MULTIGRID METHODS FOR SADDLE POINT PROBLEMS:
OPTIMALITY SYSTEMS

SUSANNE C. BRENNER, SIJING LIU, AND LI-YENG SUNG

ABSTRACT. We develop multigrid methods for an elliptic distributed optimal control prob-
lem on convex domains that are robust with respect to a regularization parameter. We
prove the uniform convergence of the W-cycle algorithm and demonstrate the performance
of V-cycle and W-cycle algorithms through numerical experiments.

1. INTRODUCTION

Let Q be a bounded convex polygonal/polyhedral domain in R? (d = 2,3), yq € L2(Q),
B € (0,1] be a constant and (-,-)r,) be the inner product of Ly(Q2) (or [Ly(€2)]4). The
optimal control problem is to find

S :
(1) (.8) = axgmin | 5lly = ol + 5ol
y’u

where (y,u) belongs to K C Hj(Q) x Ly(Q) if and only if
(1.2) a(y,z) = (u,2) ) V2 € Hy(9),

and the bilinear form af(-,) is given by

(1.3) a(y,z):/QVy-Vzdx—i-/

[(C-Vy)z = (¢ - V2)y]dr + / yyz dzx.
@ Q

Here the vector field ¢ belongs to [W1>°(Q)]¢ and the function v € L. (£2) is nonnegative.

Remark 1.1. Throughout the paper we will follow the standard notation for differential
operators, function spaces and norms that can be found for example in [13, 10].

Remark 1.2. The partial differential equation (PDE) constraint (1.2) is the weak form of
a second order elliptic boundary value problem with an advective/convective term. The
bilinear form a(-, -) is nonsymmetric (unless ¢ = 0) and it is definite because

(1.4) a(y,y) =/9(|Vy|2+7|y|2)dx-
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The optimal control problem (1.1)—(1.2) has a unique solution characterized by the fol-
lowing first order optimality system (cf. [22, 28, 19]):

(1.5a) a(¢,p) = (¢, ¥ — Ya) 1o(@) Vq € Hy(9),

(1.5Db) Bu+p=0,

(1.5¢) a(y,z) = (U, 2) 1) Vze Hy(Q),

where p is the adjoint state. After eliminating u, we arrive at a saddle point problem:
(1.6a) a(¢: D) = (¢ V) o) = —(4,Ya) 12(9) Vq € Hy(Q),

(1.6b) — (D, 2) o) — Pa(y, 2) =0 V2 € Hy(Q).

Note that the system (1.6) is unbalanced with respect to /3 since it only appears in (1.6b).
This can be remedied by the following change of variables:

(1.7) p=pB1p and §=p471].

The resulting problem is

(1.8a) B2a(q.p) — (0. D)ra@ = —BH (0. ¥d) o) V@ € Hy(Q),
(1.8b) —(p, %) 1a(0) — Ba(i], z) = 0 V2 € Hy(Q).

The saddle point problem (1.8) can be discretized by a P; finite element method (cf.
Section 2). Our goal is to design multigrid methods for the resulting discrete saddle point
problem whose performance is independent of the regularization parameter 5. The key idea
is to use a post-smoother that can be interpreted as a Richardson iteration for a symmetric
positive definite (SPD) problem that has the same solution as the saddle point problem.
Consequently we can exploit the well-known multigrid theory for SPD problems [18, 23, 6]
in our convergence analysis. This idea has previously been applied to other saddle point
problems in [7, 8, 9].

Our multigrid methods belong to the class of all-at-once methods where all the unknowns
in (1.6) are solved simultaneously (cf. [4, 16, 26, 5, 27] and the references therein). As far as
we know, the multigrid methods in this paper are the first ones that are provably robust with
respect to the regularization parameter 5 when the elliptic PDE constraint (1.2) involves an
advection/convection term.

In the case where ¢ = 0, multigrid methods that are robust with respect to # can also
be found in the papers [26, 27]. The differences are in the construction of the smoothers
and in the norms that measure the convergence of the multigrid algorithms. The smoothing
steps in [26, 27| are computationally less expensive than the one in the current paper, which
requires solving (approximately) a reaction-diffusion problem (which however does not affect
the O(n) complexity). The trade-off is that the convergence of the multigrid algorithm in
this paper is expressed in terms of the natural energy norm for the continuous problem,
while the norms in [26, 27| are different from the energy norm. A related consequence is
that the W-cycle multigrid algorithms in [26, 27] cannot take advantage of post-smoothing
and hence their contraction numbers decay at the rate of O(m~'/2), where m is the number
of pre-smoothing steps, while the contraction number for our symmetric W-cycle multigrid
algorithm decays at the rate of O(m™!), where m is the number of pre-smoothing and
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post-smoothing steps. Moreover numerical results indicate that our V-cycle and W-cycle
algorithms converge uniformly for m = 1.

The rest of the paper is organized as follows. We analyze the saddle point problem (1.8)
and the P; finite element method in Section 2 and introduce the multigrid algorithms in
Section 3. We derive smoothing and approximation properties in Section 4 that are the key
ingredients for the convergence analysis of the W-cycle algorithm in Section 5. Numerical
results are presented in Section 6 and we end with some concluding remarks in Section 7.

Throughout this paper, we use C' (with or without subscripts) to denote a generic positive
constant that is independent of 8 and any mesh parameter. Also to avoid the proliferation
of constants, we use the notation A < B (or A 2 B) to represent A < (constant)B, where
the (hidden) positive constant is independent of 5 and any mesh parameter, but may depend
on ¢. The notation A ~ B is equivalent to A < B and B < A.

2. P, FINITE ELEMENT METHODS

We can express (1.8) concisely as

(21) B((ﬁ? g)’ <q7 Z)) = _B%(qayd)[zz(ﬂ) v(qa Z) € H(%(Q) X H(%(Q)a
where
(2.2) B((p,y),(4,2)) = B2a(q,p) — (@, 9) 1ai) — (B, 2) 1) — B2aly, 2).

2.1. Properties of B. We will analyze the bilinear form B(-,-) in terms of the energy norm
| - ||Hé(Q) defined by

1
(2.3) ol = l0lzp) + B2l0li) Vv e HY(Q).

Let (p,v),(q,2) € H3(Q2) x H} () be arbitrary. It follows immediately from (1.3), (2.2),
(2.3) and the Cauchy-Schwarz inequality that

(24) B((p.9). (0 )) S (Ipliy + 910 el ey + 1203 a)?-

Moreover, a direct calculation using (1.4) and (2.2) shows that

(2.5) B((p,y), (p — v, —y — ) = BZa(p,p) + (b, P) 1) + B2a(y,y) + (¥, ¥) 1o
> ||p||12ﬁlé(9) + ||?J||§1[§(Q)7

and we also have

(2.6) lp — y”fqé(g) +l-v- p”?{é(g) = Q(HPH%%(Q) + HZ/H?{[g(Q))

by the parallelogram law.
It follows from (2.4)—(2.6) that

B((p,y), (¢, 2))
(2.7) HPHH;(Q) + HyHHé(Q) ~ sup
(9,2)EHY(Q)x HE () HQHHé(Q) + HZHHE,(Q)

for all (p,y) € H3(Q2) x H ().
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Similarly, we have

B((g,2), (p,y))
(2.8) HPHH;(Q) + HZ/HH;(Q) R~ sup
(9,2)EHY(Q)x HE () HQ|’H}3(Q) + HZ‘|H[§(Q)

for all (p,y) € HE () x H ().
2.2. Discrete Problems. Let 7, be a triangulation of Q and V;, C H{(2) be the P; finite

element space associated with 7j,. The P finite element method for (2.1) is to find (pn, Jn) €
Vi, x V3, such that

(2.9) B((n, 9n), (an, 2n)) = _ﬁi(Qhayd)Lg(Q) Y (qn, z1n) € Vi X Vh.

For the convergence analysis of the multigrid algorithms, it is necessary to consider a more
general problem: Find (p,y) € Hg(Q2) x Hj () such that

(2.10) B(p,y),(¢.2)) = (f, Qo) + (9: 2oty Y (g, 2) € Hy(2) x Hy(S),

where f, g € Ly(Q), together with the following dual problem: Find (p,y) € H}(Q) x H}(Q)
such that

(2.11) B((¢.2), () = (f Do) + (9. D)oy ¥ (g, 2) € Hy(Q) x Hy ().

The unique solvability of (2.10) (resp., (2.11) follows immediately from (2.7) (resp., (2.8)).
The P, finite element method for (2.10) is to find (pp,yn) € Vi X V3, such that

(2.12) B((pr,yn), (qn, z1)) = (f, @n) Lo@) + (95 20) L2(00) Y (qn, zn) € Vi X Vi,
and the P; finite element method for (2.11) is to find (pp,yn) € Vi x V4 such that
(2.13) B((qn, 21), (P, yn)) = (fs @h)ra@) + (9, 20) o) Y (qn, 20) € Vi X Vi

Note that (2.4)—(2.6) also yield the following analog of (2.7):

B ph7yh>7(QhaZh))
(2.14) Ipallay@) + lvnllmyey ~  sup ((
(qn,2n)EVR X Vi, HQhHHé(Q) + thHHé(Q)

Y (PhsYn) € Vi X Vi

Similarly, we also have

B((an, zn); (Ph> Yn
(2.15) thHHé(Q) + HthHé(Q) ~ sup { A ) Y (Ph,Yn) € Vi X Vi

(qh,2n)EVR X Vi HQhHHé(Q) + “ZhHHé(Q)

Therefore the discrete problems (2.12) and (2.13) are uniquely solvable.

2.3. Error Estimates. From (2.4), (2.14), (2.15) and the saddle point theory [2, 11, 30],
we have the following quasi-optimal error estimate.

Lemma 2.1. Let (p,y) (resp., (pn,yn)) be the solution of (2.10) or (2.11) (resp., (2.12) or
(2.13)). We have

(2.16) o = palluye) + v = wnlluye) S inf (Ilp — anll o) + ly — Zh”Hé(Q))-

(qh,2n) EVR XV,

In order to convert (2.16) into a concrete error estimate, we need the regularity of the
solutions of (2.10) and (2.11)
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Lemma 2.2. The solution (p,y) of (2.10) or (2.11) belongs to H*(2) x H?*(Q) and we have

1 1
(2.17) 1820l 20y + 182yl r2) S 1 222) + 9] o)

Proof. We will only consider (2.10) since the arguments for (2.11) are similar. In view of
(2.2), we can write (2.10) as

a(q,ﬁip) = (y_'_fa q)Lz(Q) vq € H&(Q)7
1
G(BQ% Z) = (_p - g7Z)L2(Q) Vze H(}(Q)v
and hence, by the elliptic regularity for convex domains [17, 14, 19],
1
(2.18a) 182l m20) S 1Wll2200) + 1 |22
(2.18Db) 182yllr2(0) < IPll22) + 19l 220
From (2.3), (2.7) and (2.10) we also have
(2.19) 1Pl 22 + 1Yllza@) S 1 fllra@) + 19l 2200
The estimate (2.17) follows from (2.18) and (2.19). O
We can now derive concrete error estimates for the P; finite element methods.

Theorem 2.3. Let (p,y) (resp., (pn,yn)) be the solution of (2.10) or (2.11) (resp., (2.12)
or (2.13)). We have

1, o1 1

(220) o = pallaye) + 1y = vullyo) < CL+ B2R2)2B7202 (|| fll ooy + 9l L),
1. oy oo

(2.21) 19 = rll o) + 1y = ynll o) < COL+ B2 B7 Rl Loty + 1191 o))

where the positive constant C' is independent of 5 and h.

Proof. We will only consider the case that involves (2.10) and (2.12). Let II, : H*(2) N
H () —> Vj, be the nodal interpolation operator. We have the following standard interpo-
lation error estimate [13, 10]:

(2.22) 1€ = Tl o) + PIC = G lme) < CRZ[Clma) V¢ € H(Q) N Hy (),

where the positive constant C' only depends on the shape regularity of 7.
The estimate (2.20) follows from (2.3), (2.16), (2.17) and (2.22):

Ip _th?{é(Q) +lly — ?Jh||?{;(9) S llp— th”?{é((l) +lly - Hh?Jqué(Q)
= lp = pl3, 0y + B2lp — Wapl3 gy + 1y — Tyl ) + B2y — Thyl3p o)
S B+ B (1 ) + 19150)
= (1+ 5%h_2)5_1h4(||f||%2(9) + 9017,

The estimate (2.21) is established by a duality argument. Let (£,0) € H}(Q) x H () be
defined by

(2.23)  B((g,2),(£,0)) = (0.0 — Pr)1ag) + (.U — U)oty V(q,2) € Hy(Q) x Hy(€2).
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We have, by (2.4), Lemma 2.2 (applied to (2.23)), (2.22), (2.23) and Galerkin orthogonality,

1P = pullip) + 1y = UnllZo@) = B((p = proy — un), (€,0))
=B((p —pny — yn), (£ — I, 0 — 11,,0))

1 1
S (€= th”%[é(g) + 10— Hh9||12q/§(9))2 (llp = PhHJQqé(Q) +ly - thiIé(Q))g
1, 91,1 1
S+ 82072287203 (|lp — pulliy + v — unllZ,@)?
% (IIp = pallfzgge) + 1y = vnll7y ()
HY(9) HY(Q)) "
which together with (2.20) implies (2.21). O

The performance of the P finite element method for (2.10) is illustrated in the following
numerical example.

Example 2.4. We solve (2.10) on 2 = (0,1) x (0,1) with 5 =1, { =
exact solution

:[1 0], v =0 and
(p,y) = (sin(27ray) sin(2mz2), z1(1 — 21)z2(1 — 22)).

There are 10 degrees of freedom (dofs) for the P, finite element space associated with the

initial mesh (k = 1). After 7 uniform mesh refinements, the P; finite element space associated

with the final mesh (k = 8) has 261122 dofs. The relative errors are displayed in Table 2.1.

We observe O(h) convergence in | - |y1(q) and O(h*) convergence in || - ||1,(), which agrees

with Theorem 2.3.

k —‘p;j;'ﬁ;jm Order —”p”; ﬂ’;”;;im Order —'yﬁf{lﬁgim Order —Ilylm’;”;;;”) Order
1| 1.60e-01 - 1.45e-01 - 2.77e-01 - 1.96e-01 -

21 1.92e-01 | -0.27 3.64e-01 0.09 1.33e-01 1.06 6.97e-02 1.49
31 9.54e-02 1.01 4.20e-02 1.70 5.83e-02 1.19 2.01e-02 1.79
4| 4.67e-02 1.03 1.10e-02 1.93 2.67e-02 1.13 5.31e-03 1.92
51 2.32e-02 1.01 2.79e-03 1.97 | 1.27e-02 1.07 1.36e-03 1.92
6| 1.16e-02 1.00 7.00e-04 2.00 | 6.24e-03 1.03 3.45e-04 2.02
71 5.79e-03 | 1.00 1.75e-04 2.00 | 3.09e-03 | 1.00 8.67e-05 1.99
81 2.89e-03 1.00 4.38e-05 2.00 1.53e-03 1.05 2.17e-05 2.00

TABLE 2.1. Relative errors for the P; finite element method for (2.10)

2.4. A P, Finite Element Method for (1.6). The P, finite element method for (1.6) is
to find (pp,yn) € Vi x V3 such that

(2.24a) a(qn, Pn) = (@hs Un) 1) = —(@n, Ya) o) Y au € Vi,
(2.24b) —(Pn> 20) La() — Ba(Gn, zn) = 0 Vi € Vi,
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which is equivalent to (2.9) under the change of variables

1

(2.25) prn=PB1p, and =15
Applying the results in Section 2.3 to (2.1) and (2.9), we arrive at the following error
estimates through the change of variables (1.7) and (2.25).

Lemma 2.5. Let (p,y) (resp., (pn,yn)) be the solution of (1.6
12 = Brll sy + 82117 — Gullmre) < C(L+ B2R72)
?)

_ 1o 1. o\ 1
1P = Bull o) + B2 17 = Gnll @) < C(L+ B2R7*) 720 yall oo,
where the positive constant C' is independent of 5 and h.

resp., (2.24)). We have

)

(
h2||deL2(Q)7

Remark 2.6. According to Lemma 2.5, the performance of the P, finite element method with
respect to the norms of H'(Q) and Ly(f2) will deteriorate as 3 | 0. Therefore it is necessary
to use very fine mesh when [ is small in which case it is crucial to have an efficient iterative
solver.

Remark 2.7. We can approximate the optimal control % in (1.1) by 4, = —37py. It then
follows from (1.5b) that the relative error for uy, is identical to the relative error for py,.

3. MULTIGRID ALGORITHMS

Let 7Ty be a triangulation of {2 and the triangulations 77, 7Ty, ... be generated from 7Ty through
a refinement process so that hy = hy_1/2 and the shape regularity is maintained. The P
finite element subspace of H}(Q) associated with 7y is denoted by V.

We want to design multigrid methods for the problem of finding (p,y) € Vi x Vj such that

(3.1) B((p,y),(q,2)) = F(q) + G(2)  V(q,2) € Vi x W,
where F,G € V/, and for the dual problem of finding (p, q) € Vi x Vj such that
(3.2) B((q,2),(p,y)) = F(a) + G(z)  V(q,2) € Vi, x Vi

3.1. A Mesh-Dependent Inner Product. It is convenient to use a mesh-dependent inner
product on Vi x Vi to rewrite (3.1) and (3.2) in terms of an operator that maps Vi x Vj to
Vi X Vi. First we introduce a mesh-dependent inner product on Vj:
(3.3) (v, w);, = h Z v(x)w(x) Vo, we Vg,
xEVy
where V), is the set of the interior vertices of 7,. We have
(3.4) (v, = |lvlli,@  VveEW
by a standard scaling argument [13, 10], where the hidden constants only depend on the

shape regularity of 7.
We then define the mesh-dependent inner product [, -]z on Vj X V. by

(3.5) [(p,y), (4, 2)]k = (P, D& + (Y, 2w
Let the operator By, : Vi, x Vi, — Vi X Vi, be defined by

(3.6) [Bi(p,v), (¢, 2)]e = B((p,y), (¢:2))  YV(p,y),(q,2) € Vi x Vi
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We can then rewrite (3.1) in the form

where (f,g) € Vi x V is defined by
[(f:9): (¢, )k = F(g) + G(2)  V(g,2) € Vi x Vi,
and (3.2) becomes
(38) BL(p.y) = (f.9),
where

(3.9) B, v), (@.2)]k = [(p.y), Bi(a,2)lk = B((¢.2), (p,y)) Y (p,y),(q,2) € Vi x Vi

We take the coarse-to-fine operator [,'j_l Vi X Viely — Vi, x V3, to be the natural
injection and define the fine-to-coarse operator I,f’l Vi x Vi, — Vi1 X Vi._; to be the
transpose of IF | with respect to the mesh-dependent inner products, i.e.,

[ 0 9)s (@ 2Dk = [0, 9), Lioa (@ 2]k Y (9,y) € Vi X Vi, (:2) € Vier X Vi,

3.2. A Block-Diagonal Preconditioner. Let L, : V), — V). be a linear operator sym-
metric with respect to the inner product (-, -); on Vj such that

(3.10) (Lkv, v)k = ||U||§{[g(9) = ||U||%2(Q) + B%Wﬁﬂ(m Vv e V.
Then the operator € : V, x Vi, —> V), x V}, defined by

(3.11) C(p, y) = (Lip, Lry)

is SPD with respect to [-, -] and we have

(3.12) €. v), (0. 0k = IPllye) + 1l ) Y (Py) € Vi x Vi,

where the hidden constants are independent of k and f.

Remark 3.1. We will use €, as a preconditioner in the constructions of the smoothing
operators. In practice we can take L;l to be an approximate solve of the P finite element
discretization of the following boundary value problem:

(3.13) —B2Au+u=¢ inQ and u=0 on I

The multigrid algorithms in Section 3 are O(n) algorithms as long as L' is also an O(n)
algorithm. We refer to [24, 15] for the general construction of block diagonal preconditioners
for saddle point problems arising from the discretization of PDEs.

Lemma 3.2. We have
(3.14) [BLE, B v), (0. 0)lk = Pl o) + Wil ) Y (22w) € Vi x Vi,
(3.15) B BL(P v), (0, 0k = IPlliye) + 1Wllin) ¥ (2oy) € Vi x Vi,

where the hidden constants are independent of k and (3.
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Proof. Let (p,y) € Vi x Vi be arbitrary and (r,z) = €, 'B(p,y). Using (2.14), (3.6), (3.12)
and duality, we derive (3.14) as follows:
(B¢, ' Br(p,y), (0, ¥)]k = [€1(€;"Br) (p, ), € " Br(p, y)lk
- [Q:k(r’ ZE), (T’ x)]k
— sup [Q:k(ra I), (QVZ)]%
(q,2)EVi x Vi, [Q:k(q> Z)? (Q7 Z)]k
2
~  sup [%Qk(p, y), (¢, z)]k
(q,2) eV XV ”qHH}?(Q) + ”ZHHé(Q)
2
[B((p,y), (¢, 2))]

2 2
= sup ~ Ip + )

The derivation of (3.15) is analogous, with (2.14) (resp., (3.6)) replaced by (2.15) (resp.,
(3.9)). O

Lemma 3.3. The minimum and maximum eigenvalues of %ZQEl%k and %k(’:,;l%}; satisfy
the following bounds:

(316) )\min(%};e;l%k), Amln(%kelzl%};) Z Cmin7
(3.17) Amax(BLE ' BL), Amax(Br€y 'BL) < Conax (1 + B2h;2),
where the positive constants Ci, and Chax are independent of k and (3.

Proof. We will only derive the estimates for B €, '8, since the derivation for B,&, "Bt is
similar. We have, from (3.4) and (3.5),

(3.18) (2 0), 0 Wk = Pl + Wl Y (0w) € Vi x Vi,

where the hidden constants only depend on the shape regularity of 7q. It follows from (2.3),
(3.14) and (3.18) that

(3.19) (B¢ ' B0, v), (0, )]k = Cooinl(2, %), (0. W)k YV (p,y) € Vi X Vi,

which then implies (3.16) by the Rayleigh quotient formula.
By a standard inverse estimate [13, 10|, we have

1 1. _
||U||§fé(g) = [0ll7,) + B2 IvlEn g < T+ CBRA)|vlT,  YveV,

where the positive constant C' depends only on the shape regularity of 7y. It then follows
from (2.3), (3.14) and (3.18) that

BLE B ) (0 9k < Conax (14 B2 (0 y), 0y)e Y (p,y) € Vi x Vi,
and hence (3.17) holds because of the Rayleigh quotient formula. U

Remark 3.4. Tt follows from (3.16) and (3.17) that the operators B¢, "B and B¢, "B
are well-conditioned when /3 %hgz =0(1).
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3.3. A W-Cycle Multigrid Algorithm for (3.7). Let the output of the W-cycle algorithm
for (3.7) with initial guess (po, yo) and my (resp., ms) pre-smoothing (resp., post-smoothing)
steps be denoted by MGy (k, (f, 9), (P, o), mi1, ms).

We use a direct solve for k = 0, ie., we take MGw(0,(f,9), (po,%0), m1,m2) to be
B, (f,9). For k> 1, we obtain MGy (k, (f,9), (po, %), m1, ms) in three steps.

Pre-Smoothing We compute (p1,v1), .., (Pm,, Ym,) recursively by

(3.20) (P> 45) = (i1, 95-1) + M€ B ((f, 9) — Br(pj-1,95-1))

for 1 < 7 < my. The choice of the damping factor A, will be given below in (3.23) and
(3.24).

Coarse Grid Correction Let (f',¢") = I ((f, 9)—B1(Dmy» Ym, )) be the transferred residual
Of (Pmy Ymy) and let (py, 1), (P, Ya) € Vi1 X Vi1 be computed by

(3.21a) (P1,91) = MGw(k —1,(f",4'),(0,0), my, ma),

(3.21b) (P, ¥5) = MGw (k= 1,(f",g), (bh, y1), ma, ma).

We then take (P41, Ymyr1) 10 be (P, Ymy ) + IF_ 1 (P, yh).-

Post-Smoothing We compute (Pm,+2, Ymi+2)s - - - » (Pmy+mat1s Ymy+mat1) Tecursively by
(3.22) (s> 93) = (Pi-1:Yi-1) + MBLE((f, 9) — Bir(pjm1,yj-1))

form1+2§j§m1+m2+1.
The final OUtput 1s MGW(ka (fa g)a (pOa y0)7mlam2) = (pm1+m2+l>ym1+m2+l)-

To complete the description of the algorithm, we choose the damping factor A, as follows:
2

3.23 Ap = if B2h 2 < 1,
(3:23) T A (BLC 1B, + A (BLE, B,) B2 hy

and

(3.24) Ae = [Ci(1+ B2h ) if B2h;? > 1,

where C} is greater than or equal to the constant Ciax in (3.17).

Remark 3.5. Note that the post-smoothing step is exactly the Richardson iteration for the
equation
BLE, Br(p,y) = B ([ 9),

which is equivalent to (3.7).

Remark 3.6. In the case where 5%h;2 < 1, the choice of A\ is motivated by the well-
conditioning of B €, "B, (cf. Remark 3.4) and the optimal choice of damping factor for the
Richardson iteration [25, p. 114]. In practice the relation (3.23) only holds approximately,
but it affects neither the analysis nor the performance of the W-cycle algorithm. In the case
where 5%h1:2 > 1, the choice of A\, is motivated by the condition )\max()\k‘B}ZC,:l‘Bk) <1
(cf. (3.17)) that will ensure the highly oscillatory part of the error is damped out when
Richardson iteration is used as a smoother for an ill-conditioned system (cf. Lemma 4.2).
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3.4. A V-Cycle Multigrid Algorithm for (3.7). Let the output of the V-cycle algorithm
for (3.7) with initial guess (po, yo) and my (resp., ms) pre-smoothing (resp., post-smoothing)
steps be denoted by MGy (k,(f,9), (po,yo), m1,mz2). The difference between the computa-
tions of MGy (k,(f,q), (po, %), m1,ma) and MGw(k, (f,g), (po,yo), m1,ms) is only in the
coarse grid correction step, where we compute

(P, y1) = MGy (k—1,(f',¢'),(0,0),m1,ms)
and take (P, 11, Ymy+1) 10 be (P, Ym, ) + 11571(171791)'

Remark 3.7. We will focus on the analysis of the W-cycle algorithm in this paper. But
numerical results (cf. Section 6) indicate that the performance of the V-cycle algorithm is
also robust respect to k and f.

3.5. Multigrid Algorithms for (3.8). We can define W-cycle and V-cycle algorithms for
(3.8) by simply interchanging the operators B and B: in Section 3.3 and Section 3.4. In
particular, the pre-smoothing step is given by

(3.25) (Pj»yj) = (Pj-1,95-1) + M€ ' Br((f. 9) — Bi(pj-1,9j-1)),
and the post-smoothing step is given by
(3.26) (5, y5) = (i1, ¥j-1) + M BrG ((f, 9) — Bi(pj-1,9-1))-

4. SMOOTHING AND APPROXIMATION PROPERTIES

We will develop in this section two key ingredients for the convergence analysis of the
W-cycle algorithm, namely, the smoothing and approximation properties. They will be
expressed in terms of two scales of mesh-dependent norms defined by

(4.1) @ )k = [(BLEE B (0, 0), 0, 9))F ¥(0,y) € Vi x Vi,
(4.2) I )T = [(BeCE B (0, y), (0, )]] Y(poy) € Vi x Vi
Note that

@3) @R ~ 1Pl + 190 ~ (1@ 0)l50? ¥ (y) € Vi x Vi

by (3.18), and

@4 el = el + lvlEe = (e wli)* V) € Vi x Vi
by (3.14) and (3.15).

4.1. Post-Smoothing Properties. The error propagation operator for one post-smoothing
step defined by (3.22) is given by

(4.5) Ry, = Idy, — \pBLC "By,

where Idj, is the identity operator on Vi x V.
Similarly, the error propagation operator for one post-smoothing step defined by (3.26) is
given by

(4.6) Ry = Idy — M8, € 1BL .
k
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Lemma 4.1. In the case where B%hlf < 1, we have

(4.7) IR, e < 7l e Yo, y) € Vi X Vi,
(4.8) I[Re(o: IITe < 7l )T VDY) € Vi x Vi,

where the constant T € (0,1) is independent of k and 5.

Proof. In this case \j, given by (3.23) is the optimal damping parameter for the Richardson
iteration and we have

Cmin S )\mln(%}tgq:};l%k) S )\max(%}tg@]zl%k)) < 2Cmax
by Lemma 3.3. It follows that (cf. [25, p. 114])

1Rk (2, )1 = [B1E, " BrRe(p, ), Rie(p,y)]}
_ <Amax(%;;et,;1%k) — Amin(BLE 1B,
= N nax (BLE T B) + Amin (BLE, 1By

QCmax - Cmin
<|\=—= .
< (s @ vl

Therefore (4.7) holds for 7 = (2Cax — Cuin)/(2Cmax + Cnin)-
The derivation of (4.8) is identical. O

) (B¢, "B (p, y), (p, y)]é

Lemma 4.2. In the case where B%hlf > 1, we have, for 0 < s <1,

(4.9) B @, )k < CO+ 8202 2m = 2[[(p y)llh sk ¥(p,y) € Vi X Vi,
(4.10) 1B 0, )17 < COA+ 820 Pm |0 )i V(p,y) € Vi X Vi,

where the positive constant C s independent of k and f3.

Proof. In this case Ay is given by (3.24) and )\max()\k%ZC,:l%k) < 1. It follows from (3.24),
(4.1), (4.5), calculus and the spectral theorem that

IR (2, )T 5 = [B1LE " BLRE (0, ), Ry (0, )]k
= (BB S (B, 1B RE (0, y), R (D, y)]k
< C7*(1+ B2h;%)° max [(1 — )™ 2*][(BLE 1B (0 y). (0 )i

0<z<1
< C(+ B0y m” [l Ik
The proof for (4.10) is identical. O

Remark 4.3. In the special case where s = 0, the calculation in the proof of Lemma 4.2
shows that

IRk )1k < M)l and  [Re(p, )l < @ITe ¥ (0,y) € Vi x Vi
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4.2. Approximation Properties. We define two Ritz projection operators P,f_l s Ve X
Vi = Vi1 x Vi_1 and f’,f_l : Vi X Vi = Vi1 X Vj_1 in terms of the bilinear form B(-,-) and
the natural injection IF | : Vi1 x Vi1 — Vj, x V4 as follows. For any (p,y) € Vi x V4 and
(q,2) € Vieer X Vi,

(4.11) B(Py (p.y), (q.2)) = B((py). It_1(¢, 2)) = B((p,y), (4, 2)),
(4.12) B((¢,2), PF ' (p,y)) = BUIE_1(4,2), (¢, 9)) = B((q,2), (p, y))-
It follows that

P, = 1y = BUE

and hence
(4.13) (If P =1F PP and  (Idy — IF_\PFY)? = Idy, — I Pi Y,
(4.14) (IF \PFY =1f  PF' and (Idy —IF PF)? =Td, — I PP

Moreover we have the following Galerkin orthogonality relations:
(4.15)  B((Idy — I Py ) (p,y) i1 (0:2)) =0 ¥ (p,y) € Vi x Vi, (¢, 2) € Vit X Vi,
(4.16)  B(I{_1(¢,2), (Idx = [ P ) (0,9)) =0 V(p,y) € Vi X Vi, (¢, 2) € Vier X Vi

The effects of the operators Idy, — IF | PF~ and Idy — IF P! are measured by the
following approximation properties.

Lemma 4.4. There exists a positive constant C' independent of k and 3 such that
(4.17) 1(7dy = T PED @, 9)lllow < CO+ B2 28720 (0wl Y (0y) € Vi x Vi,
(4.18) [1(1d = IE B (0 )llos < OO+ B20c) 28721 (p )Tk ¥ (py) € Vi x Vi

Proof. We will only present the detailed arguments for (4.17). Let (p,y) € Vi x Vi be
arbitrary and

(4.19) (¢p) = (Idx = IE, PE) (D, y).
In view of (4.3), it suffices to establish the estimate
1, 91,1
(4.20) ¢l 2o + lillzage) S (14 B2 )2 B2 hilll ()l

by a duality argument.
Let (&,0) € H)(Q) x Hi(Q) be defined by

(4.21) B((q.2),(€.0)) = (¢, Qo) + (11, 2)ro)  V(g,2) € Hy(Q) x Hy(9),
and (€x_1,0k_1) € Vi1 x Vik_1 be defined by
(4.22) B((q,2); (§x—1,0k-1)) = ((, Do) + (1 2) o) V(q,2) € Vs X Vi

Since hy_1 = 2hy, we have, according to Theorem 2.3,

(4.23)  I& = &r-rllmz) + 110 = Okall ) S (1 + B2 )2 B2 hip(lI¢ o) + 1l zae)-
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Putting (2.4), (4.4), (4.15), (4.19) and (4.21)—(4.23) together, we find

B((¢, 1), (€,0))

((]dk ]k 1Pk 1)(p7 )7(£a0))

B((

Idy — I PEY (0,9), (6,6) — (§e1, 0k-1))
= B(( p,Y), (£ 0) = (§r—1,0k-1))

1 1

S (1€ - ék—ln?r{é(ﬂ) + 110 — ek—1|’§15(9))2<||p||§15(9) + ”?JH?{[g(Q))Q
1, 9\l , 1

S (14 820) 2872 R (I sy + el o) N2, ) e

||C||L2 + ||M||L2(Q)

which implies (4.20).
The estimate (4.18) is established by similar arguments based on (4.16). O

We will also need the following stability estimates.

Lemma 4.5. We have

(4.24) 171 (a Mk = M@ 2 Mhe-r ¥ (g, 2) € Vier X Ve,
(4.25) 12 2, ) lllae-1 < Mo )l V(p,y) € Vi X Vi,
(4.26) (125 V1] ey (62271 " V(p,y) € Vi X Vi,

where the hidden constants are independent of k and (3.

Proof. The estimate (4.24) follows from (4.4) and the fact that I¥ | is the natural injection.
The estimate (4.25) then follows from (2.14), (4.4), (4.11) and (4.24) :

- B Pk_1<p7 y)a (Qa Z)
1P o) s~ sup (P )
(9,2)€Vi—1x Vi1 |H(q72)m1,k71

B((p,y), 1§ _1(q, 2)
= Sup ( L ) S s v)|l1 k-
(¢,2)EVe—1xVi_1 ‘H(q?z)ml,kfl

Similarly we obtain (4.26) by using (2.15), (4.4), (4.12) and (4.24). O

5. CONVERGENCE ANALYSIS OF THE W-CYCLE ALGORITHMS

Let E) : Vi x V), — Vi, x V}, be the error propagation operator for the k-th level W-cycle
algorithm for (3.7). We have the following well-known recursive relation (cf. [18, 23, 6]):

(5.1) By =R (Idy — If_ Pl ' + I} E;_ PEHSm,
where Ry, is given by (4.5) and
(5.2) Sy = Idy, — M@, BEB,

is the error propagation operator fqr one pre-smoothing step (cf. (3.20)).
Note that Sy is the transpose of Ry, (the error propagation operator of one post-smoothing
step for the dual problem (3.8)) with respect to the variational form B(-,-). Indeed we have,
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by (3.6), (3.9) and (4.6),
B(Sk(p,y), (4. 2)) = [Bi(Idy, — M€y " BEB) (0, 9), (4, 2)li
(5.3) = [Br(p,y), (Tdr — MeB1 € BL) (¢, 2))k
= B((p.y), Ri(q, 2)) YV (p,y), (¢, 2) € Vi X V.

Remark 5.1. The duality between Sy and Ry, is the reason why we consider multigrid algo-
rithms for (3.7) and (3.8) simultaneously.

The relations (4.11) and (5.3) lead to the following useful result.
Lemma 5.2. We have
(5.4) [(Tdy = L PSR Ty = Ty P

where || - || denotes the operator norm with respect to ||| - |||1.x and the hidden constants are
independent of k and 3.

Proof. 1t follows from (2.14), (4.4), (4.11), (4.12) and (5.3) that
l(Tde — I, P ) S8 (0, )l
B((Idw — It PSP (9 y), (4, 2))

A~ sup
(0,2)EVix Vi I(q, 2)ll1,%

. B((p,y), Ry (Idy — I\ PF")(q, 2))
(0,2)E€Vi x Vi (g, 2)|l1.x

Sl B (Tdi = Ty P
and hence
[(Zdy = L PEDSEI S I Ty = L P
The estimate in the other direction is established by a similar argument that uses (2.15)
instead of (2.14). O

5.1. Convergence of the Two-Grid Algorithm for (3.7). In the two-grid algorithm the
coarse grid residual equation is solved exactly. By setting Fy_; = 0 in (5.1), we obtain
the error propagation operator R (Idy, — IF_ Pi~1) S for the two-grid algorithm with m,
(resp., mg) pre-smoothing (resp., post-smoothing) steps.

We will separate the convergence analysis into two cases.
The case where ﬁ%hf < 1. Here we can apply Lemma 4.1 which states that Ry (resp.,

Ry) is a contraction with respect to ||| - [||1.x (vesp., ||| - [I77x) and the contraction number 7 is
independent of k£ and /.

Lemma 5.3. In the case where B%hlf < 1, there exists a positive constant Cy independent

of k and B such that
(5:5) | B2 (T — I PEDSI | < Gy,

where || - || is the operator norm with respect to ||| - |||1 k-
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Proof. We have, from (4.7) and Lemma 4.5,
IR (Td = IE_ P ) (0 )l e
<7 (Idy = L P 0 9)lle S 7@ )llhe Y (0,y) € Vi x Vi,

and hence
(5.6) | B (Tdy = T B S 7
Similarly, we also have, by (4.4), (4.8) and Lemma 4.5,
IRY (Idy, — Ly BE)I S 7™
which together with Lemma 5.2 implies
(57) |(Tde = LA PSS 7
Finally we establish (5.5) by combining (4.13), (5.6) and (5.7):
1R (Tdy, = Ty PE S |
= IRy (Idy — I Py ) (Tdy, — Ty P S|
< Ry (Idy, — IE Py (Tdy — Ly BEHS | S mmime.

The case where B%hf > 1. Here we can apply Lemma 4.2.

Lemma 5.4. In the case where 6%11,;2 > 1, there exists a positive constant C, independent
of k and B such that

(5.8) IR (Idy, — IF, PF"1)S7|| < Cy[max(1, my) max(1,my)] "2,

where || - || is the operator norm with respect to ||| - |||1 k-

Proof. Let m be any positive integer. We have, from (4.9) and (4.17),

IR (Ldi = Ly P ) ()l

S (U B2h ) 2m” [T — I B @)l
S (U B3 h) am 2 (14 820 ) 26721 (py )k
= m 2 (8720 + Dl(p. )l
< 2m”2|(p.y) V(p.y) € Vi x Vi,

and hence
(5.9) | Ry (Tdy — i PO S e
Similarly, we also have, by (4.4), (4.10) and (4.18),
IRy (Tdy = I P S m2.
It then follows from Lemma 5.2 that
(5.10) |(di — It BEHST| S s,
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Combining (4.13), (5.9) and (5.10), we obtain for my,mg > 1,
1R (Tdy — Iy Py ) S = 1Ry (T — Ty P (Tdy — Ly Py ) S|
< Ry (Idy, — Iy POy = Ty P S
S (mlmg)_%.

The cases where m; = 0 or ms = 0 follow directly from (5.9) and (5.10). O
5.2. Convergence of the W-Cycle Algorithm for (3.7). We will derive error esti-
mates for the W-cycle algorithm through (5.1) and the results for the two-grid algorithm
in Section 5.1. For simplicity we will focus on the symmetric W-cycle algorithm where
mp =mg=m > 1.

According to (4.4) and Remark 4.3, there exists a positive constant C; independent of k
and m such that

(5.11) IR 230l < O,

where || - || is the operator norm with respect to ||| - |||1 5. Moreover it follows from (2.14),
(4.4) and (5.3) that

B(Si(p,y), (q,2))

158", )l e = sup

(4,2)EVi XV, 11(g; 2)Ill1.x
B((p,y), B'(¢, 2) .
Sup ( i ) S M el BNV (poy) € Vi x Vi,
(q,2)EVi XV, |H(Q>Z)H|1,k
and hence, by (5.11),
(5.12) ISitl < Co,

where the positive constant Cs is also independent of k and m.
Putting Lemma 4.5, (5.1), (5.11) and (5.12) together, we obtain the recursive estimate

(5.13) 1Bl < IR (Tdy — Ly PSP+ Cull Bpal® - for b > 1,

where the positive constant C, is independent of k& and 5. The behavior of || Fx|| is therefore
determined by (5.13), the behavior of ||R{*(Idy — If_, PF~')Sy||, and the initial condition

(5.14) 1Bl = 0.
Specifically, for ﬂ%h,f < 1, we have

(5.15) 1Bl < Cyr™™ + Cu| B |1®

by Lemma 5.3, and for ﬁ%hlf > 1, we have

(5.16) 1B < Com™ + Cul| Bra |1®

by Lemma 5.4.

The following result is useful for the analysis of (5.14)—(5.16).
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Lemma 5.5. Let oy (k=0,1,2,...) be a sequence of nonnegative numbers such that

(5.17) ap <14+6a; ,  for k>1,
where the positive constant ¢ satisfies
1
5.18 0 < ———.
(5.18) ~ 414 ap)

Then we have
(5.19) o <2+ 41’2ka0 for k>0.

Proof. The bound (5.19) holds trivially for & = 0. Suppose it holds for £ > 0. We have, by
(5.17) and (5.18),

aper < 14607 <146(2 4472 ap)?

=1+ 6(4 44" 4a0) + (500)4> 2 g
]_ 1 1
<14 6(4+ dag) + (Z)AJP*Q’“+ ap < 24472 g

Therefore the bound (5.19) holds for £ > 0 by mathematical induction. O

Theorem 5.6. There exists a positive integer m, independent of k and B such that m > m,
implies

(5.20) | Ex|| < 2Cy7*™ V1<k<k,
(5.21) Bl < 2Cm™ ' + 472" (207%™)  Vk >k, + 1,
where || - || is the operator norm with respect to ||| - |||1x and k. is the largest positive integer

such that ﬁ%h;f < 1.
Proof. For 1 < k < k,, we take oy, = || Ex||/(C;7>™) and observe that
ap <1+ (C'*C'ﬁT%”)ozz_l
by (5.15). It then follows from (5.14) and Lemma 5.5 that a4 < 2, or equivalently

1B < 2y,
provided that
1
(5.22) C.Cyr™ < T

We now define iy = ||Eg,1x||/(Com ™) and observe that
e < 14 (C.0m™ N s for k>1
by (5.16). It then follows from Lemma 5.5 that
e < 2 +41*2k,u0 for k>1,
or equivalently

ok —kx

| B < 20,m™" + 41

Ey.

for k>k,+1,
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provided that

1
c.0om™! <
S 411 B

/(Com=1))’

or equivalently

(5.23) C.Com™ + C,|| Eg,

1
< —.

4
Finally we observe that if we choose m, so that

C.Cyom; ' 4 2C,.Cym*™ <

Y

|

then (5.22) and (5.23) are satisfied for m > m,. O

Remark 5.7. According to (4.4) and Theorem 5.6, the k-th level symmetric W-cycle algo-
rithm for (3.7) is a contraction in the energy norm || - || () if the number of smoothing
steps is sufficiently large and the contraction number is bounded away from 1 uniformly
in k£ and 5. Moreover, for the coarser levels where (3 %h,f < 1, the contraction number of
the symmetric W-cycle algorithm will decrease exponentially with respect to the number of
smoothing steps m. After a few transition levels the dominant term on the right-hand side
of (5.21) becomes 2C,m~" and the contraction number will decrease at the rate of m™! for
the finer levels where %h,f > 1.

Remark 5.8. For the nonsymmetric W-cycle algorithm with m; (resp., ms) pre-smoothing
(resp., post-smoothing) steps, the estimates (5.20) and (5.21) are replaced by

| El| < 2Cy7™ V1<k<k,
1Bl < 2C,[max(1,my) max(1,my)] "2 + 472" (2C,7™ ™) VEk >k, + 1.

5.3. Convergenge of the W-cycle Multigrid Algorithms for (3.8). The error propa-
gation operator Ej : Vi x Vi, — Vi x Vj for the W-cycle algorithm for (3.8) satisfies the
following analog of (5.1):

By = R (Idy — I P+ Ty B PSP,

where Ry, is given by (4.6) and Sy = Idy, — )\in,;l%kiBZ is the error propagation operator for
one pre-smoothing step (cf. (3.25)), and we have the relations

B((p,y). Si(a,2) = B(Rx(p.y), (4, 2)) V(p.y). (a:2) € Vi x Vi,
1(Tdy, — Iy Py ) Sl = 1R (T — Te_y P,
that are the analogs of (5.3) and (5.4). The results for Ej, in Section 5.2 also holds for E},

by essentially identical arguments based on Lemma 4.1, Lemma 4.2, (4.14), Lemma 4.4 and
Lemma 4.5.
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6. NUMERICAL RESULTS

In this section we report numerical results of the symmetric W-cycle and V-cycle algo-
rithms for (3.7) on two and three dimensional convex domains, where the preconditioner ¢; '
is based on a V'(4,4) multigrid solve for (3.13). We employed the MATLAB/C++ toolbox
FELICITY [29] in our computations.

Example 6.1. (Unit Square)

The domain € for this example is the unit square (0,1)%. We take ¢ = %[1 0] and v =0
in (1.3), and C; = 5in (3.24). The initial triangulation 7 is generated by the two diagonals
of €2, and the triangulations 77, 75, ... are generated by uniform subdivisions.

The contraction numbers of the k-th level symmetric W-cycle algorithm in the energy
norm with 8 = 1072 (resp., 3 = 107% and 8 = 107%) are presented in Table 6.1 (resp.,
Table 6.2 and Table 6.3), where the number m of pre-smoothing and post-smoothing steps
increases from 2° to 2°.

m 20 21 22 23 24 25

2.9e-01 | 8.8e-02 | 7.8e-03 | 6.1e-05 | 6.4e-08 | 9.1e-17
6.0e-01 | 3.9e-01 | 1.9e-01 | 4.9e-02 | 1.8e-02 | 2.7e-03
4.5e-01 | 2.4e-01 | 1.0e-01 | 3.5e-02 | 1.6e-02 | 7.4e-03
3.8e-01 | 2.2e-01 | 8.7e-02 | 3.7e-02 | 2.0e-02 | 7.5e-03
3.7e-01 | 2.1e-01 | 8.2e-02 | 4.0e-02 | 2.0e-02 | 9.6e-03
3.7e-01 | 2.1e-01 | 8.1e-02 | 4.0e-02 | 2.0e-02 | 1.0e-02

O[O | W [N |+~

TABLE 6.1. The contraction numbers of the k-th level symmetric W-cycle
algorithm with m smoothing steps for § = 1072 (unit square)

m 20 21 22 23 24 25

1.2e-01 | 1.5e-02 | 2.2e-04 | 5.1e-08 | 1.0e-15 | 1.4e-17
2.3e-01 | 7.5e-02 | 5.9¢-03 | 3.6e-05 | 3.9¢-07 | 1.4e-16
4.9e-01 | 2.6e-01 | 7.1e-02 | 7.0e-03 | 2.9e-04 | 5.5e-07
5.5e-01 | 3.2e-01 | 1.7e-01 | 6.0e-02 | 2.4e-02 | 7.1e-03
4.1e-01 | 2.4e-01 | 1.0e-01 | 4.8e-02 | 2.4e-02 | 1.2e-02
3.8e-01 | 2.2e-01 | 8.6e-02 | 4.2e-02 | 2.2e-02 | 1.1e-02
3.7e-01 | 2.1e-01 | 8.2e-02 | 4.0e-02 | 2.1e-02 | 1.1e-02

~N | |OU W[ |-

TABLE 6.2. The contraction numbers of the k-th level symmetric W-cycle
algorithm with m smoothing steps for 8 = 10~* (unit square)
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f moy90 21 22 23 21 25
1 | 2.6e-01]6.8¢-02 | 4.6e-03 | 2.1e-05 | 6.5¢-11 | 1.3¢-16
2 13.9e-01 | 1.7e-01 | 3.0e-02 | 8.9¢-04 | 9.8e-07 | 8.2e-14
3 | 2.4e-01|5.6e-02 | 3.1e-03 | 8.9¢-06 | 2.8e-11 | 1.3e-16
4 |3.8¢-01|1.4e-01 | 2.3¢-02 | 1.0e-03 | 2.4¢-06 | 3.3e-12
5 | 7.0e-01 | 4.9¢-01 | 2.8¢-01 | 1.3e-01 | 3.3e-02 | 6.0e-03
6 | 4.9e-01 | 2.9e-01 | 1.4e-01 | 6.0e-02 | 2.8e-02 | 1.1e-02
7 [ 4.0e-01 | 2.3¢-01 | 9.4e-02 | 4.5¢-02 | 2.4e-02 | 1.2e-02
8 [3.7¢-01 | 2.1e-01 | 8.4¢-02 | 4.1e-02 | 2.1e-02 | 1.1e-02

TABLE 6.3. The contraction numbers of the k-th level symmetric W-cycle
algorithmwith m smoothing steps for = 107¢ (unit square)

We observe that the symmetric W-cycle algorithm is a contraction with m = 1 for all
three choices of 3, and the behavior of the contraction numbers as k and m vary agree with
Remark 5.7. The robustness with respect to 8 and k is also clearly observed.

The times for one iteration of the symmetric W-cycle algorithm at level 7 (where there
are roughly 6 x 10* dofs) are reported in Table 6.4. They are proportional to the number of
smoothing steps, which confirms that this is an O(n) algorithm.

m 20 2! 22 23 24 25
Times (s) | 3.0e-1 | 5.4e-1 | 1.0e+0 | 2.0e+0 | 4.0e40 | 7.9e+0

TABLE 6.4. The times for one iteration of the symmetric W-cycle algorithm
with m smoothing steps at level 7 (unit square)

We have also computed the contraction numbers for the k-th level symmetric V-cycle
algorithm, which are similar to those of the W-cycle algorithm. For brevity we only present
the results for k =1,...,7, 8 =1072,107*,107% and m = 2°,2%, 22 in Table 6.5. Again we
observe that the V-cycle algorithm is a contraction for m = 1 and the contraction numbers
are robust with respect to both § and k.

Example 6.2. (Unit Cube)

The domain for this example is the unit cube (0,1)*. We take ¢ = 3[1 1 1] and v = 0 in
(1.3), and C} =4 in (3.24). The triangulations 7y and 77 are depicted in Figure 6.1. The
number of grid points in all directions are doubled in each refinement and the triangulations
inside the cubic subdomains at all levels are similar to one another.

The contraction numbers of the k-th level symmetric W-cycle algorithm in the energy
norm with 8 = 1072 (resp., 8 = 107* and 8 = 107%) are displayed in Table 6.6 (resp.,
Table 6.7 and Table 6.8), where the number m of pre-smoothing and post-smoothing steps
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S 2 3 4 5 6 7 | Time (s)
B =10"2
20 [2.946-01 [ 6.01e-01 | 5.58¢-01 | 5.38¢-01 | 5.33¢-01 | 5.28¢-01 | 5.12e-01 || 7.01e-02
21 | 8.846-02 | 3.87e-01 | 3.44e-01 | 3.31e-01 | 3.01e-01 | 2.93e-01 | 2.76e-01 || 1.29e-01
22 [ 7.81e-03 | 1.86e-01 | 1.67e-01 | 1.55¢-01 | 1.33¢-01 | 1.31e-01 | 1.29-01 || 2.44e-01
f =104
20 [1.21e-01 [ 2.31e-01 | 4.88¢-01 | 5.46¢-01 | 4.94e-01 | 4.86e-01 | 4.85¢-01 || 7.11e-02
92l [ 1.47¢:02 [ 7.59e-02 | 2.55¢-01 | 3.20e-01 | 3.18-01 | 3.17e-01 | 3.16e-01 || 1.30e-01
22 [ 2.17e-04 | 5.73¢-03 | 7.18¢-02 | 1.68¢-01 | 1.73¢-01 | 1.75e-01 | 1.75¢-01 || 2.51e-01
3 =105
20 [ 2.56e-01 | 3.91e-01 | 2.36e-01 | 3.71e-01 | 7.03¢-01 | 6.31e-01 | 6.03e-01 || 7.14e-02
21 [ 6.79¢-02 [ 1.68¢-01 | 5.61e-02 | 1.42¢-01 | 4.93¢-01 | 4.12e-01 | 4.03e-01 || 1.30e-01
22 [ 4.61e-03 | 3.00e-02 | 3.13¢-03 | 2.35¢-02 | 2.82¢-01 | 2.54e-01 | 2.48¢-01 || 2.51e-01

TABLE 6.5. The contraction numbers of the k-th level symmetric V-cycle

algorithm with 8 = 1072,107%,107% and m =

times for one iteration of the V-cycle algorithm at level 7 (unit square)

FIGURE 6.1. Triangulations 7Ty and 77 for the unit cube

20,21 22 together with the

increases from 2° to 2°. We observe that the symmetric W-cycle algorithm is a contraction for
m = 1. The behavior of the contraction numbers agree with Remark 5.7, and the contraction
numbers are robust with respect to both 5 and k. The times for one iteration of the W-cycle
algorithm at level 5 (where there are roughly 5 x 10° dofs) are reported in Table 6.9. They
are proportional to m, which confirms the O(n) complexity of the algorithm.
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m 20

21

22

23

24

25

4.7e-01

2.2e-01

5.2e-02

9.0e-03

4.6e-05

7.2e-08

6.7e-01

4.7¢-01

2.8e-01

1.3e-01

5.9e-02

1.9e-02

6.0e-01

4.2e-01

2.5e-01

1.5e-01

7.1e-02

2.8e-02

5.6e-01

4.0e-01

2.5e-01

1.4e-01

7.5e-02

3.4e-02

QU | W I[N [

5.6e-01

3.9e-01

2.5e-01

1.4e-01

7.7e-02

3.7e-02

TABLE 6.6. The contraction numbers of the k-th level symmetric W-cycle

algorithm with m smoothing steps for 8 = 1072 (unit cube)

m 20

21

22

23

24

25

2.3e-01

5.4e-02

2.9e-03

8.3e-06

5.8e-12

1.3e-16

4.8e-01

2.6e-01

9.3e-02

1.8e-02

4.7e-04

4.9e-07

4.9¢e-01

3.3e-01

1.9e-01

8.3e-02

2.3e-02

3.0e-03

6.5e-01

4.8e-01

3.1e-01

1.9e-01

9.6e-02

4.3e-02

5.9e-01

4.2e-01

2.7e-01

1.6e-01

9.1e-02

4.2e-02

DO W [IN |+~

5.6e-01

4.0e-01

2.6e-01

1.5e-01

8.2e-02

4.3e-02

TABLE 6.7. The contraction numbers of the k-th level symmetric W-cycle

algorithm with m smoothing steps for 3 = 10~* (unit cube)

m 20

21

22

23

24

25

2.9¢e-01

8.5e-02

7.4e-03

5.3e-05

4.5e-07

1.6e-16

2.7e-01

7.2e-02

9.2e-03

2.3e-05

2.1e-11

1.9e-16

4.7e-01

1.9¢-01

4.4e-02

2.0e-03

5.3e-06

1.4e-12

5.2e-01

3.4e-01

1.7e-01

5.1e-02

5.6e-03

8.6e-05

7.6e-01

6.0e-01

4.3e-01

2.7e-01

1.4e-01

5.9e-02

6.7¢-01

4.9e-01

3.2e-01

1.9e-01

1.1e-01

5.5e-02

~N | |CU W[ |-

5.8e-01

4.1e-01

2.6e-01

1.6e-01

8.9e-01

4.7e-02

TABLE 6.8. The contraction numbers of the k-th level symmetric W-cycle

algorithm with m smoothing steps for 8 = 107% (unit cube)

The performance of the symmetric V-cycle algorithm is similar and we only present the
numerical results for m = 2°, 2! and 22 in Table 6.10. Again the symmetric V-cycle algorithm

is a contraction for m = 1.
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m 20 2! 22 23 24 2°
Times (s) | 8.3e-1 | 1.5e+0 | 2.8e40 | 5.4e+0 | 1.1e+1 | 2.1e+1

TABLE 6.9. The times for one iteration of the symmetric W-cycle algorithm
with m smoothing steps at level 5 (unit cube)

S 2 3 4 5 | Time (s)
3 =102

20 [ 4.74e-01 | 6.71e-01 | 7.03¢-01 | 7.11e-01 | 7.13e-01 || 7.13e-01

ol [ 2.250-01 | 4.76e-01 | 5.23¢-01 | 5.39¢-01 | 5.42e-01 || 1.28e+00

22 [ 5.15e-02 | 2.76e-01 | 3.36e-01 | 3.58¢-01 | 3.65e-01 || 2.39¢:00
3=10"

20 [2.32¢-01 | 4.85e-01 | 5.54¢-01 | 6.52e-01 | 7.00e-01 || 7.62e-01

ol [ 5.41e:02 | 2.59¢-01 | 3.61e-01 | 4.77e-01 | 5.37e-01 || 1.29e100

22 [2.92¢-03 ] 9.33e-02 | 2.00e-01 | 3.23¢-01 | 3.72e-01 || 2.41e:00
3=10"°

20 [2.91e-01 [ 2.65e-01 | 4.35¢-01 | 5.38¢-01 | 7.64e-01 || 7.22¢-01

ol [ 8.51e-02 | 7.09e-02 | 1.97¢-01 | 3.49¢-01 | 5.97e-01 || 1.30e400

22 [ 4.200:03 | 5.230-03 | 4.37¢-02 | 1.74e-01 | 4.31e-01 || 2.44e:00

TABLE 6.10. The contraction numbers of the k-th level symmetric V-cycle
algorithm with 8 = 1072,107%,107% and m = 2°,2' 22, together with the
times for one iteration of the V-cycle algorithm at level 5 (unit cube)

7. CONCLUDING REMARKS

In this paper we developed multigrid algorithms for the first order optimality system of a
model linear-quadratic elliptic optimal control problem where the state equation contains a
convective/advective term, and proved that for convex domains the W-cycle algorithm with
a sufficiently large number of smoothing steps is uniformly convergent with respect to mesh
refinements and a regularizing parameter. The theoretical estimates and the performance of
the algorithms are demonstrated by numerical results.

Numerical results also indicate that our multigrid algorithms are robust for nonconvex
domains. For the L-shaped domain Q = (0,1)%\ [0.5,1)* with ¢ = 1[1 0]', v = 0 and
Cy = 5, the contraction numbers for the symmetric V-cycle (resp., W-cycle) algorithm in
the energy norm with 1 pre-smoothing step and 1 post-smoothing step can be found in
Table 7.1 (resp., Table 7.2), where the preconditioner is based on a V(1, 1) solve for (3.13).



The times for one iteration of the multigrid algorithms at level 6 (where there are roughly
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5 x 10* dofs) are also included in Table 7.1 and Table 7.2.

p k 1 2 3 4 5 6 Time
102 | 7.976-01 | 7.85e-01 | 7.89¢-01 | 7.93¢-01 | 7.966-01 | 7.99¢-01 || 4.70e-02
10~* | 2.18¢-01 | 4.67e-01 | 7.56¢-01 | 7.57e-01 | 7.64¢-01 | 7.71e-01 || 4.73¢-02
1076 | 4.02e-01 | 1.62e-01 | 4.20e-01 | 8.62¢-01 | 8.40e-01 | 8.36-01 || 4.746-02

TABLE 7.1. The contraction numbers of the symmetric V-cycle algorithm
with m = 1, together with the time (in seconds) for one iteration of the V-
cycle algorithm at level 6 (L-shaped domain)

p k 1 9 3 4 5 6 Time
102 | 7.97e-01 | 7.04e-01 | 6.32e-01 | 6.07e-01 | 6.01e-01 | 5.92¢-01 || 1.56-01
104 | 2.186-01 | 4.64e-01 | 7.54e-01 | 6.68¢-01 | 6.18¢-01 | 5.91e-01 || 1.57e-01
106 | 4.020-01 | 1.63¢-01 | 4.06¢-01 | 8.61e-01 | 7.67¢-01 | 6.57¢-01 || 1.59-01

TABLE 7.2. The contraction numbers of the symmetric W-cycle algorithm
with m = 1, together with the time (in seconds) for one iteration of the W-
cycle algorithm at level 6 (L-shaped domain)

The extensions of our analysis to V-cycle algorithms and to nonconvex domains are ongoing
projects. Another direction is to develop multigrid algorithms for optimal control problems
with advection/convection dominated PDE constraints [3, 31, 32, 19, 33, 21, 1, 12, 20].
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