolded estimates with asterisks represent significance from Bonferroni-corrected P values <0.01.

Table 3. Bivariate selection gradient analysis

Term

Halle fall Norwich fall Norwich spring Norwich summer Valencia fall

Est. SE Est. SE Est. SE Est. SE Est. SE

βBPTU −0.13* 0.10 0.33 0.17 −0.01 0.08 0.20* 0.07 −0.02 0.09
βbranch 0.72* 0.05 1.15* 0.11 0.77* 0.09 0.53* 0.04 0.71* 0.08
γBPTU −9.10 120 5.84 146 −30.2 90.8 −60.1 100 82.2 114
γbranch 0.06 0.31 0.90 1.11 −0.00 0.18 0.06 0.16 0.18 0.22
γBPTU,branch −0.11 0.14 0.28 0.31 0.00 0.09 0.10 0.06 −0.07 0.19

β, analogous to the directional selection coefficient; BPTU, accumulated photothermal units to bolting;
branch, total number of branches; Est., estimate of the coefficient; γ, analogous to the stabilizing or disruptive
coefficient; SE, numerically approximated SE.
*Bolded estimates with asterisks represent significance from Bonferroni-corrected P values <0.05.
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We speculate that this unexpected sign plasticity may result from
either 1) the ecotype’s unmutagenized background allele being
responsive to an uncharacterized or multiple environmental inputs
or 2) the ecotype background allele epistatically regulates an en-
vironmentally responsive module of the flowering time network.
The former possibility is especially relevant for complex environ-
ments since flowering time genes have been shown to respond to a
diverse set of environmental signals. For example, CO has classi-
cally been considered a photoperiod pathway gene whose primary
role for flowering time is the perception of long days (114, 116,
117). However, recent work has shown that, in addition to this role,
CO also integrates ambient temperature information to promote
flowering (107, 118–120). The co mutant in the Ler background
was delayed in the long-day plantings of summer and spring, which
was likely influenced by a combination of the diminished percep-
tion of inductive photoperiods and high ambient temperatures.
Remarkably, co in the Col background reversed this trend by ac-
celerating bolting in most plantings, a dramatic demonstration of
epistasis with genetic background. Thus, the effect of a mutation
might change among environments as the relative importance of its
roles as a photoperiod- and temperature-sensor also changes.

Fitness Landscapes. Environmental variation in the phenotypic
effects of mutations does not completely explain why the relative
fitness among mutants varies across environments. Variation in

the strength and direction of multivariate selection was also
critically important. This is exemplified by the autonomous mutant
ld, which was consistently late-bolting but switched between rela-
tive fitness increases and decreases among environments (SI Ap-
pendix, Fig. S7). Thus, the topography of the selection surface
shifted so that, although broad phenotypic trends remained con-
stant, relative fitness among mutants changed. Fitness is the most
composite phenotype expressed by an organism, integrating all
preceding traits and developmental contingencies (111, 121).
Thus, it is expected that growing conditions could perturb critical
junctures during a plant’s developmental program, resulting in
different fitness outcomes.
Although these mutants were chosen to expand phenological

variation, they also pleiotropically expanded morphological
variation in branching. Branching proved to be under stronger
selection than phenology (Table 3) although both appeared to be
under selection when analyzed in a univariate framework (Table
2). Predictions of responses to selection often center on highly
heritable traits like phenology; however, in this experiment,
phenology was under weaker selection than branching, which
was much less heritable. Since a trait’s response to selection is a
function of both its heritability and the strength of selection,
phenology may show a marked response to selection due to its
greater genetic basis, but this may represent an indirect evolu-
tionary response to stronger selection on branching. Together,
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Fig. 2. Fitness landscapes from generalized additive models for accumulated photothermal units bolting and total branch number. Contour line labels show
fitness in seed proxy units. BPTU refers to accumulated photothermal units to bolting. Points show line averages where lines are genotypes bulked under the
same maternal conditions. “Col” refers to the Col-0 ecotype average; “Ler” to the Ler-1 ecotype average; “ColFRI” refers to the genotype with a functional
version of FRI introgressed from the Sf-2 ecotype. Grey vector lines represent mutations induced in the Col and Ler ecotypes, and blue vector lines represent
mutations induced in the FRI (Col) genotype.
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this points to the importance of considering the pleiotropy of
mutations’ phenotypic effects since they may affect suites of traits
with different selective potentials.

Gene Regulatory Networks. Flowering time genes have been con-
ceptually organized into distinct pathways such as the photope-
riod and vernalization pathways (51, 122, 123). This conceptual
organization is a consequence of the cue-specific manner in
which the functional effects of flowering time genes are initially
characterized (124, 125). However, as the interactome has been
elucidated by protein–protein and genetic interaction screens,
the complexity of gene regulatory networks has grown (126, 127).
Indeed, recent work has shown that genes often act outside of
their canonical pathways to respond to multiple environmental
variables (51). For example, several “photoperiod genes” have
also been shown to act as ambient temperature thermosensors
(106, 119, 128). Here, we challenged mutants with natural en-
vironments that integrated multiple environmental influences.

When examining phenotype deviations due to mutations, we
found evidence that, indeed, more highly connected genes
caused greater changes in phenotypes and greater reductions in
fitness, indicating that their connections within the regulatory
network were nonredundant (Fig. 3). However, this relationship
was not significant for all environments or traits. This indicates
that some environments exposed a gene’s connectedness more
than others, possibly due to responses to different multivariate
environmental inputs.

Conditionally Adaptive Mutations in Genotype–Phenotype–Fitness
Landscapes. Our results point to genotype × environment in-
teraction as an important explanation for recent findings of
nonnegligible frequencies of large-effect mutations segregating
in natural populations of many species (14–16, 92–100). Contrary
to the predictions of mutation-selection balance, which empha-
sizes inefficient negative selection to explain why mutations lin-
ger in a population (129, 130), we found evidence for balancing
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selection by environmentally dependent fitness. In several cases,
the same flowering time pathway mutation had opposite effects
on fitness in different environments, and environmentally de-
pendent positive or negative selection acted upon conditionally
adaptive traits that ramified from these specific mutations. As
these targeted flowering time mutations were grown in different
environments, some formed a path to high fitness through phe-
nology, some through branching, and some through a combination
of both. Phenological deviations in mutants were more predictable
than branching or fitness but still differed among environments.
The branching path was under stronger selection, but the phe-
nological path had a stronger genetic basis. Thus, adaptation to
natural selection on large-effect mutations is a contingent process
that must be measured across multiple settings to gauge the
pleiotropic adaptive value of underlying mutations.

Methods
PlantMaterials. In 2006 and 2007, themutants were planted as part of a larger
field experiment in common gardens in 5 locations (Norwich, United King-
dom; Halle, Germany; Cologne, Germany; Valencia, Spain; and Oulu, Finland)
and several seasons (summer, spring, and fall) (55, 102, 103, 106, 131). Mutant
genes, their primary flowering time pathway designation, and relevant
environmental or genetic interactions are summarized in Table 1. All mu-
tants were nontransgenic, induced by radiation or chemical mutagenesis,
identified by screens for major effects on flowering tie and experimentally
confirmed (SI Appendix, Table S1). The single exception was the in-
trogression of a functional FRI allele from the Sf-2 ecotype to complement
loss-of-function alleles of this gene in Col-0; this allowed tests of the effect
of induced mutations in backgrounds with a functional vernalization path-
way (101). Seeds were bulked and stratified under common conditions (103).
Germination occurred under natural light conditions in unheated green-
houses at each field site, and seedlings were transplanted to the field syn-
chronously with germination flushes observed in natural A. thaliana
populations near each field site. Between 15 and 20 replicates for each
genotype were transplanted in a randomized block design. See SI Appendix,
Supplemental Methods for further details.

Phenotypic and Fitness Measurements. We report 12 morphometric, pheno-
logical, and fitness traits (SI Appendix, Table S1). Together with branching’s
partial independence as a developmental module and its mechanistic in-
teractions with flowering time and fitness (see Introduction), we focused on
branching as a morphological trait; bolting time as a phenological trait; and
fecundity as a fitness metric. Days to bolting was the number of days from
transplant into the field until an inflorescence shoot was visible at the center
of a rosette. To convert these measurements to photothermal time, we
scaled by temperature greater than 3 °C during daylight, resulting in pho-
tothermal units to bolting (BPTUs) as in Wilczek et al. (103). Total branch
number was the total number of primary, secondary, and cauline branches
longer than 1 cm. We estimated fitness as the number of seeds produced by
a plant in seed proxy units. These were calculated as a plant’s silique number
multiplied by an average-length silique’s distance from its valve’s base to
apex. Seed set is a direct measurement of fitness, and, since seeds are minute

and numerous in each silique, silique length is a practical and reliable proxy
for the number of seeds (132, 133). Fitness was scored as 0 for plants that
died before producing siliques.

Statistical Methods. All analyses were performed in R version 3.0.2 (134). To
estimate the ratio of genetic variation to phenotypic variation for a trait, we
used ANOVA procedures to calculate broad-sense heritability. In order to
identify phenotype classes responding to genetic perturbation and to
growth environment, we hierarchically clustered phenotypes by genotype
and planting, using average, Euclidian-based clustering. To scale phenotypes
for visualization in heat maps, we relativized mutant least-square means
against within-planting least-square means of 1) Col-0 if the mutant was
generated in a Col-0 background; 2) Ler-1 if in a Ler-1 background; or 3) Col-
FRI if the mutation was in the Col-0 background with an introgressed
functional Sf-2 FRI allele. Relativized traits were log2 transformed for de-
crease–increase symmetry, centering within plantings. The identified clusters
were robust to clustering method. For phenological traits, calendar and
photothermal time clusters were similar (SI Appendix, Figs. S2–S4).

To construct fitness landscapes for the 5 plantings for which fitness and
growth metrics were taken, we first fit a generalized additive model (GAM)
under a Gaussian distribution for each planting. To test for correlated se-
lection on these traits, we included the interaction term BPTU × total
branches. Since we wished to simultaneously estimate the magnitude, di-
rection, and curvature of selection gradients, as well as to perform hy-
pothesis testing on whether this selection was significant, we assessed the
significance of GAM coefficient estimates with case bootstrapping proce-
dures (32, 33, 135). This analysis combined the biological interpretability of
traditional regression techniques with splines’ ability to explain complex
surfaces, producing GAM coefficients that are analogous to partial deriva-
tives of the directional selection coefficient (β) and stabilizing selection co-
efficient (γ) (136). P values were adjusted for multiple testing by Bonferroni
corrections.

In order to quantify the network position of the mutant genes, we
manually curated nonredundant genetic and physical interactions deposited
in the gene network databases BioGRID 3.5.167 (137) and IntAct (European
Molecular Biology Laboratory–European Bioinformatics Institute) (138). We
counted each mutant gene’s experimentally validated physical or genetic
interaction as a connection, and the sum of these connections as its con-
nectedness. We considered these interactions to be edges in our network
analysis, and the mutant genes as nodes. In this analysis, we regressed
connectedness against relative phenotype deviation from ecotype back-
ground, reporting Bonferroni-corrected results.
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