
MULTIGRID METHODS FOR SADDLE POINT PROBLEMS:
OPTIMALITY SYSTEMS

SUSANNE C. BRENNER, SIJING LIU, AND LI-YENG SUNG

Abstract. We develop multigrid methods for an elliptic distributed optimal control prob-
lem on convex domains that are robust with respect to a regularization parameter. We
prove the uniform convergence of the W -cycle algorithm and demonstrate the performance
of V -cycle and W -cycle algorithms through numerical experiments.

1. Introduction

Let Ω be a bounded convex polygonal/polyhedral domain in Rd (d = 2, 3), yd ∈ L2(Ω),
β ∈ (0, 1] be a constant and (·, ·)L2(Ω) be the inner product of L2(Ω) (or [L2(Ω)]d). The
optimal control problem is to find

(1.1) (ȳ, ū) = argmin
(y,u)∈K

[
1

2
‖y − yd‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

]
,

where (y, u) belongs to K ⊂ H1
0 (Ω)× L2(Ω) if and only if

(1.2) a(y, z) = (u, z)L2(Ω) ∀z ∈ H1
0 (Ω),

and the bilinear form a(·, ·) is given by

(1.3) a(y, z) =

∫
Ω

∇y · ∇z dx+

∫
Ω

[
(ζ · ∇y)z − (ζ · ∇z)y

]
dx+

∫
Ω

γyz dx.

Here the vector field ζ belongs to [W 1,∞(Ω)]d and the function γ ∈ L∞(Ω) is nonnegative.

Remark 1.1. Throughout the paper we will follow the standard notation for differential
operators, function spaces and norms that can be found for example in [13, 10].

Remark 1.2. The partial differential equation (PDE) constraint (1.2) is the weak form of
a second order elliptic boundary value problem with an advective/convective term. The
bilinear form a(·, ·) is nonsymmetric (unless ζ = 0) and it is definite because

(1.4) a(y, y) =

∫
Ω

(|∇y|2 + γ|y|2
)
dx.
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The optimal control problem (1.1)–(1.2) has a unique solution characterized by the fol-
lowing first order optimality system (cf. [22, 28, 19]):

a(q, p̄) = (q, ȳ − yd)L2(Ω) ∀ q ∈ H1
0 (Ω),(1.5a)

βū+ p̄ = 0,(1.5b)

a(ȳ, z) = (ū, z)L2(Ω) ∀ z ∈ H1
0 (Ω),(1.5c)

where p̄ is the adjoint state. After eliminating ū, we arrive at a saddle point problem:

a(q, p̄)− (q, ȳ)L2(Ω) = −(q, yd)L2(Ω) ∀ q ∈ H1
0 (Ω),(1.6a)

−(p̄, z)L2(Ω) − βa(ȳ, z) = 0 ∀ z ∈ H1
0 (Ω).(1.6b)

Note that the system (1.6) is unbalanced with respect to β since it only appears in (1.6b).
This can be remedied by the following change of variables:

(1.7) p̄ = β
1
4 p̃ and ȳ = β−

1
4 ỹ.

The resulting problem is

β
1
2a(q, p̃)− (q, ỹ)L2(Ω) = −β

1
4 (q, yd)L2(Ω) ∀ q ∈ H1

0 (Ω),(1.8a)

−(p̃, z)L2(Ω) − β
1
2a(ỹ, z) = 0 ∀ z ∈ H1

0 (Ω).(1.8b)

The saddle point problem (1.8) can be discretized by a P1 finite element method (cf.
Section 2). Our goal is to design multigrid methods for the resulting discrete saddle point
problem whose performance is independent of the regularization parameter β. The key idea
is to use a post-smoother that can be interpreted as a Richardson iteration for a symmetric
positive definite (SPD) problem that has the same solution as the saddle point problem.
Consequently we can exploit the well-known multigrid theory for SPD problems [18, 23, 6]
in our convergence analysis. This idea has previously been applied to other saddle point
problems in [7, 8, 9].

Our multigrid methods belong to the class of all-at-once methods where all the unknowns
in (1.6) are solved simultaneously (cf. [4, 16, 26, 5, 27] and the references therein). As far as
we know, the multigrid methods in this paper are the first ones that are provably robust with
respect to the regularization parameter β when the elliptic PDE constraint (1.2) involves an
advection/convection term.

In the case where ζ = 0, multigrid methods that are robust with respect to β can also
be found in the papers [26, 27]. The differences are in the construction of the smoothers
and in the norms that measure the convergence of the multigrid algorithms. The smoothing
steps in [26, 27] are computationally less expensive than the one in the current paper, which
requires solving (approximately) a reaction-diffusion problem (which however does not affect
the O(n) complexity). The trade-off is that the convergence of the multigrid algorithm in
this paper is expressed in terms of the natural energy norm for the continuous problem,
while the norms in [26, 27] are different from the energy norm. A related consequence is
that the W -cycle multigrid algorithms in [26, 27] cannot take advantage of post-smoothing
and hence their contraction numbers decay at the rate of O(m−1/2), where m is the number
of pre-smoothing steps, while the contraction number for our symmetric W -cycle multigrid
algorithm decays at the rate of O(m−1), where m is the number of pre-smoothing and
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post-smoothing steps. Moreover numerical results indicate that our V -cycle and W -cycle
algorithms converge uniformly for m = 1.

The rest of the paper is organized as follows. We analyze the saddle point problem (1.8)
and the P1 finite element method in Section 2 and introduce the multigrid algorithms in
Section 3. We derive smoothing and approximation properties in Section 4 that are the key
ingredients for the convergence analysis of the W -cycle algorithm in Section 5. Numerical
results are presented in Section 6 and we end with some concluding remarks in Section 7.

Throughout this paper, we use C (with or without subscripts) to denote a generic positive
constant that is independent of β and any mesh parameter. Also to avoid the proliferation
of constants, we use the notation A . B (or A & B) to represent A ≤ (constant)B, where
the (hidden) positive constant is independent of β and any mesh parameter, but may depend
on ζ. The notation A ≈ B is equivalent to A . B and B . A.

2. P1 Finite Element Methods

We can express (1.8) concisely as

(2.1) B((p̃, ỹ), (q, z)) = −β
1
4 (q, yd)L2(Ω) ∀ (q, z) ∈ H1

0 (Ω)×H1
0 (Ω),

where

(2.2) B
(
(p, y), (q, z)

)
= β

1
2a(q, p)− (q, y)L2(Ω) − (p, z)L2(Ω) − β

1
2a(y, z).

2.1. Properties of B. We will analyze the bilinear form B(·, ·) in terms of the energy norm
‖ · ‖H1

β(Ω) defined by

(2.3) ‖v‖2
H1
β(Ω) = ‖v‖2

L2(Ω) + β
1
2 |v|2H1(Ω) ∀ v ∈ H1(Ω).

Let (p, y), (q, z) ∈ H1
0 (Ω) ×H1

0 (Ω) be arbitrary. It follows immediately from (1.3), (2.2),
(2.3) and the Cauchy-Schwarz inequality that

(2.4) B((p, y), (q, z)) . (‖p‖2
H1
β(Ω) + ‖y‖2

H1
β(Ω))

1
2 (‖q‖2

H1
β(Ω) + ‖z‖2

H1
β(Ω))

1
2 .

Moreover, a direct calculation using (1.4) and (2.2) shows that

B((p, y), (p− y,−y − p)) = β
1
2a(p, p) + (p, p)L2(Ω) + β

1
2a(y, y) + (y, y)L2(Ω)(2.5)

≥ ‖p‖2
H1
β(Ω) + ‖y‖2

H1
β(Ω),

and we also have

‖p− y‖2
H1
β(Ω) + ‖ − y − p‖2

H1
β(Ω) = 2(‖p‖2

H1
β(Ω) + ‖y‖2

H1
β(Ω))(2.6)

by the parallelogram law.
It follows from (2.4)–(2.6) that

(2.7) ‖p‖H1
β(Ω) + ‖y‖H1

β(Ω) ≈ sup
(q,z)∈H1

0 (Ω)×H1
0 (Ω)

B((p, y), (q, z))

‖q‖H1
β(Ω) + ‖z‖H1

β(Ω)

for all (p, y) ∈ H1
0 (Ω)×H1

0 (Ω).
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Similarly, we have

(2.8) ‖p‖H1
β(Ω) + ‖y‖H1

β(Ω) ≈ sup
(q,z)∈H1

0 (Ω)×H1
0 (Ω)

B((q, z), (p, y))

‖q‖H1
β(Ω) + ‖z‖H1

β(Ω)

for all (p, y) ∈ H1
0 (Ω)×H1

0 (Ω).

2.2. Discrete Problems. Let Th be a triangulation of Ω and Vh ⊂ H1
0 (Ω) be the P1 finite

element space associated with Th. The P1 finite element method for (2.1) is to find (p̃h, ỹh) ∈
Vh × Vh such that

(2.9) B((p̃h, ỹh), (qh, zh)) = −β
1
4 (qh, yd)L2(Ω) ∀ (qh, zh) ∈ Vh × Vh.

For the convergence analysis of the multigrid algorithms, it is necessary to consider a more
general problem: Find (p, y) ∈ H1

0 (Ω)×H1
0 (Ω) such that

(2.10) B((p, y), (q, z)) = (f, q)L2(Ω) + (g, z)L2(Ω) ∀ (q, z) ∈ H1
0 (Ω)×H1

0 (Ω),

where f, g ∈ L2(Ω), together with the following dual problem: Find (p, y) ∈ H1
0 (Ω)×H1

0 (Ω)
such that

(2.11) B((q, z), (p, y)) = (f, q)L2(Ω) + (g, z)L2(Ω) ∀ (q, z) ∈ H1
0 (Ω)×H1

0 (Ω).

The unique solvability of (2.10) (resp., (2.11) follows immediately from (2.7) (resp., (2.8)).
The P1 finite element method for (2.10) is to find (ph, yh) ∈ Vh × Vh such that

(2.12) B((ph, yh), (qh, zh)) = (f, qh)L2(Ω) + (g, zh)L2(Ω) ∀ (qh, zh) ∈ Vh × Vh,
and the P1 finite element method for (2.11) is to find (ph, yh) ∈ Vh × Vh such that

(2.13) B((qh, zh), (ph, yh)) = (f, qh)L2(Ω) + (g, zh)L2(Ω) ∀ (qh, zh) ∈ Vh × Vh.
Note that (2.4)–(2.6) also yield the following analog of (2.7):

(2.14) ‖ph‖H1
β(Ω) + ‖yh‖H1

β(Ω) ≈ sup
(qh,zh)∈Vh×Vh

B((ph, yh), (qh, zh))

‖qh‖H1
β(Ω) + ‖zh‖H1

β(Ω)

∀ (ph, yh) ∈ Vh × Vh.

Similarly, we also have

(2.15) ‖ph‖H1
β(Ω) + ‖yh‖H1

β(Ω) ≈ sup
(qh,zh)∈Vh×Vh

B((qh, zh), (ph, yh))

‖qh‖H1
β(Ω) + ‖zh‖H1

β(Ω)

∀ (ph, yh) ∈ Vh × Vh.

Therefore the discrete problems (2.12) and (2.13) are uniquely solvable.

2.3. Error Estimates. From (2.4), (2.14), (2.15) and the saddle point theory [2, 11, 30],
we have the following quasi-optimal error estimate.

Lemma 2.1. Let (p, y) (resp., (ph, yh)) be the solution of (2.10) or (2.11) (resp., (2.12) or
(2.13)). We have

(2.16) ‖p− ph‖H1
β(Ω) + ‖y − yh‖H1

β(Ω) . inf
(qh,zh)∈Vh×Vh

(
‖p− qh‖H1

β(Ω) + ‖y − zh‖H1
β(Ω)

)
.

In order to convert (2.16) into a concrete error estimate, we need the regularity of the
solutions of (2.10) and (2.11)



MULTIGRID METHODS FOR OPTIMALITY SYSTEMS 5

Lemma 2.2. The solution (p, y) of (2.10) or (2.11) belongs to H2(Ω)×H2(Ω) and we have

(2.17) ‖β
1
2p‖H2(Ω) + ‖β

1
2y‖H2(Ω) . ‖f‖L2(Ω) + ‖g‖L2(Ω).

Proof. We will only consider (2.10) since the arguments for (2.11) are similar. In view of
(2.2), we can write (2.10) as

a(q, β
1
2p) = (y + f, q)L2(Ω) ∀ q ∈ H1

0 (Ω),

a(β
1
2y, z) = (−p− g, z)L2(Ω) ∀ z ∈ H1

0 (Ω),

and hence, by the elliptic regularity for convex domains [17, 14, 19],

‖β
1
2p‖H2(Ω) . ‖y‖L2(Ω) + ‖f‖L2(Ω),(2.18a)

‖β
1
2y‖H2(Ω) . ‖p‖L2(Ω) + ‖g‖L2(Ω).(2.18b)

From (2.3), (2.7) and (2.10) we also have

(2.19) ‖p‖L2(Ω) + ‖y‖L2(Ω) . ‖f‖L2(Ω) + ‖g‖L2(Ω).

The estimate (2.17) follows from (2.18) and (2.19). �

We can now derive concrete error estimates for the P1 finite element methods.

Theorem 2.3. Let (p, y) (resp., (ph, yh)) be the solution of (2.10) or (2.11) (resp., (2.12)
or (2.13)). We have

‖p− ph‖H1
β(Ω) + ‖y − yh‖H1

β(Ω) ≤ C(1 + β
1
2h−2)

1
2β−

1
2h2(‖f‖L2(Ω) + ‖g‖L2(Ω)),(2.20)

‖p− ph‖L2(Ω) + ‖y − yh‖L2(Ω) ≤ C(1 + β
1
2h−2)β−1h4(‖f‖L2(Ω) + ‖g‖L2(Ω)),(2.21)

where the positive constant C is independent of β and h.

Proof. We will only consider the case that involves (2.10) and (2.12). Let Πh : H2(Ω) ∩
H1

0 (Ω) −→ Vh be the nodal interpolation operator. We have the following standard interpo-
lation error estimate [13, 10]:

(2.22) ‖ζ − Πhζ‖L2(Ω) + h|ζ − Πhζ|H1(Ω) ≤ Ch2|ζ|H2(Ω) ∀ ζ ∈ H2(Ω) ∩H1
0 (Ω),

where the positive constant C only depends on the shape regularity of Th.
The estimate (2.20) follows from (2.3), (2.16), (2.17) and (2.22):

‖p− ph‖2
H1
β(Ω) + ‖y − yh‖2

H1
β(Ω) . ‖p− Πhp‖2

H1
β(Ω) + ‖y − Πhy‖2

H1
β(Ω)

= ‖p− Πhp‖2
L2(Ω) + β

1
2 |p− Πhp|2H1(Ω) + ‖y − Πhy‖2

L2(Ω) + β
1
2 |y − Πhy|2H1(Ω)

. (β−1h4 + β−
1
2h2)(‖f‖2

L2(Ω) + ‖g‖2
L2(Ω))

= (1 + β
1
2h−2)β−1h4(‖f‖2

L2(Ω) + ‖g‖2
L2(Ω)).

The estimate (2.21) is established by a duality argument. Let (ξ, θ) ∈ H1
0 (Ω)×H1

0 (Ω) be
defined by

(2.23) B((q, z), (ξ, θ)) = (q, p− ph)L2(Ω) + (z, y − yh)L2(Ω) ∀ (q, z) ∈ H1
0 (Ω)×H1

0 (Ω).
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We have, by (2.4), Lemma 2.2 (applied to (2.23)), (2.22), (2.23) and Galerkin orthogonality,

‖p− ph‖2
L2(Ω) + ‖y − yh‖2

L2(Ω) = B((p− ph, y − yh), (ξ, θ))

= B((p− ph, y − yh), (ξ − Πhξ, θ − Πhθ))

. (‖ξ − Πhξ‖2
H1
β(Ω) + ‖θ − Πhθ‖2

H1
β(Ω))

1
2 (‖p− ph‖2

H1
β(Ω) + ‖y − yh‖2

H1
β(Ω))

1
2

. (1 + β
1
2h−2)

1
2β−

1
2h2(‖p− ph‖2

L2(Ω) + ‖y − yh‖2
L2(Ω))

1
2

× (‖p− ph‖2
H1
β(Ω) + ‖y − yh‖2

H1
β(Ω))

1
2 ,

which together with (2.20) implies (2.21). �

The performance of the P1 finite element method for (2.10) is illustrated in the following
numerical example.

Example 2.4. We solve (2.10) on Ω = (0, 1) × (0, 1) with β = 1, ζ = 1
2
[1 0]t, γ = 0 and

exact solution
(p, y) =

(
sin(2πx1) sin(2πx2), x1(1− x1)x2(1− x2)

)
.

There are 10 degrees of freedom (dofs) for the P1 finite element space associated with the
initial mesh (k = 1). After 7 uniform mesh refinements, the P1 finite element space associated
with the final mesh (k = 8) has 261122 dofs. The relative errors are displayed in Table 2.1.
We observe O(h) convergence in | · |H1(Ω) and O(h2) convergence in ‖ · ‖L2(Ω), which agrees
with Theorem 2.3.

k
|p−ph|H1(Ω)

|p|H1(Ω)
Order

‖p−ph‖L2(Ω)

‖p‖L2(Ω)
Order

|y−yh|H1(Ω)

|y|H1(Ω)
Order

‖y−yh‖L2(Ω)

‖y‖L2(Ω)
Order

1 1.60e-01 - 1.45e-01 - 2.77e-01 - 1.96e-01 -

2 1.92e-01 -0.27 3.64e-01 0.09 1.33e-01 1.06 6.97e-02 1.49

3 9.54e-02 1.01 4.20e-02 1.70 5.83e-02 1.19 2.01e-02 1.79

4 4.67e-02 1.03 1.10e-02 1.93 2.67e-02 1.13 5.31e-03 1.92

5 2.32e-02 1.01 2.79e-03 1.97 1.27e-02 1.07 1.36e-03 1.92

6 1.16e-02 1.00 7.00e-04 2.00 6.24e-03 1.03 3.45e-04 2.02

7 5.79e-03 1.00 1.75e-04 2.00 3.09e-03 1.00 8.67e-05 1.99

8 2.89e-03 1.00 4.38e-05 2.00 1.53e-03 1.05 2.17e-05 2.00

Table 2.1. Relative errors for the P1 finite element method for (2.10)

2.4. A P1 Finite Element Method for (1.6). The P1 finite element method for (1.6) is
to find (p̄h, ȳh) ∈ Vh × Vh such that

a(qh, p̄h)− (qh, ȳh)L2(Ω) = −(qh, yd)L2(Ω) ∀ qh ∈ Vh,(2.24a)

−(p̄h, zh)L2(Ω) − βa(ȳh, zh) = 0 ∀ zh ∈ Vh,(2.24b)
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which is equivalent to (2.9) under the change of variables

(2.25) p̄h = β
1
4 p̃h and ȳh = β−

1
4 ỹh.

Applying the results in Section 2.3 to (2.1) and (2.9), we arrive at the following error
estimates through the change of variables (1.7) and (2.25).

Lemma 2.5. Let (p̄, ȳ) (resp., (p̄h, ȳh)) be the solution of (1.6) (resp., (2.24)). We have

‖p̄− p̄h‖H1
β(Ω) + β

1
2‖ȳ − ȳh‖H1

β(Ω) ≤ C(1 + β
1
2h−2)

1
2h2‖yd‖L2(Ω),

‖p̄− p̄h‖L2(Ω) + β
1
2‖ȳ − ȳh‖L2(Ω) ≤ C(1 + β

1
2h−2)β−

1
2h4‖yd‖L2(Ω),

where the positive constant C is independent of β and h.

Remark 2.6. According to Lemma 2.5, the performance of the P1 finite element method with
respect to the norms of H1(Ω) and L2(Ω) will deteriorate as β ↓ 0. Therefore it is necessary
to use very fine mesh when β is small in which case it is crucial to have an efficient iterative
solver.

Remark 2.7. We can approximate the optimal control ū in (1.1) by ūh = −β−1p̄h. It then
follows from (1.5b) that the relative error for ūh is identical to the relative error for p̄h.

3. Multigrid Algorithms

Let T0 be a triangulation of Ω and the triangulations T1, T2, ... be generated from T0 through
a refinement process so that hk = hk−1/2 and the shape regularity is maintained. The P1

finite element subspace of H1
0 (Ω) associated with Tk is denoted by Vk.

We want to design multigrid methods for the problem of finding (p, y) ∈ Vk×Vk such that

(3.1) B((p, y), (q, z)) = F (q) +G(z) ∀ (q, z) ∈ Vk × Vk,
where F,G ∈ V ′k , and for the dual problem of finding (p, q) ∈ Vk × Vk such that

(3.2) B((q, z), (p, y)) = F (q) +G(z) ∀ (q, z) ∈ Vk × Vk.

3.1. A Mesh-Dependent Inner Product. It is convenient to use a mesh-dependent inner
product on Vk × Vk to rewrite (3.1) and (3.2) in terms of an operator that maps Vk × Vk to
Vk × Vk. First we introduce a mesh-dependent inner product on Vk:

(3.3) (v, w)k = hdk
∑
x∈Vk

v(x)w(x) ∀ v, w ∈ Vk,

where Vk is the set of the interior vertices of Tk. We have

(3.4) (v, v)k ≈ ‖v‖2
L2(Ω) ∀ v ∈ Vk

by a standard scaling argument [13, 10], where the hidden constants only depend on the
shape regularity of T0.

We then define the mesh-dependent inner product [·, ·]k on Vk × Vk by

(3.5) [(p, y), (q, z)]k = (p, q)k + (y, z)k.

Let the operator Bk : Vk × Vk −→ Vk × Vk be defined by

(3.6) [Bk(p, y), (q, z)]k = B((p, y), (q, z)) ∀ (p, y), (q, z) ∈ Vk × Vk.
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We can then rewrite (3.1) in the form

(3.7) Bk(p, y) = (f, g),

where (f, g) ∈ Vk × Vk is defined by

[(f, g), (q, z)]k = F (q) +G(z) ∀ (q, z) ∈ Vk × Vk,

and (3.2) becomes

(3.8) Bt
k(p, y) = (f, g),

where

(3.9) [Bt
k(p, y), (q, z)]k = [(p, y),Bk(q, z)]k = B((q, z), (p, y)) ∀ (p, y), (q, z) ∈ Vk × Vk.

We take the coarse-to-fine operator Ikk−1 : Vk−1 × Vk−1 −→ Vk × Vk to be the natural

injection and define the fine-to-coarse operator Ik−1
k : Vk × Vk −→ Vk−1 × Vk−1 to be the

transpose of Ikk−1 with respect to the mesh-dependent inner products, i.e.,

[Ik−1
k (p, y), (q, z)]k−1 = [(p, y), Ikk−1(q, z)]k ∀ (p, y) ∈ Vk × Vk, (q, z) ∈ Vk−1 × Vk−1.

3.2. A Block-Diagonal Preconditioner. Let Lk : Vk −→ Vk be a linear operator sym-
metric with respect to the inner product (·, ·)k on Vk such that

(3.10) (Lkv, v)k ≈ ‖v‖2
H1
β(Ω) = ‖v‖2

L2(Ω) + β
1
2 |v|2H1(Ω) ∀ v ∈ Vk.

Then the operator Ck : Vk × Vk −→ Vk × Vk defined by

(3.11) Ck(p, y) = (Lkp, Lky)

is SPD with respect to [·, ·]k and we have

(3.12) [Ck(p, y), (p, y)]k ≈ ‖p‖2
H1
β(Ω) + ‖y‖2

H1
β(Ω) ∀ (p, y) ∈ Vk × Vk,

where the hidden constants are independent of k and β.

Remark 3.1. We will use C−1
k as a preconditioner in the constructions of the smoothing

operators. In practice we can take L−1
k to be an approximate solve of the P1 finite element

discretization of the following boundary value problem:

(3.13) −β
1
2 ∆u+ u = φ in Ω and u = 0 on ∂Ω.

The multigrid algorithms in Section 3 are O(n) algorithms as long as L−1
k is also an O(n)

algorithm. We refer to [24, 15] for the general construction of block diagonal preconditioners
for saddle point problems arising from the discretization of PDEs.

Lemma 3.2. We have

[Bt
kC
−1
k Bk(p, y), (p, y)]k ≈ ‖p‖2

H1
β(Ω) + ‖y‖2

H1
β(Ω) ∀ (p, y) ∈ Vk × Vk,(3.14)

[BkC
−1
k Bt

k(p, y), (p, y)]k ≈ ‖p‖2
H1
β(Ω) + ‖y‖2

H1
β(Ω) ∀ (p, y) ∈ Vk × Vk,(3.15)

where the hidden constants are independent of k and β.
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Proof. Let (p, y) ∈ Vk × Vk be arbitrary and (r, x) = C−1
k Bk(p, y). Using (2.14), (3.6), (3.12)

and duality, we derive (3.14) as follows:

[Bt
kC
−1
k Bk(p, y), (p, y)]k = [Ck(C−1

k Bk)(p, y),C−1
k Bk(p, y)]k

= [Ck(r, x), (r, x)]k

= sup
(q,z)∈Vk×Vk

[Ck(r, x), (q, z)]2k
[Ck(q, z), (q, z)]k

≈ sup
(q,z)∈Vk×Vk

[Bk(p, y), (q, z)]2k
‖q‖2

H1
β(Ω)

+ ‖z‖2
H1
β(Ω)

= sup
(q,z)∈Vk×Vk

[
B((p, y), (q, z))

]2
‖q‖2

H1
β(Ω)

+ ‖z‖2
H1
β(Ω)

≈ ‖p‖2
H1
β(Ω) + ‖y‖2

H1
β(Ω).

The derivation of (3.15) is analogous, with (2.14) (resp., (3.6)) replaced by (2.15) (resp.,
(3.9)). �

Lemma 3.3. The minimum and maximum eigenvalues of Bt
kC
−1
k Bk and BkC

−1
k Bt

k satisfy
the following bounds :

λmin(Bt
kC
−1
k Bk), λmin(BkC

−1
k Bt

k) ≥ Cmin,(3.16)

λmax(Bt
kC
−1
k Bk), λmax(BkC

−1
k Bt

k) ≤ Cmax(1 + β
1
2h−2

k ),(3.17)

where the positive constants Cmin and Cmax are independent of k and β.

Proof. We will only derive the estimates for Bt
kC
−1
k Bk since the derivation for BkC

−1
k Bt

k is
similar. We have, from (3.4) and (3.5),

(3.18) [(p, y), (p, y)]k ≈ ‖p‖2
L2(Ω) + ‖y‖2

L2(Ω) ∀ (p, y) ∈ Vk × Vk,

where the hidden constants only depend on the shape regularity of T0. It follows from (2.3),
(3.14) and (3.18) that

(3.19) [Bt
kC
−1
k Bk(p, y), (p, y)]k ≥ Cmin[(p, y), (p, y)]k ∀ (p, y) ∈ Vk × Vk,

which then implies (3.16) by the Rayleigh quotient formula.
By a standard inverse estimate [13, 10], we have

‖v‖2
H1
β(Ω) = ‖v‖2

L2(Ω) + β
1
2 |v|2H1(Ω) ≤ (1 + Cβ

1
2h−2

k )‖v‖2
L2(Ω) ∀ v ∈ Vk,

where the positive constant C depends only on the shape regularity of T0. It then follows
from (2.3), (3.14) and (3.18) that

[Bt
kC
−1
k Bk(p, y), (p, y)]k ≤ Cmax(1 + β

1
2h−2

k )[(p, y), (p, y)]k ∀ (p, y) ∈ Vk × Vk,

and hence (3.17) holds because of the Rayleigh quotient formula. �

Remark 3.4. It follows from (3.16) and (3.17) that the operators Bt
kC
−1
k Bk and BkC

−1
k Bt

k

are well-conditioned when β
1
2h−2

k = O(1).
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3.3. AW -Cycle Multigrid Algorithm for (3.7). Let the output of the W-cycle algorithm
for (3.7) with initial guess (p0, y0) and m1 (resp., m2) pre-smoothing (resp., post-smoothing)
steps be denoted by MGW (k, (f, g), (p0, y0),m1,m2).

We use a direct solve for k = 0, i.e., we take MGW (0, (f, g), (p0, y0),m1,m2) to be
B−1

0 (f, g). For k ≥ 1, we obtain MGW (k, (f, g), (p0, y0),m1,m2) in three steps.

Pre-Smoothing We compute (p1, y1), . . . , (pm1 , ym1) recursively by

(3.20) (pj, yj) = (pj−1, yj−1) + λkC
−1
k Bt

k((f, g)−Bk(pj−1, yj−1))

for 1 ≤ j ≤ m1. The choice of the damping factor λk will be given below in (3.23) and
(3.24).

Coarse Grid Correction Let (f ′, g′) = Ik−1
k ((f, g)−Bk(pm1 , ym1)) be the transferred residual

of (pm1 , ym1) and let (p′1, y
′
1), (p′2, y

′
2) ∈ Vk−1 × Vk−1 be computed by

(p′1, y
′
1) = MGW (k − 1, (f ′, g′), (0, 0),m1,m2),(3.21a)

(p′2, y
′
2) = MGW (k − 1, (f ′, g′), (p′1, y

′
1),m1,m2).(3.21b)

We then take (pm1+1, ym1+1) to be (pm1 , ym1) + Ikk−1(p′2, y
′
2).

Post-Smoothing We compute (pm1+2, ym1+2), . . . , (pm1+m2+1, ym1+m2+1) recursively by

(3.22) (pj, yj) = (pj−1, yj−1) + λkB
t
kC
−1
k ((f, g)−Bk(pj−1, yj−1))

for m1 + 2 ≤ j ≤ m1 +m2 + 1.

The final output is MGW (k, (f, g), (p0, y0),m1,m2) = (pm1+m2+1, ym1+m2+1).

To complete the description of the algorithm, we choose the damping factor λk as follows:

λk =
2

λmin(Bt
kC
−1
k Bk) + λmax(Bt

kC
−1
k Bk)

if β
1
2h−2

k < 1,(3.23)

and

λk = [C†(1 + β
1
2h−2

k )]−1 if β
1
2h−2

k ≥ 1,(3.24)

where C† is greater than or equal to the constant Cmax in (3.17).

Remark 3.5. Note that the post-smoothing step is exactly the Richardson iteration for the
equation

Bt
kC
−1
k Bk(p, y) = Bt

kC
−1
k (f, g),

which is equivalent to (3.7).

Remark 3.6. In the case where β
1
2h−2

k < 1, the choice of λk is motivated by the well-
conditioning of Bt

kC
−1
k Bk (cf. Remark 3.4) and the optimal choice of damping factor for the

Richardson iteration [25, p. 114]. In practice the relation (3.23) only holds approximately,
but it affects neither the analysis nor the performance of the W -cycle algorithm. In the case
where β

1
2h−2

k ≥ 1, the choice of λk is motivated by the condition λmax(λkB
t
kC
−1
k Bk) ≤ 1

(cf. (3.17)) that will ensure the highly oscillatory part of the error is damped out when
Richardson iteration is used as a smoother for an ill-conditioned system (cf. Lemma 4.2).
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3.4. A V -Cycle Multigrid Algorithm for (3.7). Let the output of the V-cycle algorithm
for (3.7) with initial guess (p0, y0) and m1 (resp., m2) pre-smoothing (resp., post-smoothing)
steps be denoted by MGV (k, (f, g), (p0, y0),m1,m2). The difference between the computa-
tions of MGV (k, (f, g), (p0, y0),m1,m2) and MGW (k, (f, g), (p0, y0),m1,m2) is only in the
coarse grid correction step, where we compute

(p′1, y
′
1) = MGV (k − 1, (f ′, g′), (0, 0),m1,m2)

and take (pm1+1, ym1+1) to be (pm1 , ym1) + Ikk−1(p′1, y
′
1).

Remark 3.7. We will focus on the analysis of the W -cycle algorithm in this paper. But
numerical results (cf. Section 6) indicate that the performance of the V -cycle algorithm is
also robust respect to k and β.

3.5. Multigrid Algorithms for (3.8). We can define W -cycle and V -cycle algorithms for
(3.8) by simply interchanging the operators Bk and Bt

k in Section 3.3 and Section 3.4. In
particular, the pre-smoothing step is given by

(3.25) (pj, yj) = (pj−1, yj−1) + λkC
−1
k Bk((f, g)−Bt

k(pj−1, yj−1)),

and the post-smoothing step is given by

(3.26) (pj, yj) = (pj−1, yj−1) + λkBkC
−1
k ((f, g)−Bt

k(pj−1, yj−1)).

4. Smoothing and Approximation Properties

We will develop in this section two key ingredients for the convergence analysis of the
W -cycle algorithm, namely, the smoothing and approximation properties. They will be
expressed in terms of two scales of mesh-dependent norms defined by

|||(p, y)|||s,k = [(Bt
kC
−1
k Bk)s(p, y), (p, y)]

1
2
k ∀(p, y) ∈ Vk × Vk,(4.1)

|||(p, y)|||∼s,k = [(BkC
−1
k Bt

k)s(p, y), (p, y)]
1
2
k ∀(p, y) ∈ Vk × Vk.(4.2)

Note that

|||(p, y)|||20,k ≈ ‖p‖2
L2(Ω) + ‖y‖2

L2(Ω) ≈ (|||(p, y)|||∼0,k)2 ∀ (p, y) ∈ Vk × Vk(4.3)

by (3.18), and

|||(p, y)|||21,k ≈ ‖p‖2
H1
β(Ω) + ‖y‖2

H1
β(Ω) ≈ (|||(p, y)|||∼1,k)2 ∀ (p, y) ∈ Vk × Vk(4.4)

by (3.14) and (3.15).

4.1. Post-Smoothing Properties. The error propagation operator for one post-smoothing
step defined by (3.22) is given by

(4.5) Rk = Idk − λkBt
kC
−1
k Bk,

where Idk is the identity operator on Vk × Vk.
Similarly, the error propagation operator for one post-smoothing step defined by (3.26) is

given by

(4.6) R̃k = Idk − λkBkC
−1
k Bt

k.
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Lemma 4.1. In the case where β
1
2h−2

k < 1, we have

|||Rk(p, y)|||1,k ≤ τ |||(p, y)|||1,k ∀ (p, y) ∈ Vk × Vk,(4.7)

|||R̃k(p, y)|||∼1,k ≤ τ |||(p, y)|||∼1,k ∀ (p, y) ∈ Vk × Vk,(4.8)

where the constant τ ∈ (0, 1) is independent of k and β.

Proof. In this case λk given by (3.23) is the optimal damping parameter for the Richardson
iteration and we have

Cmin ≤ λmin(Bt
kC
−1
k Bk) ≤ λmax(Bt

kC
−1
k Bk)) < 2Cmax

by Lemma 3.3. It follows that (cf. [25, p. 114])

|||Rk(p, y)|||1,k = [Bt
kC
−1
k BkRk(p, y), Rk(p, y)]

1
2
k

≤
(λmax(Bt

kC
−1
k Bk)− λmin(Bt

kC
−1
k Bk)

λmax(Bt
kC
−1
k Bk) + λmin(Bt

kC
−1
k Bk)

)
[Bt

kC
−1
k Bk(p, y), (p, y)]

1
2
k

≤
(2Cmax − Cmin

2Cmax + Cmin

)
|||(p, y)|||1,k.

Therefore (4.7) holds for τ = (2Cmax − Cmin)/(2Cmax + Cmin).
The derivation of (4.8) is identical. �

Lemma 4.2. In the case where β
1
2h−2

k ≥ 1, we have, for 0 ≤ s ≤ 1,

|||Rm
k (p, y)|||1,k ≤ C(1 + β

1
2h−2

k )s/2m−s/2|||(p, y)|||1−s,k ∀(p, y) ∈ Vk × Vk,(4.9)

|||R̃m
k (p, y)|||∼1,k ≤ C(1 + β

1
2h−2

k )s/2m−s/2|||(p, y)|||∼1−s,k ∀(p, y) ∈ Vk × Vk,(4.10)

where the positive constant C is independent of k and β.

Proof. In this case λk is given by (3.24) and λmax(λkB
t
kC
−1
k Bk) ≤ 1. It follows from (3.24),

(4.1), (4.5), calculus and the spectral theorem that

|||Rm
k (p, y)|||21,k = [Bt

kC
−1
k BkR

m
k (p, y), Rm

k (p, y)]k

= λ−sk [(Bt
kC
−1
k Bk)1−s(λkB

t
kC
−1
k Bk)sRm

k (p, y), Rm
k (p, y)]k

≤ C−s† (1 + β
1
2h−2

k )s max
0≤x≤1

[(1− x)2mxs][(Bt
kC
−1
k Bk)1−s(p, y), (p, y)]k

≤ C(1 + β
1
2h−2

k )sm−s|||(p, y)|||21−s,k.

The proof for (4.10) is identical. �

Remark 4.3. In the special case where s = 0, the calculation in the proof of Lemma 4.2
shows that

|||Rk(p, y)|||1,k ≤ |||(p, y)|||1,k and |||R̃k(p, y)|||∼1,k ≤ |||(p, y)|||∼1,k ∀ (p, y) ∈ Vk × Vk.
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4.2. Approximation Properties. We define two Ritz projection operators P k−1
k : Vk ×

Vk → Vk−1×Vk−1 and P̃ k−1
k : Vk×Vk → Vk−1×Vk−1 in terms of the bilinear form B(·, ·) and

the natural injection Ikk−1 : Vk−1× Vk−1 −→ Vk × Vk as follows. For any (p, y) ∈ Vk × Vk and
(q, z) ∈ Vk−1 × Vk−1,

B(P k−1
k (p, y), (q, z)) = B((p, y), Ikk−1(q, z)) = B((p, y), (q, z)),(4.11)

B((q, z), P̃ k−1
k (p, y)) = B(Ikk−1(q, z), (q, y)) = B((q, z), (p, y)).(4.12)

It follows that

P k−1
k Ikk−1 = Idk−1 = P̃ k−1

k Ikk−1

and hence

(Ikk−1P
k−1
k )2 = Ikk−1P

k−1
k and (Idk − Ikk−1P

k−1
k )2 = Idk − Ikk−1P

k−1
k ,(4.13)

(Ikk−1P̃
k−1
k )2 = Ikk−1P̃

k−1
k and (Idk − Ikk−1P̃

k−1
k )2 = Idk − Ikk−1P̃

k−1
k .(4.14)

Moreover we have the following Galerkin orthogonality relations:

B((Idk − Ikk−1P
k−1
k )(p, y), Ikk−1(q, z)) = 0 ∀ (p, y) ∈ Vk × Vk, (q, z) ∈ Vk−1 × Vk−1,(4.15)

B(Ikk−1(q, z), (Idk − Ikk−1P̃
k−1
k )(p, y)) = 0 ∀ (p, y) ∈ Vk × Vk, (q, z) ∈ Vk−1 × Vk−1.(4.16)

The effects of the operators Idk − Ikk−1P
k−1
k and Idk − Ikk−1P̃

k−1
k are measured by the

following approximation properties.

Lemma 4.4. There exists a positive constant C independent of k and β such that

|||(Idk − Ikk−1P
k−1
k )(p, y)|||0,k ≤ C(1 + β

1
2h−2

k )
1
2β−

1
2h2

k|||(p, y)|||1,k ∀ (p, y) ∈ Vk × Vk,(4.17)

|||(Idk − Ikk−1P̃
k−1
k )(p, y)|||∼0,k ≤ C(1 + β

1
2h−2

k )
1
2β−

1
2h2

k|||(p, y)|||∼1,k ∀ (p, y) ∈ Vk × Vk.(4.18)

Proof. We will only present the detailed arguments for (4.17). Let (p, y) ∈ Vk × Vk be
arbitrary and

(4.19) (ζ, µ) = (Idk − Ikk−1P
k−1
k )(p, y).

In view of (4.3), it suffices to establish the estimate

(4.20) ‖ζ‖L2(Ω) + ‖µ‖L2(Ω) . (1 + β
1
2h−2

k )
1
2β−

1
2h2

k|||(p, y)|||1,k
by a duality argument.

Let (ξ, θ) ∈ H1
0 (Ω)×H1

0 (Ω) be defined by

(4.21) B((q, z), (ξ, θ)) = (ζ, q)L2(Ω) + (µ, z)L2(Ω) ∀ (q, z) ∈ H1
0 (Ω)×H1

0 (Ω),

and (ξk−1, θk−1) ∈ Vk−1 × Vk−1 be defined by

(4.22) B((q, z), (ξk−1, θk−1)) = (ζ, q)L2(Ω) + (µ, z)L2(Ω) ∀ (q, z) ∈ Vk−1 × Vk−1.

Since hk−1 = 2hk, we have, according to Theorem 2.3,

‖ξ − ξk−1‖H1
β(Ω) + ‖θ − θk−1‖H1

β(Ω) . (1 + β
1
2h−2

k )
1
2β−

1
2h2

k(‖ζ‖L2(Ω) + ‖µ‖L2(Ω)).(4.23)
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Putting (2.4), (4.4), (4.15), (4.19) and (4.21)–(4.23) together, we find

‖ζ‖2
L2(Ω) + ‖µ‖2

L2(Ω) = B((ζ, µ), (ξ, θ))

= B((Idk − Ikk−1P
k−1
k )(p, y), (ξ, θ))

= B((Idk − Ikk−1P
k−1
k )(p, y), (ξ, θ)− (ξk−1, θk−1))

= B((p, y), (ξ, θ)− (ξk−1, θk−1))

. (‖ξ − ξk−1‖2
H1
β(Ω) + ‖θ − θk−1‖2

H1
β(Ω))

1
2 (‖p‖2

H1
β(Ω) + ‖y‖2

H1
β(Ω))

1
2

. (1 + β
1
2h−2

k )
1
2β−

1
2h2

k(‖ζ‖L2(Ω) + ‖µ‖L2(Ω))|||(p, y)|||1,k,

which implies (4.20).
The estimate (4.18) is established by similar arguments based on (4.16). �

We will also need the following stability estimates.

Lemma 4.5. We have

|||Ikk−1(q, z)|||1,k ≈ |||(q, z)|||1,k−1 ∀ (q, z) ∈ Vk−1 × Vk−1,(4.24)

|||P k−1
k (p, y)|||1,k−1 . |||(p, y)|||1,k ∀ (p, y) ∈ Vk × Vk,(4.25)

|||P̃ k−1
k (p, y)|||∼1,k−1 . |||(p, y)|||∼1,k ∀ (p, y) ∈ Vk × Vk,(4.26)

where the hidden constants are independent of k and β.

Proof. The estimate (4.24) follows from (4.4) and the fact that Ikk−1 is the natural injection.
The estimate (4.25) then follows from (2.14), (4.4), (4.11) and (4.24) :

|||P k−1
k (p, y)|||1,k−1 ≈ sup

(q,z)∈Vk−1×Vk−1

B
(
P k−1
k (p, y), (q, z)

)
|||(q, z)|||1,k−1

= sup
(q,z)∈Vk−1×Vk−1

B
(
(p, y), Ikk−1(q, z)

)
|||(q, z)|||1,k−1

. |||(p, y)|||1,k.

Similarly we obtain (4.26) by using (2.15), (4.4), (4.12) and (4.24). �

5. Convergence Analysis of the W -Cycle Algorithms

Let Ek : Vk × Vk −→ Vk × Vk be the error propagation operator for the k-th level W -cycle
algorithm for (3.7). We have the following well-known recursive relation (cf. [18, 23, 6]):

(5.1) Ek = Rm2
k (Idk − Ikk−1P

k−1
k + Ikk−1E

2
k−1P

k−1
k )Sm1

k ,

where Rk is given by (4.5) and

(5.2) Sk = Idk − λkC−1
k Bt

kBk

is the error propagation operator for one pre-smoothing step (cf. (3.20)).
Note that Sk is the transpose of R̃k (the error propagation operator of one post-smoothing

step for the dual problem (3.8)) with respect to the variational form B(·, ·). Indeed we have,
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by (3.6), (3.9) and (4.6),

B(Sk(p, y), (q, z)) = [Bk(Idk − λkC−1
k Bt

kBk)(p, y), (q, z)]k

= [Bk(p, y), (Idk − λkBkC
−1
k Bt

k)(q, z)]k(5.3)

= B((p, y), R̃k(q, z)) ∀ (p, y), (q, z) ∈ Vk × Vk.

Remark 5.1. The duality between Sk and R̃k is the reason why we consider multigrid algo-
rithms for (3.7) and (3.8) simultaneously.

The relations (4.11) and (5.3) lead to the following useful result.

Lemma 5.2. We have

(5.4) ‖(Idk − Ikk−1P
k−1
k )Sm

k ‖ ≈ ‖R̃m
k (Idk − Ikk−1P̃

k−1
k )‖,

where ‖ · ‖ denotes the operator norm with respect to ||| · |||1,k and the hidden constants are
independent of k and β.

Proof. It follows from (2.14), (4.4), (4.11), (4.12) and (5.3) that

|||(Idk − Ikk−1P
k−1
k )Sm

k (p, y)|||1,k

≈ sup
(q,z)∈Vk×Vk

B
(
(Idk − Ikk−1P

k−1
k )Sm

k (p, y), (q, z)
)

|||(q, z)|||1,k

= sup
(q,z)∈Vk×Vk

B
(
(p, y), R̃m

k (Idk − Ikk−1P̃
k−1
k )(q, z)

)
|||(q, z)|||1,k

. |||(p, y)|||1,k‖R̃m
k (Idk − Ikk−1P̃

k−1
k )‖

and hence

‖(Idk − Ikk−1P
k−1
k )Sm

k ‖ . ‖R̃m
k (Idk − Ikk−1P̃

k−1
k )‖.

The estimate in the other direction is established by a similar argument that uses (2.15)
instead of (2.14). �

5.1. Convergence of the Two-Grid Algorithm for (3.7). In the two-grid algorithm the
coarse grid residual equation is solved exactly. By setting Ek−1 = 0 in (5.1), we obtain
the error propagation operator Rm2

k (Idk− Ikk−1P
k−1
k )Sm1

k for the two-grid algorithm with m1

(resp., m2) pre-smoothing (resp., post-smoothing) steps.
We will separate the convergence analysis into two cases.

The case where β
1
2h−2

k < 1. Here we can apply Lemma 4.1 which states that Rk (resp.,

R̃k) is a contraction with respect to ||| · |||1,k (resp., ||| · |||∼1,k) and the contraction number τ is
independent of k and β.

Lemma 5.3. In the case where β
1
2h−2

k < 1, there exists a positive constant C] independent
of k and β such that

(5.5) ‖Rm2
k (Idk − Ikk−1P

k−1
k )Sm1

k ‖ ≤ C]τ
m1+m2 ,

where ‖ · ‖ is the operator norm with respect to ||| · |||1,k.
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Proof. We have, from (4.7) and Lemma 4.5,

|||Rm
k (Idk − Ikk−1P

k−1
k )(p, y)|||1,k

≤ τm|||(Idk − Ikk−1P
k−1
k )(p, y)|||1,k . τm|||(p, y)|||1,k ∀ (p, y) ∈ Vk × Vk,

and hence

(5.6) ‖Rm
k (Idk − Ikk−1P

k−1
k )‖ . τm.

Similarly, we also have, by (4.4), (4.8) and Lemma 4.5,

‖R̃m
k (Idk − Ikk−1P̃

k−1
k )‖ . τm,

which together with Lemma 5.2 implies

(5.7) ‖(Idk − Ikk−1P
k−1
k )Sm

k ‖ . τm.

Finally we establish (5.5) by combining (4.13), (5.6) and (5.7):

‖Rm2
k (Idk − Ikk−1P

k−1
k )Sm1

k ‖
= ‖Rm2

k (Idk − Ikk−1P
k−1
k )(Idk − Ikk−1P

k−1
k )Sm1

k ‖
≤ ‖Rm2

k (Idk − Ikk−1P
k−1
k )‖‖(Idk − Ikk−1P

k−1
k )Sm1

k ‖ . τm1+m2 .

�

The case where β
1
2h−2

k ≥ 1. Here we can apply Lemma 4.2.

Lemma 5.4. In the case where β
1
2h−2

k ≥ 1, there exists a positive constant C[ independent
of k and β such that

(5.8) ‖Rm2
k (Idk − Ikk−1P

k−1
k )Sm1

k ‖ ≤ C[[max(1,m1) max(1,m2)]−
1
2 ,

where ‖ · ‖ is the operator norm with respect to ||| · |||1,k.

Proof. Let m be any positive integer. We have, from (4.9) and (4.17),

|||Rm
k (Idk − Ikk−1P

k−1
k )(p, y)|||1,k

. (1 + β
1
2h−2

k )
1
2m−

1
2 |||(Idk − Ikk−1P

k−1
k )(p, y)|||0,k

. (1 + β
1
2h−2

k )
1
2m−

1
2 (1 + β

1
2h−2

k )
1
2β−

1
2h2

k|||(p, y)|||1,k
= m−

1
2 (β−

1
2h2

k + 1)|||(p, y)|||1,k
≤ 2m−

1
2 |||(p, y)|||1,k ∀ (p, y) ∈ Vk × Vk,

and hence

(5.9) ‖Rm
k (Idk − Ikk−1P

k−1
k )‖ . m−

1
2 .

Similarly, we also have, by (4.4), (4.10) and (4.18),

‖R̃m
k (Idk − Ikk−1P̃

k−1
k )‖ . m−

1
2 .

It then follows from Lemma 5.2 that

(5.10) ‖(Idk − Ikk−1P
k−1
k )Sm

k ‖ . m−
1
2 .
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Combining (4.13), (5.9) and (5.10), we obtain for m1,m2 ≥ 1,

‖Rm2
k (Idk − Ikk−1P

k−1
k )Sm1

k ‖ = ‖Rm2
k (Idk − Ikk−1P

k−1
k )(Idk − Ikk−1P

k−1
k )Sm1

k ‖
≤ ‖Rm2

k (Idk − Ikk−1P
k−1
k )‖‖(Idk − Ikk−1P

k−1
k )Sm1

k ‖

. (m1m2)−
1
2 .

The cases where m1 = 0 or m2 = 0 follow directly from (5.9) and (5.10). �

5.2. Convergence of the W -Cycle Algorithm for (3.7). We will derive error esti-
mates for the W -cycle algorithm through (5.1) and the results for the two-grid algorithm
in Section 5.1. For simplicity we will focus on the symmetric W -cycle algorithm where
m1 = m2 = m ≥ 1.

According to (4.4) and Remark 4.3, there exists a positive constant C1 independent of k
and m such that

(5.11) ‖Rm
k ‖, ‖R̃m

k ‖ ≤ C1,

where ‖ · ‖ is the operator norm with respect to ||| · |||1,k. Moreover it follows from (2.14),
(4.4) and (5.3) that

|||Sm
k (p, y)|||1,k ≈ sup

(q,z)∈Vk×Vk

B
(
Sm
k (p, y), (q, z)

)
|||(q, z)|||1,k

= sup
(q,z)∈Vk×Vk

B
(
(p, y), R̃m

k (q, z)
)

|||(q, z)|||1,k
. |||(p, y)|||1,k‖R̃m

k ‖ ∀ (p, y) ∈ Vk × Vk,

and hence, by (5.11),

(5.12) ‖Sm
k ‖ ≤ C2,

where the positive constant C2 is also independent of k and m.
Putting Lemma 4.5, (5.1), (5.11) and (5.12) together, we obtain the recursive estimate

(5.13) ‖Ek‖ ≤ ‖Rm
k (Idk − Ikk−1P

k−1
k )Sm

k ‖+ C∗‖Ek−1‖2 for k ≥ 1,

where the positive constant C∗ is independent of k and β. The behavior of ‖Ek‖ is therefore
determined by (5.13), the behavior of ‖Rm

k (Idk − Ikk−1P
k−1
k )Sm

k ‖, and the initial condition

(5.14) ‖E0‖ = 0.

Specifically, for β
1
2h−2

k < 1, we have

(5.15) ‖Ek‖ ≤ C]τ
2m + C∗‖Ek−1‖2

by Lemma 5.3, and for β
1
2h−2

k ≥ 1, we have

(5.16) ‖Ek‖ ≤ C[m
−1 + C∗‖Ek−1‖2

by Lemma 5.4.
The following result is useful for the analysis of (5.14)–(5.16).
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Lemma 5.5. Let αk (k = 0, 1, 2, . . .) be a sequence of nonnegative numbers such that

(5.17) αk ≤ 1 + δα2
k−1 for k ≥ 1,

where the positive constant δ satisfies

(5.18) δ ≤ 1

4(1 + α0)
.

Then we have

(5.19) αk ≤ 2 + 41−2kα0 for k ≥ 0.

Proof. The bound (5.19) holds trivially for k = 0. Suppose it holds for k ≥ 0. We have, by
(5.17) and (5.18),

αk+1 ≤ 1 + δα2
k ≤ 1 + δ(2 + 41−2kα0)2

= 1 + δ(4 + 41−2k4α0) + (δα0)42−2k+1

α0

≤ 1 + δ(4 + 4α0) +
(1

4

)
42−2k+1

α0 ≤ 2 + 41−2k+1

α0.

Therefore the bound (5.19) holds for k ≥ 0 by mathematical induction. �

Theorem 5.6. There exists a positive integer m∗ independent of k and β such that m ≥ m∗
implies

‖Ek‖ ≤ 2C]τ
2m ∀ 1 ≤ k ≤ k∗,(5.20)

‖Ek‖ ≤ 2C[m
−1 + 41−2k−k∗ (2C]τ

2m) ∀ k ≥ k∗ + 1,(5.21)

where ‖ · ‖ is the operator norm with respect to ||| · |||1,k and k∗ is the largest positive integer

such that β
1
2h−2

k∗
< 1.

Proof. For 1 ≤ k ≤ k∗, we take αk = ‖Ek‖/(C]τ
2m) and observe that

αk ≤ 1 + (C∗C]τ
2m)α2

k−1

by (5.15). It then follows from (5.14) and Lemma 5.5 that αk ≤ 2, or equivalently

‖Ek‖ ≤ 2C]τ
2m,

provided that

(5.22) C∗C]τ
2m ≤ 1

4
.

We now define µk = ‖Ek∗+k‖/(C[m
−1) and observe that

µk ≤ 1 + (C∗C[m
−1)µ2

k−1 for k ≥ 1

by (5.16). It then follows from Lemma 5.5 that

µk ≤ 2 + 41−2kµ0 for k ≥ 1,

or equivalently

‖Ek‖ ≤ 2C[m
−1 + 41−2k−k∗‖Ek∗‖ for k ≥ k∗ + 1,
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provided that

C∗C[m
−1 ≤ 1

4(1 + ‖Ek∗‖/(C[m−1))
,

or equivalently

(5.23) C∗C[m
−1 + C∗‖Ek∗‖ ≤

1

4
.

Finally we observe that if we choose m∗ so that

C∗C[m
−1
∗ + 2C∗C]τ

2m∗ ≤ 1

4
,

then (5.22) and (5.23) are satisfied for m ≥ m∗. �

Remark 5.7. According to (4.4) and Theorem 5.6, the k-th level symmetric W -cycle algo-
rithm for (3.7) is a contraction in the energy norm ‖ · ‖H1

β(Ω) if the number of smoothing

steps is sufficiently large and the contraction number is bounded away from 1 uniformly
in k and β. Moreover, for the coarser levels where β

1
2h−2

k < 1, the contraction number of
the symmetric W -cycle algorithm will decrease exponentially with respect to the number of
smoothing steps m. After a few transition levels the dominant term on the right-hand side
of (5.21) becomes 2C[m

−1 and the contraction number will decrease at the rate of m−1 for

the finer levels where β
1
2h−2

k ≥ 1.

Remark 5.8. For the nonsymmetric W -cycle algorithm with m1 (resp., m2) pre-smoothing
(resp., post-smoothing) steps, the estimates (5.20) and (5.21) are replaced by

‖Ek‖ ≤ 2C]τ
m1+m2 ∀ 1 ≤ k ≤ k∗,

‖Ek‖ ≤ 2C[[max(1,m1) max(1,m2)]−
1
2 + 41−2k−k∗ (2C]τ

m1+m2) ∀ k ≥ k∗ + 1.

5.3. Convergence of the W -cycle Multigrid Algorithms for (3.8). The error propa-
gation operator Ẽk : Vk × Vk −→ Vk × Vk for the W -cycle algorithm for (3.8) satisfies the
following analog of (5.1):

Ẽk = R̃m2
k (Idk − Ikk−1P̃

k−1
k + Ikk−1Ẽ

2
k−1P̃

k−1
k )S̃m1

k ,

where R̃k is given by (4.6) and S̃k = Idk−λkC−1
k BkB

t
k is the error propagation operator for

one pre-smoothing step (cf. (3.25)), and we have the relations

B((p, y), S̃k(q, z)) = B(Rk(p, y), (q, z)) ∀ (p, y), (q, z) ∈ Vk × Vk,
‖(Idk − Ikk−1P̃

k−1
k )S̃m

k ‖ ≈ ‖Rm
k (Idk − Ikk−1P

k−1
k )‖,

that are the analogs of (5.3) and (5.4). The results for Ek in Section 5.2 also holds for Ẽk

by essentially identical arguments based on Lemma 4.1, Lemma 4.2, (4.14), Lemma 4.4 and
Lemma 4.5.



20 SUSANNE C. BRENNER, SIJING LIU, AND LI-YENG SUNG

6. Numerical Results

In this section we report numerical results of the symmetric W -cycle and V -cycle algo-
rithms for (3.7) on two and three dimensional convex domains, where the preconditioner C−1

k

is based on a V (4, 4) multigrid solve for (3.13). We employed the MATLAB/C++ toolbox
FELICITY [29] in our computations.

Example 6.1. (Unit Square)

The domain Ω for this example is the unit square (0, 1)2. We take ζ = 1
2
[1 0]t and γ = 0

in (1.3), and C† = 5 in (3.24). The initial triangulation T0 is generated by the two diagonals
of Ω, and the triangulations T1, T2, . . . are generated by uniform subdivisions.

The contraction numbers of the k-th level symmetric W -cycle algorithm in the energy
norm with β = 10−2 (resp., β = 10−4 and β = 10−6) are presented in Table 6.1 (resp.,
Table 6.2 and Table 6.3), where the number m of pre-smoothing and post-smoothing steps
increases from 20 to 25.

k
m 20 21 22 23 24 25

1 2.9e-01 8.8e-02 7.8e-03 6.1e-05 6.4e-08 9.1e-17

2 6.0e-01 3.9e-01 1.9e-01 4.9e-02 1.8e-02 2.7e-03

3 4.5e-01 2.4e-01 1.0e-01 3.5e-02 1.6e-02 7.4e-03

4 3.8e-01 2.2e-01 8.7e-02 3.7e-02 2.0e-02 7.5e-03

5 3.7e-01 2.1e-01 8.2e-02 4.0e-02 2.0e-02 9.6e-03

6 3.7e-01 2.1e-01 8.1e-02 4.0e-02 2.0e-02 1.0e-02

Table 6.1. The contraction numbers of the k-th level symmetric W -cycle
algorithm with m smoothing steps for β = 10−2 (unit square)

k
m 20 21 22 23 24 25

1 1.2e-01 1.5e-02 2.2e-04 5.1e-08 1.0e-15 1.4e-17

2 2.3e-01 7.5e-02 5.9e-03 3.6e-05 3.9e-07 1.4e-16

3 4.9e-01 2.6e-01 7.1e-02 7.0e-03 2.9e-04 5.5e-07

4 5.5e-01 3.2e-01 1.7e-01 6.0e-02 2.4e-02 7.1e-03

5 4.1e-01 2.4e-01 1.0e-01 4.8e-02 2.4e-02 1.2e-02

6 3.8e-01 2.2e-01 8.6e-02 4.2e-02 2.2e-02 1.1e-02

7 3.7e-01 2.1e-01 8.2e-02 4.0e-02 2.1e-02 1.1e-02

Table 6.2. The contraction numbers of the k-th level symmetric W -cycle
algorithm with m smoothing steps for β = 10−4 (unit square)
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k
m 20 21 22 23 24 25

1 2.6e-01 6.8e-02 4.6e-03 2.1e-05 6.5e-11 1.3e-16

2 3.9e-01 1.7e-01 3.0e-02 8.9e-04 9.8e-07 8.2e-14

3 2.4e-01 5.6e-02 3.1e-03 8.9e-06 2.8e-11 1.3e-16

4 3.8e-01 1.4e-01 2.3e-02 1.0e-03 2.4e-06 3.3e-12

5 7.0e-01 4.9e-01 2.8e-01 1.3e-01 3.3e-02 6.0e-03

6 4.9e-01 2.9e-01 1.4e-01 6.0e-02 2.8e-02 1.1e-02

7 4.0e-01 2.3e-01 9.4e-02 4.5e-02 2.4e-02 1.2e-02

8 3.7e-01 2.1e-01 8.4e-02 4.1e-02 2.1e-02 1.1e-02

Table 6.3. The contraction numbers of the k-th level symmetric W -cycle
algorithmwith m smoothing steps for β = 10−6 (unit square)

We observe that the symmetric W -cycle algorithm is a contraction with m = 1 for all
three choices of β, and the behavior of the contraction numbers as k and m vary agree with
Remark 5.7. The robustness with respect to β and k is also clearly observed.

The times for one iteration of the symmetric W -cycle algorithm at level 7 (where there
are roughly 6× 104 dofs) are reported in Table 6.4. They are proportional to the number of
smoothing steps, which confirms that this is an O(n) algorithm.

m 20 21 22 23 24 25

Times (s) 3.0e-1 5.4e-1 1.0e+0 2.0e+0 4.0e+0 7.9e+0

Table 6.4. The times for one iteration of the symmetric W -cycle algorithm
with m smoothing steps at level 7 (unit square)

We have also computed the contraction numbers for the k-th level symmetric V -cycle
algorithm, which are similar to those of the W -cycle algorithm. For brevity we only present
the results for k = 1, . . . , 7, β = 10−2, 10−4, 10−6 and m = 20, 21, 22 in Table 6.5. Again we
observe that the V -cycle algorithm is a contraction for m = 1 and the contraction numbers
are robust with respect to both β and k.

Example 6.2. (Unit Cube)

The domain for this example is the unit cube (0, 1)3. We take ζ = 1
2
[1 1 1]t and γ = 0 in

(1.3), and C† = 4 in (3.24). The triangulations T0 and T1 are depicted in Figure 6.1. The
number of grid points in all directions are doubled in each refinement and the triangulations
inside the cubic subdomains at all levels are similar to one another.

The contraction numbers of the k-th level symmetric W -cycle algorithm in the energy
norm with β = 10−2 (resp., β = 10−4 and β = 10−6) are displayed in Table 6.6 (resp.,
Table 6.7 and Table 6.8), where the number m of pre-smoothing and post-smoothing steps
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m
k 1 2 3 4 5 6 7 Time (s)

β = 10−2

20 2.94e-01 6.01e-01 5.58e-01 5.38e-01 5.33e-01 5.28e-01 5.12e-01 7.01e-02

21 8.84e-02 3.87e-01 3.44e-01 3.31e-01 3.01e-01 2.93e-01 2.76e-01 1.29e-01

22 7.81e-03 1.86e-01 1.67e-01 1.55e-01 1.33e-01 1.31e-01 1.29e-01 2.44e-01

β = 10−4

20 1.21e-01 2.31e-01 4.88e-01 5.46e-01 4.94e-01 4.86e-01 4.85e-01 7.11e-02

21 1.47e-02 7.59e-02 2.55e-01 3.20e-01 3.18e-01 3.17e-01 3.16e-01 1.30e-01

22 2.17e-04 5.73e-03 7.18e-02 1.68e-01 1.73e-01 1.75e-01 1.75e-01 2.51e-01

β = 10−6

20 2.56e-01 3.91e-01 2.36e-01 3.71e-01 7.03e-01 6.31e-01 6.03e-01 7.14e-02

21 6.79e-02 1.68e-01 5.61e-02 1.42e-01 4.93e-01 4.12e-01 4.03e-01 1.30e-01

22 4.61e-03 3.09e-02 3.13e-03 2.35e-02 2.82e-01 2.54e-01 2.48e-01 2.51e-01

Table 6.5. The contraction numbers of the k-th level symmetric V -cycle
algorithm with β = 10−2, 10−4, 10−6 and m = 20, 21, 22, together with the
times for one iteration of the V -cycle algorithm at level 7 (unit square)
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Figure 6.1. Triangulations T0 and T1 for the unit cube

increases from 20 to 25. We observe that the symmetric W -cycle algorithm is a contraction for
m = 1. The behavior of the contraction numbers agree with Remark 5.7, and the contraction
numbers are robust with respect to both β and k. The times for one iteration of the W -cycle
algorithm at level 5 (where there are roughly 5× 105 dofs) are reported in Table 6.9. They
are proportional to m, which confirms the O(n) complexity of the algorithm.
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k
m 20 21 22 23 24 25

1 4.7e-01 2.2e-01 5.2e-02 5.0e-03 4.6e-05 7.2e-08

2 6.7e-01 4.7e-01 2.8e-01 1.3e-01 5.9e-02 1.9e-02

3 6.0e-01 4.2e-01 2.5e-01 1.5e-01 7.1e-02 2.8e-02

4 5.6e-01 4.0e-01 2.5e-01 1.4e-01 7.5e-02 3.4e-02

5 5.6e-01 3.9e-01 2.5e-01 1.4e-01 7.7e-02 3.7e-02

Table 6.6. The contraction numbers of the k-th level symmetric W -cycle
algorithm with m smoothing steps for β = 10−2 (unit cube)

k
m 20 21 22 23 24 25

1 2.3e-01 5.4e-02 2.9e-03 8.3e-06 5.8e-12 1.3e-16

2 4.8e-01 2.6e-01 9.3e-02 1.8e-02 4.7e-04 4.9e-07

3 4.9e-01 3.3e-01 1.9e-01 8.3e-02 2.3e-02 3.0e-03

4 6.5e-01 4.8e-01 3.1e-01 1.9e-01 9.6e-02 4.3e-02

5 5.9e-01 4.2e-01 2.7e-01 1.6e-01 9.1e-02 4.2e-02

6 5.6e-01 4.0e-01 2.6e-01 1.5e-01 8.2e-02 4.3e-02

Table 6.7. The contraction numbers of the k-th level symmetric W -cycle
algorithm with m smoothing steps for β = 10−4 (unit cube)

k
m 20 21 22 23 24 25

1 2.9e-01 8.5e-02 7.4e-03 5.3e-05 4.5e-07 1.6e-16

2 2.7e-01 7.2e-02 5.2e-03 2.3e-05 2.1e-11 1.9e-16

3 4.7e-01 1.9e-01 4.4e-02 2.0e-03 5.3e-06 1.4e-12

4 5.2e-01 3.4e-01 1.7e-01 5.1e-02 5.6e-03 8.6e-05

5 7.6e-01 6.0e-01 4.3e-01 2.7e-01 1.4e-01 5.9e-02

6 6.7e-01 4.9e-01 3.2e-01 1.9e-01 1.1e-01 5.5e-02

7 5.8e-01 4.1e-01 2.6e-01 1.6e-01 8.9e-01 4.7e-02

Table 6.8. The contraction numbers of the k-th level symmetric W -cycle
algorithm with m smoothing steps for β = 10−6 (unit cube)

The performance of the symmetric V -cycle algorithm is similar and we only present the
numerical results for m = 20, 21 and 22 in Table 6.10. Again the symmetric V -cycle algorithm
is a contraction for m = 1.
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m 20 21 22 23 24 25

Times (s) 8.3e-1 1.5e+0 2.8e+0 5.4e+0 1.1e+1 2.1e+1

Table 6.9. The times for one iteration of the symmetric W -cycle algorithm
with m smoothing steps at level 5 (unit cube)

m
k 1 2 3 4 5 Time (s)

β = 10−2

20 4.74e-01 6.71e-01 7.03e-01 7.11e-01 7.13e-01 7.13e-01

21 2.25e-01 4.76e-01 5.23e-01 5.39e-01 5.42e-01 1.28e+00

22 5.15e-02 2.76e-01 3.36e-01 3.58e-01 3.65e-01 2.39e+00

β = 10−4

20 2.32e-01 4.85e-01 5.54e-01 6.52e-01 7.00e-01 7.62e-01

21 5.41e-02 2.59e-01 3.61e-01 4.77e-01 5.37e-01 1.29e+00

22 2.92e-03 9.33e-02 2.00e-01 3.23e-01 3.72e-01 2.41e+00

β = 10−6

20 2.91e-01 2.65e-01 4.35e-01 5.38e-01 7.64e-01 7.22e-01

21 8.51e-02 7.09e-02 1.97e-01 3.49e-01 5.97e-01 1.30e+00

22 4.29e-03 5.23e-03 4.37e-02 1.74e-01 4.31e-01 2.44e+00

Table 6.10. The contraction numbers of the k-th level symmetric V -cycle
algorithm with β = 10−2, 10−4, 10−6 and m = 20, 21, 22, together with the
times for one iteration of the V -cycle algorithm at level 5 (unit cube)

7. Concluding Remarks

In this paper we developed multigrid algorithms for the first order optimality system of a
model linear-quadratic elliptic optimal control problem where the state equation contains a
convective/advective term, and proved that for convex domains the W -cycle algorithm with
a sufficiently large number of smoothing steps is uniformly convergent with respect to mesh
refinements and a regularizing parameter. The theoretical estimates and the performance of
the algorithms are demonstrated by numerical results.

Numerical results also indicate that our multigrid algorithms are robust for nonconvex
domains. For the L-shaped domain Ω = (0, 1)2 \ [0.5, 1)2 with ζ = 1

2
[1 0]t, γ = 0 and

C† = 5, the contraction numbers for the symmetric V -cycle (resp., W -cycle) algorithm in
the energy norm with 1 pre-smoothing step and 1 post-smoothing step can be found in
Table 7.1 (resp., Table 7.2), where the preconditioner is based on a V (1, 1) solve for (3.13).
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The times for one iteration of the multigrid algorithms at level 6 (where there are roughly
5× 104 dofs) are also included in Table 7.1 and Table 7.2.

β
k 1 2 3 4 5 6 Time

10−2 7.97e-01 7.85e-01 7.89e-01 7.93e-01 7.96e-01 7.99e-01 4.70e-02

10−4 2.18e-01 4.67e-01 7.56e-01 7.57e-01 7.64e-01 7.71e-01 4.73e-02

10−6 4.02e-01 1.62e-01 4.20e-01 8.62e-01 8.40e-01 8.36e-01 4.74e-02

Table 7.1. The contraction numbers of the symmetric V -cycle algorithm
with m = 1, together with the time (in seconds) for one iteration of the V -
cycle algorithm at level 6 (L-shaped domain)

β
k 1 2 3 4 5 6 Time

10−2 7.97e-01 7.04e-01 6.32e-01 6.07e-01 6.01e-01 5.92e-01 1.56e-01

10−4 2.18e-01 4.64e-01 7.54e-01 6.68e-01 6.18e-01 5.91e-01 1.57e-01

10−6 4.02e-01 1.63e-01 4.06e-01 8.61e-01 7.67e-01 6.57e-01 1.59e-01

Table 7.2. The contraction numbers of the symmetric W -cycle algorithm
with m = 1, together with the time (in seconds) for one iteration of the W -
cycle algorithm at level 6 (L-shaped domain)

The extensions of our analysis to V -cycle algorithms and to nonconvex domains are ongoing
projects. Another direction is to develop multigrid algorithms for optimal control problems
with advection/convection dominated PDE constraints [3, 31, 32, 19, 33, 21, 1, 12, 20].
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