P, FINITE ELEMENT METHODS FOR AN ELLIPTIC
STATE-CONSTRAINED DISTRIBUTED OPTIMAL CONTROL
PROBLEM WITH NEUMANN BOUNDARY CONDITIONS

S.C. BRENNER, M. OH, AND L.-Y. SUNG

ABSTRACT. We investigate two P, finite element methods for an elliptic state-constrained
distributed optimal control problem with Neumann boundary conditions on general polyg-
onal domains.

1. INTRODUCTION

Let Q C R? be a bounded polygonal domain. We consider the following optimal control
problem (cf. [20]):

o Tl B
(1) Find (7. 1) = svgmin [y — 30y + 2 [l
(y,u)EKg
where (y,u) € H(Q) x L*(Q) belongs to K, if and only if
(1.2) / Vy - Vwdx + / ywdxr = / wwdz —|—/ gwds Yw e HY(Q),
Q Q Q o0
(1.3) y < a.e. in €.

Remark 1.1. Throughout this paper we follow the standard notation for differential opera-
tors, functions spaces and norms that can be found for example in [22, 1, 14].

We assume that
(i) ya belongs to L%(2) and f3 is a positive constant,

(i) g = % for some ¢, € H*(Q),

(iii) ¢ belongs to H?(Q) N W2>°(Q) such that g—:ﬁ > g on 0.

loc
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We can reformulate the optimal control problem in terms of y alone. To this end, we
introduce the affine subspace V;, of H'(2) defined by

Vo= {y € H'(Q) : there exists u € L*(Q) such that

/Vy~dea:+/ywdx:/uwd:c+/ gwds VweHl(Q)}.
0 Q Q o0

In the homogeneous case where g = 0, we will denote the linear subspace V; of H(Q) by V.

Remark 1.2. The constraint (1.2) in the definition of V is the weak form of the following
boundary value problem:

—Ay+y=uinQ and Jy/On = gon 01,

where Ay is understood in the sense of distributions, and g € H~2 (092) is understood as the
normal trace of Vy € H(div,?). Therefore an alternative definition of Vj, is given by

V, = {y € H\(Q): Ly € L*() and dy/0n = g on 90},
where £y = —Ay + y defines an isomorphism from V, onto L*(12).

Due to elliptic regularity [33, 23, 41], V is an affine subspace of H'**(Q) for some o €
(3, 1], where v = 1 if Q is convex, and

(1.4) Izllz1+0(0) < CalllZzll2@) + 1Glla2e)] V2V,
Note that Vj is also an affine subspace of HZ () by interior elliptic regularity.

It follows from (1.4) and the Sobolev inequality [1] that V, C C(€2) and we can reformulate
the minimization problem (1.1)—(1.3) as follows:

L 1 s
(1.5) Find = argmin |~ {ly = yall320) + 5112020
yng 2 2
where
(1.6) K,={veV,:v<tin Q}.

Our goal is to develop P finite element methods (FEMs) for (1.5)—(1.6).

FEMs for elliptic distributed optimal control problems with pointwise state constraints
have been studied by many authors (cf. [24, 42, 34, 36, 40, 37, 4, 50, 32, 16, 21, 9, 17, 43,
13, 15, 11, 10, 18, 12] and the references therein). In [18], a C” interior penalty method for
the optimal control problem (1.1)—(1.3) on convex domains with the homogeneous boundary
condition (¢ = 0) was analyzed by the tools developed in [15]. In [11], theoretical and
numerical results for two P; FEMs for a state-constrained elliptic distributed optimal control
problem with Dirichlet boundary conditions were obtained for general polygonal /polyhedral
domains, where the analysis extended the framework in [15]. In this paper, we will extend
the results in [11] to (1.5)—(1.6). We note the convergence results in [11, 10] and the current
paper are the first ones for nonconvex and nonsmooth domains.

The remainder of the paper is organized as follows. In the next section, we recall some
results regarding the continuous problem (1.5)—(1.6), and we present two discrete problems
in Section 3. Preliminary estimates for the convergence analysis are gathered in Section 4,
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followed by the convergence analysis of the FEMs in Sections 5 and 6. We present numerical
results in Section 7 that corroborate the theoretical results and end with some concluding
remarks in Section 8.

We will use C' (with or without subscript) to denote a generic positive constant independent
of the mesh size. To avoid the proliferation of constants, we will also use the notation A < B
to denote the inequality A < (constant)B, where the hidden constant is independent of the
mesh size. The notation A &~ B is equivalent to the statement that A < B and B < A.

2. THE CONTINUOUS PROBLEM

In this section we will collect information on the continuous problem (1.5)—(1.6). From
here on we use (-, ) to denote the inner product for L?(Q) (or [L*(Q)]?).
Let Z =y — ;. We can rewrite (1.5)-(1.6) as

_ ! B
(2.) 2 = argain [ 512~ (v = Gl + 5126+ G|
where
(2.2) K={veV:v<y—_inQ}.

Since V' is a Hilbert space under the inner product

(y,2) = (y,2) + (Ly, ZL2),

it follows from the standard theory [39, 26, 38] that (2.1)—(2.2) (and hence (1.5)—(1.6)) has
a unique solution characterized by the variational inequality

(2.3) (U —va,y—9) +B(Ly, ZL(y—9y) =20 Vye K,

Interior Regularity of ¢
By the interior regularity results for fourth order variational inequalities in [29, 30, 19],
we have

(2.4) geH . (Q)NWEP(Q).

loc

Lagrange Multiplier u

Recall that V' C C(Q2). Let ¢ € C*(Q2) NV be nonnegative. Then y = y — ¢ € K, and we
have, by (2.3),

(2.5) (U — ya, 0) + B(Ly, ZL¢) < 0.

Since C*°(Q2)NV is dense in C(Q), it follows from (2.5) and the Riesz representation theorem
[45, 46, 28] that

(2.6) (y—yd,z)—i-ﬁ(fy_,fz):/ﬁzdu VzelV,

where 1 is a nonpositive finite Borel measure on €.
Let 2 = {z € Q:gy(x) =¢(x)} be the active set for the constraint (1.3). Under the
assumption 0y /dn > g, we have (cf. [18, Appendix])

(2.7) 2l is a compact subset of (2.
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For any z € V whose support is disjoint from 2, +ez + ¥ belong to K, for sufficiently
small €. Therefore, by (2.3), we have

(2.8) (7 = ya, 2) + B(LY, ZL2) =0
for all z € V such that supp(z) N2 = (). Hence, in view of (2.6),
(2.9) 1 is a nonpositive finite Borel measure supported on 2,

which is equivalent to

(2.10) | @=wdu=o

Remark 2.1. The conditions (2.6), (2.9) and (2.10) are the Karush-Kuhn-Tucker (KKT)
conditions that characterize the solution of (1.5)—(1.6).

Let ® belong to C2°(£2) (the space of C*° functions with compact supports in €2) such that
® =1 in an open neighborhood of the compact subset 2 of 2. Given any z € V', We have,
by (2.6) and (2.9),

/zd,u /zq)d,u

(7 — ya, 2®) + B(Ly, L (2P))
= (y — ¥4, 2®) + (LY, —A(2®) + (20))
= (J — ya, 2®) + B(V(L7Y), V(2D)) + B(Ly, 2D),

where the integration by parts is justified by (2.4) and the fact that z belongs to H?

loc(Q) It
follows that

(2.11) ‘/zdu‘ < C|l2||ae VzelV,
0

where G is an open neighborhood of the support of ® such that G CC  (i.e., the closure of
G is a compact subset of 2).

Given any z € H'(2), we can construct a sequence z, € V such that ||z, — z|| g1 — 0
as n — oo. (In fact we can choose z, from C*(Q2).) In view of (2.11), lim, o [, 2ndp is
independent of the choices of z,. We can therefore define

(2.12) (p,2) = lim [ z,du  Vze€ HY(Q).

n—oo Q

Note that (u,2) = [, zdu for z € V because we can take z, = z for all n in (2.12).
It follows from (2.11) and (2.12) that

(2.13) () < Cllzllme V=€ H'(Q).
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Regularity of «
In view of (2.13), we can define the adjoint state p € H'(Q2) by

(Vp,V2)+ (0,2) = (§ — ya, 2) — (u,2)  Vze€ H(Q).
It then follows from the definition of V' (cf. Remark 1.2 with g = 0) that

(2.14) (p,fz):(y—yd,z)—/ﬂzd,u VzeV.

Comparing (2.6) and (2.14), we find
(p—pZLy, L2 =0 VzeV,
and hence, since £ : V — L?*(Q) is an isomorphism,
(2.15) u=%y=p"pe H(Q).

Global Regularity of gy
According to (1.4), we have

(2.16) g€ HF(Q),

where o belongs to (3, 1] in general. In the case where € is convex, the constraint (1.2) and
the regularity of @ in (2.15) imply that 1 < o < 2 (cf. [33, Chapter 5] and [23, Section 18]).
The assumption ¢, € H*(Q2) ensures that the Neumann boundary condition does not interfere
with the higher regularity for convex domains.

3. THE DISCRETE PROBLEMS

Let .7, be a regular triangulation of Q and Vj, € H'(Q) be the P, finite element space
associated with 7,. The diameter of T' € .7}, is denoted by hr and h = maxpeg, hy is the
mesh parameter.

3.1. The First P, Finite Element Method. The first P, FEM is to find

_ .1l p
(3.1) Yn = argiin QHZ/h - yd”%Z(Q) + E(fh,gymgh,gyh)]a
yn€EKp
where
(32) K, = {Uh eV < Ihd}},

and I, : C(Q) — V, is the nodal interpolation operator. In other words, the discrete
constraint is only imposed at the vertices of .,. The affine map %, : H'(Q) — Vj, is
defined by

(3.3) (L gw,vp) = (Vw, Vo) + (w, vy) —/ gupds Y uy € V.

89
Remark 3.1. The P, FEM defined by (3.1) and (3.2) is identical to the method in [42], but
our convergence analysis in Section 5 is completely different. In particular our convergence
results do not require €2 to be convex and we also have error estimates in L>(12).
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Notice that
(3.4) Loz = QL2 Yz eV,
where @, : L*(2) — Vj, is the L?(Q) orthogonal projection. This is true, since
(Zhgz vn) = (Vz, Vo) + (2, 08) — / gunds = (ZLz,v) = (QnLzv) Vo, €V,

0N

by Remark 1.2 and (3.3).
In the case where g = 0, the affine map %}, ¢ becomes a linear map that will be denoted
simply by %, i.e., £, : H'(Q) — V}, satisfies

(3.5) (Low,v) = (Vw, Vo) + (w,v,)  Yw € HY(Q), vy € V.
We have a useful relation
(36) $h7g?}1 — $h79U2 = gh(’l)l — ’1)2) V’Ul, Vo € Hl(Q)

that follows immediately from (3.3) and (3.5).
Using (3.6) and a standard computation, we can characterize the unique solution g, € K,
of (3.1)—(3.2) by the following discrete variational inequality:

(3.7) (U — Ya, Yn — Un) + B(LhgUn, Ly — Un)) >0 Vy, € K.

3.2. The Second P; Finite Element Method. To construct the second P, FEM, we first
introduce another inner product (-, ), defined by

(3.8) (vp, wp)p = Z < Z @)vh(p)wh(p) Yo, wy, € Vi,

JISDUN TE:%

where 2y, is the set of the vertices in the triangulation .7, .7, denotes the collection of all

elements that have p as a common vertex, and |7 is the area of T
The second P, FEM is to find

] ol 5
(3.9) Yn = argmin bHyh — yall T2 + E(iﬂh,gyh, Zhgyn)n |,

Y€K}

where K, is defined in (3.2), and the affine map %, , : H'(Q2) — V}, is given by

(310) (jhgw, Uh)h = (V’LU, Vvh) + (w, Uh) — / gvhds Yo, € V).
o0
As before, we will denote (,izh’g by %, when g=0,ie., L7 HY(Q) — V, satisfies
(3.11) (jhw, Uh)h = (Vw, Vvh) + (w, Uh) Vvh € Vh.
Then we again have
(312) jhgvl — jhy’vg = jh(vl — ’UQ) Vvl,UQ € Hl(Q),

and the unique solution g, € Kj of (3.9) can be characterized by the following discrete
variational inequality:

(3.13) (Un — Ya, yn — Un) + ﬁ(jh,gﬂh, oy — Tn))n > 0 Vyn € Kp.
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Remark 3.2. The P, FEM defined by (3.9) and its counterpart in [11] are new methods
for elliptic distributed optimal control problems with pointwise state constraints. The mo-
tivation for introducing these methods is the fact that, unlike traditional P; FEMs (such
as the P FEM from Section 3.1), the system matrices for FEMs with mass lumping are
readily available because the mass matrix for the inner product (-, ), is diagonal. Therefore
it is straightforward to solve the discrete variational inequalities by a primal-dual active
algorithm [5, 6, 35] that converges superlinearly.

4. PRELIMINARY ESTIMATES

In this section we derive some estimates that will be used in the convergence analysis in
Sections 5 and 6. We assume that .7, is either quasi-uniform [22, 14] or graded around the
reentrant corners [33, 31, 2, 8|.

4.1. The Interpolation Operator [;,. We summarize here some estimates regarding the
nodal interpolation operator that we need in the convergence analysis. They follow from (1.4)
and the standard error estimates of the nodal interpolation operator I, in [33, 22, 3, 25, 14]:

(41) Nz = Inzllzzq) + hlz = Dnzlm) + hilz — Izllpe@) S B (L2 r20) + 1G] m2(0)
for all z € V,,, where
(4.2) __ {04 ?f T ?s quasi-uniform,
1 if 7, is graded around the reentrant corners.
In particular, we have
(4.3) ||z = Inz|z2(0) + hlz — Inz|m ) + hllz — Izl pe) S A7 12L2 |20 VzeV.

Let ¢ € H?*(Q2) be arbitrary. We have, by (3.5), standard inverse and interpolation error
estimates [22, 14],

(Zh(d — Inod),vn) = (V(¢ — 149), Vup) + (¢ — 10, v)
< ||¢ = Ll llonlla @) S hldlaz@llvnllae) S [01a2@)llonll2 @),
and hence
(4.4) 120(6 — In9) |20y S 0lm2) Vo € HA(Q).
We conclude by using (3.4) and (4.4) that
(4.5) |-Zh(Ind) | 22 < [ Zn(Ind — 0|2 + |QnLb| L2
S olmze) + 1200 2 ) S Nl Vo e H(Q)NV.
4.2. The Operator Ej. The operator Ej, : V}, — V is defined by

(46) ,L”Ehvh = thvh Yoy, € Vh,
or equivalently
(47) (VEhUh, Vw) + (Eh’l)h, w) = (thh,w) Yw e Hl(Q)

Due to the interior elliptic regularity (cf. [27]), Epvs belongs to HZ () and
(4.8) | Eronllmze) < CollZhvnll 2
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for any open set G CC Q.
Comparing (3.5) and (4.7), we see that v, € V}, is the H*(Q2) orthogonal projection of
Epv, € V. 1t then follows from (4.3) and (4.6) that

(49) ||Ehvh - Uh”Hl(Q) = inf ||Ehvh - wh”Hl(Q)
wpEVY,
S ”Ehvh — ]hEhvh||H1(Q) 5 hTHgEhUhHLz(Q) = hTHD%hUh”[g(Q).
Furthermore, by a standard duality argument, we get
(4.10) ||Ehvh — Uh||L2(Q) S hQTHXh’U}ZHLz(Q).
Combining (4.8), (4.9) and the local error estimate in [49, Theorem 9.1], we also have
(411) |Uh — Ehvh\fp(g(m)) 5 h”ag/ﬂhvhHLQ(Q) Yu, € Vh,

where G(2() CC Q is an open neighborhood of the active set 2.
According to (1.4) (with {, = 0) and the Sobolev inequality, we have

(4.12) 12l (o) + 2] 1) < Call 22|12 VzEV.

We can use the operator Ej, to obtain a discrete analog of (4.12).

Lemma 4.1. There exists a positive constant C' independent of h such that
[vnllze@) + lvnllmi@) < CllZhvnllr2@) Y un € Vi

Proof. Since v, € V;, is the H'(Q) orthogonal projection of Ejvy,, we have, by (4.6) and
(4.12),

vnllz1@) < 1Envnllai@) S 1€ Ervvnllrz@) = |Zhonllrz@)-
Observe that we have a discrete Sobolev inequality [14, Lemma 4.9.2]
1
(4.13) ||Uh||Loo(Q) 5 (1—|— |1Ilh|)2||vh||H1(Q) Vo € Vi,
which together with (4.3), (4.6), (4.9) and (4.13) implies
th - EhUhHLoo(Q) < th - fhEhUhHLoo(Q) + ”IhEhUh - EhUhHLoo(Q)
S (1 + [ a2 |[on — InEronll o) + B711ZL Envnl 20
1
< (I + [Inh])2(|lvn — Eponll @) + | Evvn — InEpvn|| g1@)) + 2| Zhvnll 2
< (1 + [ h) 207 || Lonll 2
On the other hand, we have, by (4.6) and (4.12),
| Epvallze@) S (1€ Epvnll2i0) = [|[ZhvnllLo()-

The estimate for ||v,||z(q) follows from these two estimates. O
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4.3. The Operator Rj,. The Riesz projection Ry, : H(2) — V}, is defined by
(4.14) (VRpv, Vo) + (Rpv,vp) = (Vo, Vo) + (v,0,) Yo, € Vi,

It follows immediately from (3.5) and (4.14) that
(4.15) LByz =%z Yze HY(Q),
and hence also, in view of (3.6),
(4.16) LgBrz =%,z Vze H(Q).

Note that (3.4) and (4.16) imply
(4.17) L gRnz = Qn Lz VzeV,.

Similarly, we have, by (3.11), (3.12) and (4.14),
(4.18) ZngRnz = Lhyz N2z € HY(Q).

As in (4.9) and (4.10), we have the following standard error estimates:

(4.19) ly — Rhg]|H1(Q) < Ch7,
(4.20) 19 — Ruyl| 2y < Ch*".

Combining the interior regularity (2.4) and the L? error estimate (4.20) with the local error
estimate in [49, Theorem 10.1] , we have

(4.21) 17 = Bglli= @) S [Inh|h? + K.
Finally, it follows from (4.1), (4.13) and (4.19) that
17 — Bagllr=(0) < 1§ — Ingllze@) + [ 1n¥ — Bryllr=(o)
(4.22) SHT+ (L+ k)2 1y — Rugllm o)
SH 4+ (U4 A2 117 = llmo) + 17— Badllm )]
< (1+|Inh|)zh7,
and hence

(4.23) lim [y — Ry r~ o) = 0.

5. CONVERGENCE ANALYSIS OF THE FIRST P; FINITE ELEMENT METHOD

We will use the mesh dependent norm || - ||;, defined by
(5.1) lvllh = (v,v) + B(Lhv, Zhv).
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5.1. An Abstract Error Estimate. Let § € K, be the solution to (1.5)-(1.6), g5 € K},
be the solution to the discrete problem (3.1)—(3.2), and y;, € K}, be arbitrary.
It follows from (3.6), (3.7) and (5.1) that

lyn — Tnlls = Wn — Tns Y — Tn) + BCL(yn — Gn), Lu(yn — Un))

= (Yn — ¥, Yn — Un) + B(Llyn — 1), Lh(yn — Un))
+ (¥ = Ya, yn — Un) + BT, Ln(yn — Un))
— (Un = Yas Yn — Un) — B(Lhbn, L0 (Yn — Un))

(5.2) = (Yn — ¥ yn — Un) + B(L(yn — ¥), L0y — Un))

+ (¥ = Ya, yn — Un) + B(Lhg¥s L0(yn — Un))
— (Un = YasYn — Un) — B(Lh.gUn, L0 (Yn — Yn))

< lyn — Gllnllyn — Glln + [T = va, yn — Gn) + B(Lhg¥, Lolyn — Un))]-

Remark 5.1. The derivation of (5.2) is the only place where we use the fact that g, is the
solution to (3.1)—(3.2). The relation (5.3), the estimate (5.4) and Lemma 5.1 below actually
hold for any g, € V.

Using (2.6), (3.4) and (4.6), we can rewrite the second term on the last line of (5.2) as
(T = Ya, Yn — Un) + B(Lh gy Lh(yn — Un))
(5.3) = (Y = Ya, (Yn — Un) — Enlyn — 4n))
+ (7 = Ya En(yn — 0n)) + B(LY, L En(yn — 4n))]
= (¥ = Ya: (Y — Un) — Enlyn — 9n)) + /QEh(yh — Un)dp,
and we have, by (4.10),

(5.4) (Y — Ya, (n — Un) — Enlyn — 0n)) < CR¥ || Zolyn — Un) || r2(0)-
The next Lemma will give a bound on the last term of the right-hand side of (5.3).

Lemma 5.1. We have
/ En(yn — gn)dpe S bl Ly — On)ll2@) + 22 + llyn — Dnfllee@y  Vn yn € K,
0

where A = {x € Q: y(x) =(x)} is the active set for the constraint (1.3).
Proof. We begin with the estimate

/QEh(yh — Yn)dp = /Q [En(yn — Gn) — (yn — 9n)] dp + /Q([h@D — Yn)dp
(5.5) " /Q 1(7 — )du + /Q (v — Tng)dp
< /Q [En(n — ) — (o — )] dps + /Q 1u( — ¥)du

+/(yh—fh§)du
Q
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that follows from (2.9) and (3.2).
We can bound the terms on the right-hand side of (5.5) in the following way:

(5.6) /Q [En(yn — 5n) — (un — )] dpe S N En(yn — Gn) — (wn — Tn) L ey
S b (yn — Tn)l 2o

by (2.9), (2.13) and (4.11);

(5.7 1= = [ [0 =v) = = )

S =) = (5 = ©)|| ooy < CR®
by (2.9), (2.10) and the fact that ¥, 7 € W.2>°(Q); and

loc
(5.8) /Q(yh — Ing)dp S llyn — Ingll e
by (2.9). O
Putting (5.2)—(5.4) and Lemma 5.1 together, we find
lyn = Gnll < Nlyn = Fllnlln = ulla + 27 1L (yn — Gn)ll 2@
+ L (yn = )l 2@y + 1+ Ny — Ingll oo oy
< (lyn = Flln + 1) lyn = Gulln + 2* + lyn — Ingll Lo @,
which together with the inequality of arithmetic and geometric means implies
(5.9) lyn = Gnlln S lyn — Glln + 1+ [lyn — ]th%oo(m) Vyn € K.
Finally by applying the triangle inequality twice, we conclude from (5.9) that
19 = Gnlln < 17 = ynlln + lyn — Gnlln
S 115 = wello + b+ llgn — Tl g
S 15—yl + R+ 15 = vl + 15 = Tl ey
ST = alla + 5+ 17 — wll ey Vyn € Vi,

where we have also used the interior regularity j € W2>°(Q). Tt follows that
1
S < . _ _
(5.10) I yﬂhwh+wgaﬂw Ynlln + 17 = ynll 2o o] -

Remark 5.2. The abstract error estimate (5.10) implies that ||g — g || is uniformly bounded
with respect to h. Indeed, let ¢ be a sufficiently large positive number so that ¢, —c < ¢ on
2. Then y — ¢, + ¢ belongs to V' and y, = I;((, — ¢) belongs to K}. We obtain from (5.10)
that

1
19 =9l S 14115 = In(Cg = )lln + 17 = In(Cg — ) _a)

1
S1H17 = 1S = ez + BIZn(@ = 1n(S — N2 + 17 = In(G = IIL o)
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and the right-hand side is uniformly bounded with respect to h because
120 (5 = (G = D2y < 120y = G + 2@ + [ £0(¢ = ¢ = In(Gy = )2
S 12 = G+ )l + 1|2
by (3.4) (applied to the case where g = 0) and (4.4).

5.2. Concrete Error Estimates. We can obtain concrete error estimates from (5.10) by
producing y, € K} that is an accurate approximation of .

Lemma 5.2. For h sufficiently small, there exists y, € K such that
_ ik 1 -
1yn = Glln + [lyn = Gll Loy < C( A2 B+ RT),
where the positive constant C' s independent of h.

Proof. Let €, = ||§ — Ruy|| (G- It follows from (4.21) that

(5.11) en < |Inh|h? + A7
We claim that
(5.12) yn = Ry — el

belongs to K, for h < 1, where ¢ € C2°(Q2) is nonnegative and ¢ = 1 on G(2l).
Indeed, since ¥y —y > d > 0 on Q \ G(2), by the definition of y;, in (5.12) we have

Y <Ry =9+ (Bpy —9) <9 =6+ (Rpy — 9) on 2\ G(A),
and therefore, by (4.23),
yn(p) < ¢¥(p) for all vertices p € Q\ G(A)

if h is sufficiently small. On the other hand, we can use (5.11), (5.12) and the fact that ¢ = 1
on G(2) to get

=Y+ Ry —y)—en<y<v on G(2A),

and therefore
yn(p) < ¥(p) for all vertices p € G(21).

So y;, belongs to Kj,. Moreover, we have
15 = ylls = 17 = ynll 7o) + BIL0 (T — vl 720
SR = Glz2) + lenlndlza) + lenZilndliag) S B + e < [Inh*h* + '
by (4.5), (4.15), (4.20) and (5.11); and
lyn = Gl < BT = Gl + lenlnlloe@y S [Inhlh? + h*

by (4.21) and (5.11).
Putting these together, we finally reach

_ i 1 -
[yn = lln + lyn = Yl Loy S |ImA[2h+ AT

The following theorem presents a concrete error estimate for the first P, FEM.
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Theorem 5.1. Suppose (y,u) € K, is the solution of (1.1)~(1.3), yn € K}, is the solution
of (3.1)(3.2), and uy, = £, 4yn. Then, we have

(5.13) @ = anll 20 + 117 = Gallin) < C(Inh|2h+h7),
where the positive constant C' is independent of h.
Proof. For h sufficiently small, we have by (5.1), (5.10), and Lemma 5.2,
(5.14) 19 = Gl 2@ + 11205 = Gl S [mhl2h+ 1.
It follows from (2.15), (3.4), (3.6) and (5.14) that
[an — all2(@) = | Lngn — LYl 2(0)
(5.15) < || Lhgn — LhgUll20) + | L0y — LYl 12(0)
< L0 @n = D2 + 1@nZY = ZLYl12)
< |Inh|zh+ A",
where we have also used the standard estimate
(5.16) |Qrw — w20y < Chlw|gi (o) Ywe HY(Q).
Next, since
1Bng = Gullarne) < 1-Z0(Rog — ) llz2) = 105 — 0) 2@y S [Inhl2h+ b7
by Lemma 4.1, (4.15) and (5.14), and
|7 — Rnyllar) < Ch”
by (4.19), we have
19— nlln@) < 17 = Rugllun@) + |1 Bag — Gnllwn) S [nhlzh + b7

The estimate (5.13) is also valid for A bounded away from 0 because the left-hand side of
(5.13) is uniformly bounded with respect to h. The uniform boundedness of || — ¥/ a1 (o)
follows immediately from Lemma 4.1 and Remark 5.2, and from (5.15) we find

12— tnll2() < 10T = On)ll 2 @) + QLY — L3l 2@) <5 = Gnlln + 17|20,
which together with Remark 5.2 implies the uniform boundedness of ||t — || 2(q)- O

We also have the following L*° error estimate that indicates, up to a term of magnitude
O(|Inh|zh + h7), the L* error for the optimal control problem is the same as the L error
for the P, FEM for a second order elliptic boundary value problem.

Theorem 5.2. Suppose § € K, is the solution of (1.5)~(1.6) and gy € K}, is the solution of
(3.1)~(3.2). Then we have

o 1 . _ _
17 = Unllz) < C(|Inh|2h +R7) + |7 — Ruyllze (o),

where the positive constant C' is independent of h,
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Proof. The theorem follows from the triangle inequality, Lemma 4.1, (4.15) and (5.14):
15 = Gnlloe@) < N9 = Ballze() + [[BrY = Gnll =)
< g — Ruyllze) + Cll<Lh(Rry — Tn)ll 220
=19 = Bngllz=@) + 1404 = gn) |l 2@
1 T
< |9 = Buglloe(o) + C(|mnh|2h + hT).

6. CONVERGENCE OF THE SECOND P; FINITE ELEMENT METHOD

We will use the following mesh dependent norm
(6.1) lollls = (v,0) + (Lo, Zao)a

in the analysis of the second Py FEM, which relies on the results for the first 4 FEM in
Section 5 and the relation between .2}, , and %}, ,.

6.1. Relations between %}, , and jh,g. It is clear from the definition of the two discrete
operators (3.3) and (3.10) that, for any w € H'(Q), we have

(6.2) (L gw,vp) = (.,?Z;ng,vh)h Yo, € Vi,

and in particular,

(6.3) (Lw, vn) = (Lw, vp)n Yw e HY(Q),v, € V.
One can easily verify that

(6.4) (v, vp)n = (vp, vp) Yo, € Vi,

and by a property of mass lumping (cf. [44, 48]), we have

1
65) 1w wn) = @ wal S (X Wlonlden ) el Yon wn € Vi
TeT,

Using (6.2) and (6.5), we find
(6.6)  [(Lhgw = ZLhgw, wn)s| = [(Lhgw, wn) = (Lhgw, wn)|
S W gw| i @)llwnll 22 Yw e HY(Q),w, € Vi,
and so by (6.4),
(67) H.,?Zh,gw — gh,g'lUHLQ(Q) 5 h|$h7g’w|H1(Q) Yw & Hl(Q)
It is also easy to show that

(68) ($h7gw,$h7gw) g (.,Zzh7gw,.,22h7gw)h Yw € Hl(Q)
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6.2. An Abstract Error Estimate. We will need the following estimate regarding .%;, and

jh to derive an abstract error estimate for the second P; FEM.
From (3.4), (6.1), (6.6) and (6.8), we have

(LT — Lrg¥, Ly — Tn))nl S h|$h,gg|H1(Q)||jh(yh = In)llz2 )
(6.9) S R|QwZLY 1oy lyn — Tl
S MZylm o llve — Gl
where we have used the estimate (cf. [7, 47])
(6.10) |Qnw|a) S |w]m (o) Ywe HY(Q).
Using (3.12), (3.13), (6.1), (6.3) and (6.9), we may proceed as in (5.2) to obtain
llyn = gnlly < lln = e = Tall, + @ = v vn — n) + B(Lrg(5), Lo (yn — Tn))n

= llyn. — gllullvn — Galll, + @ — va, yn — G0) + B(Lrg¥. Lo(yn — Tn))a
(6.11) + B(Zhgi — Ly, Loy — Tn))a

S Myn = gl Myn = Gnlll, + [ = var yn — 9n) + B(Logy, L(un — Gn))]

+ 1Lyl @ llyn — Gnlll,-

Notice that since the term (g — ya, yn — n) + B(Lh4Y, L1 (yn — Yn)) appearing in the last
inequality of (6.11) is identical to the last term that appears in (5.2), we can directly apply
the estimates (5.3), (5.4) and Lemma 5.1 from Section 5.1 (cf. Remark 5.1).

Continuing from (6.11), we find

_ 2 _ _ _ _
lyn = Tullly, S Wy = Fllallyn = Fally + PlLalyn = Gn)llz2) + 1% + llyn = TGl =)
+ Allyn — Gl
S My = Gllllle = gl + Alllyn = Gall, + 5% + lyn — Tgill o)
which together with the inequality of arithmetic and geometric means implies
1
lyn = ol < Myn = Gll, + 24 llyn = Dl focy VU € K

So by the triangle inequality, we arrive at
1
12 g—Unll, S h+ inf -y — |2 .
(6.12) g = nllly < o+ ok {llyn =5l + e = G120

6.3. Concrete Error Estimates. Let y;, € K be defined by (5.12). Then, by using
(4.18), (6.4) and (6.7), one can show that Lemma 5.2 also holds with ||ys, — ¢||, replaced by
llyn — ylll,- That is, for h sufficiently small, y;, satisfies

_ % 1 -
llgn = Gl + llgn — Tl iy S 1T A3R+ 7.
Therefore it follows from (6.12) that
_ _ 1 T
(6.13) 9 = gull, < A2k + AT,

and we have the following concrete error estimates.
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Theorem 6.1. Suppose (y,u) € K, is the solution of (1.1)~(1.3), yn € Ky is the solution
of (3.9) and u, = £ 4yn. Then we have
@ = anll ey + 19 = Gull ey < CInhl2h+ A7),
where the positive constant C' is independent of h.
Proof. We have, by (2.15), (3.4), (5.16), (6.1), (6.4), (6.7), (6.10) and (6.13),
@ = nll20) = 127 = Lo gl 2
<125 = Zhgilliz@) + 1000 = Lhghll2) + 1 Lhg = Lhgnll 2o
= 127 — QL2 @) + 1-Lhgl — Loglill 2 + 10T — Bl 20
S MLyl ) + hLYlme) + 17— ynll,
< |Inh|zh+h.
Next, it follows from Lemma 4.1, (4.15) , (6.1), (6.8) and (6.13) that
17 = Onll ) < Y — Badllar) + | Bad — Unll )
SET 4+ || L(Rey — i) |l 2
= W7+ L0 (7 = )2y S B+ 11 = Gl < [ hf2h+ A
0

We also have the following L*° error estimate as we did for the first P, FEM. The proof
proceeds as in Theorem 5.2 but by additionally using (6.8) and (6.13).

Theorem 6.2. Suppose § € K, is the solution of (1.5)~(1.6) and gy € K}, is the solution of
(3.9). We have

o 1 . ~ ~
17 = Unllzo) < C(|Inh|2h +R7) + |7 — Ruyl|ze (o),

where the positive constant C' is independent of h.

7. NUMERICAL RESULTS

In this section, we report numerical results that corroborate the theory and illustrate the
performance of the two P, FEMs. We solved the discrete problem for the first P FEM by
using the MATLAB quadprog M-function, and we solved the discrete problem for the second
P; FEM by a primal-dual active set algorithm [5, 6, 35]. The approximate optimal state and
optimal control on the k-th level mesh are denoted by ¥, and u, respectively.

In the first two examples, we consider convex domains with the homogeneous Neumann
boundary condition. Nonhomogeneous boundary conditions are treated in the other two
examples. Since the results for the two FEMs are very similar, for brevity we only report
the results for the second P, FEM after the first example.

Ezample 7.1. In this example € is the pentagon (cf. Figure 7.1) with vertices (0.5, 0), (0,0.5),
(—0.5,0.5), (—=0.5,—0.5) and (0.5, —0.5). Following [18, Section 6, Example 3], we choose
ya(x) =2 — |z, ¥(z) = 1.85+ (21 +0.25)* 4 (22 + 0.25)*, B = 0.001 and g = 0. Since we do
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not know the exact solution (g, @) of this problem, we report the errors between consecutive
approximations in Tables 7.1 and 7.2.

k| 1Uk+1 — Jklle)  rate | [Ur+1 — Uklai) rate | [|Uk+1 — Yklloe(o) rate | [[Ukt1 — Uklr2q) rate
0 2.04e-02 1.36e-01 7.45e-02 6.92e-01

1 1.08e-02 0.92 6.45e-02 1.08 4.37e-02 0.77 3.28e-01 1.08
2 3.01e-03 1.84 4.58e-02 0.49 9.77e-03. 2.16 2.67e-01 0.30
3 1.15e-03 1.39 2.50e-02 0.87 3.95e-03 1.31 1.10e-01 1.28
4 2.92e-04 1.98 1.28e-02 0.97 1.24e-03 1.67 3.29e-02 1.74
5 6.54e-05 2.16 6.43e-03 0.99 3.83e-04 1.69 1.43e-02 1.20
6 1.81e-05 1.85 3.23e-03 0.99 1.09e-04 1.82 4.18e-03 1.78
7 4.08e-06 2.15 1.62e-03 1.00 3.40e-05 1.68 1.36e-03 1.62

TABLE 7.1. Results for the first P, FEM on uniform meshes for Example 7.1

k| 1Ok+1 — Gklleo)  rate | [Jr+1 — Uklai) rate | [|Uk+1 — Gklloe(o) rate | [[Ukt1 — Uklr2q) rate
0 2.95e-02 2.23e-01 1.19e-01 4.29e-01

1 1.32e-02 1.16 9.34e-02 1.25 5.56e-02 1.10 3.09e-01 0.47
2 3.19e-03 2.05 5.42e-02 0.79 6.94e-03 3.00 2.50e-01 0.31
3 8.32e-04 1.94 2.65e-02 1.03 3.17e-03 1.13 9.00e-02 1.48
4 2.20e-04 1.92 1.29e-02 1.04 8.45e-04 1.91 2.85e-02 1.66
5 3.62e-05 2.61 6.45e-03 1.00 2.58e-04 1.71 1.36e-02 1.07
6 1.08e-05 1.75 3.23e-03 1.00 7.91e-05 1.70 4.02e-03 1.76
7 3.29e-06 1.71 1.62e-03 1.00 3.24e-05 1.29 1.30e-03 1.63

TABLE 7.2. Results for the second P, FEM on uniform meshes for Example 7.1

For both FEMs, we observe O(h) convergence for the approximation of  in the H' semi-
norm which agrees with Theorems 5.1 and 6.1. The convergence rates for the approximations
of j and % in the L?-norm are better than the estimates in Theorems 5.1 and 6.1, and the
convergence for the approximation of 7 in the L*> norm is also better than the estimates in
Theorems 5.2 and 6.2. These higher convergence rates are consistent with the fact that the
optimal state g (and hence the optimal control @) has higher interior and global regularities
since (2 is convex and the free boundary 0% is sufficiently smooth.

The graphs of g3 and ug and the active set obtained by the second P; FEM are displayed
in Figure 7.1. All of them match the ones obtained in [18] by a quadratic C° interior penalty
method.

Example 7.2. In this example 2 = (—4,4)? and we construct the exact solution 7 as in [11,
Section 7, Example 1] but modify it in a way that gy satisfies the homogeneous Neumann
boundary condition.

We construct g(x) in the following way:

lz|> -1 if |z] <1,
y(a) = qollz) + [1+ o(jeD]w(le]) 1< ]| <3,
w(z) if |z > 3,
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J / \

(a) State (b) Control (c) Active Set

FIGURE 7.1. State, control and active set for Example 7.1

where

o(t) = (2~ 1)(1 - %)4 + }l(t SRt - 3),

o= 15 o) (Y15

T 7r
w(x) = 2cos <§(x1 + 4)) Ccos <§(m2 + 4)>
The control % is then equal to —Ay + . Now we choose ¥(z) = |z|*> — 1, =1, and
) = BA%Y —28Ay + By + if [z > 1,
! BN’y —2BAG+ By +5+1  if 2] < 1.

By construction, such choices of ¥, 3, yq and y satisfy the KKT conditions (cf. Remark 2.1)
with the measure p in (2.6) defined by

(7.1) /zd,u:—42/ zds—/zd$ VzeV,
Q o 2

and the active set 2 is the closed disc with radius 1 centered at the origin.

k1N —vukllz  rate | |9 —ylmio) rate | [[[ky — ykllL~) Tate | || —ukllr2@) rate
0 8.13e+00 8.01e+4-00 1.38e+4-00 1.51e+01

1 9.84e+00 -0.28 9.72e+00 -0.28 2.58e+00 -0.90 1.64e+01 -0.12
2 1.05e+01 -0.09 1.19e+01 -0.29 2.61e+00 -0.02 1.80e+01 -0.13
3 1.40e+00 2.91 4.63e+00 1.36 3.45e-01 2.92 1.20e+01 0.58
4 2.99e-01 2.22 2.35e+00 0.98 9.76e-02 1.82 5.03e+00 1.25
5 8.28e-02 1.85 1.19e+400 0.99 3.48e-02 1.49 1.67e+00 1.59
6 2.89¢e-02 1.52 5.92e-01 1.00 1.37e-02 1.35 5.33e-01 1.64
7 9.14e-03 1.66 2.95e-01 1.00 3.68e-03 1.89 1.83e-01 1.54
8 3.11e-03 1.56 1.48e-01 1.00 1.13e-03 1.70 6.13e-02 1.58

TABLE 7.3. Results for the second P, FEM on uniform meshes for Example 7.2

The results for the second P, FEM on uniform meshes are reported in Table 7.3, where
we use I;, to denote the nodal interpolation operator onto the finite element space associated
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with the k-th level mesh. The reduction rate of |[;y — yk|/L=() represents the order of
convergence of 7 in the L>-norm.

The O(h) convergence of the approximation of y agrees with Theorem 6.1. The convergence
rates for the approximations of 4 in L? and L norms and for the approximation of @ in the
L? norm are better than those predicted by Theorem 6.1 and Theorem 6.2. These higher
convergence rates are consistent with the higher regularity enjoyed by ¢ and .

The graphs of ys and ug and the active set obtained by the second P; FEM are displayed
in Figure 7.2. The active set has clearly been correctly captured.

A
2

/ N 4‘.3‘

(a) State (b) Control (c) Active Set

FIGURE 7.2. State, control and active set for Example 7.2

Example 7.3. This example is a modification of Example 7.2 so that the exact solution has
non-homogeneous Neumann boundary condition. We take Q = (—=4,4)% 8 =1, q(z) = z1,
V=19 +q,
va=va+t(1+pB)g, ¥ =y+q and u =iu+y,
where v, y4, ¥ and u are identical to the ones in Example 7.2.
Then g* is the exact solution of the following slightly more general problem:

. ! B
(12 7 = arguiin 3y~ yallo) + 5120l — 5 [ gyds],
o0

yeK;
where g = 0q/0n and
(7.3) Ky ={veV,:v<y*in Q}.

Indeed, we have g* < ¢*, A* = 2 (the active set from Example 7.2), and since ¢ is
harmonic,

<y*—yz,z>+ﬁ($y*,$z>—/ qzdSZ/Zdu* Viev.
o0 Q

where p, = p is defined in (7.1). Therefore the KKT conditions for (7.2) are satisfied.

Remark 7.1. Note that (7.2) is identical to (1.5) when g = 0. For nonhomogeneous Neumann
boundary conditions, the more general cost functional in (7.2) facilitates the construction of
an exact solution from the exact solution of the corresponding problem with the homogeneous
Neumann boundary condition.
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We can solve (7.2) by a straightforward modification of the P, FEMs in Sections 3.1 and
3.2, where the additional term 3 [, 00 9Ynds is included in the cost functionals in (3.1) and
(3.9). It is easy to check that the error estimates in Sections 5 and 6 remain valid.

The numerical results for the second P, FEM on uniform meshes are given in Table 7.4.
The performance is similar to what we observed in Example 7.2. This is not surprising since
the difference between the exact solutions of Example 7.2 and Example 7.3 is just the linear
polynomial gq.

k ||:Ij* — kaLz(Q) rate |g* — yk|Hl(Q) rate ||Ik§* — yk”Loo(Q) rate H’IZ* — uk||L2(Q) rate
0 4.39e+-01 2.42e+01 1.21e+01 3.83e+01

1 8.61e+00 2.35 8.62e+00 1.49 2.99e+00 2.02 1.78e+01 1.10
2 9.34e+00 -0.12 1.22e+01 -0.50 2.56e+00 0.22 1.75e+01 0.03
3 1.44e4-00 2.70 4.63e+00 1.40 3.45e-01 2.89 1.20e+01 0.54
4 3.32e-01 2.12 2.40e+00 0.95 1.76e-01 0.97 4.93e+00 1.28
) 8.48e-02 1.97 1.19e+00 1.01 4.93e-02 1.84 1.63e+00 1.59
6 2.35e-02 1.85 5.92e-01 1.00 1.36e-02 1.86 5.23e-01 1.64
7 5.83e-03 2.01 2.96e-01 1.00 3.24e-03 2.07 1.80e-01 1.54
8 2.66e-03 1.13 1.48e-01 1.00 8.03e-04 2.01 6.06e-02 1.57

TABLE 7.4. Results for the second P, FEM on uniform meshes for Example 7.3

The graphs of ys and ug and the active set obtained by the second P; FEM are displayed
in Figure 7.3. The relations §* = ¥ + ¢ and 4* = % + g can be observed by comparing
Figure 7.2 and Figure 7.3. The active set has also been correctly captured.

A A
4 4

(a) State (b) Control (c) Active Set
FIGURE 7.3. State, control and active set for Example 7.3

Ezample 7.4. In this example, we use the L-shaped domain Q = (—8,8)%\([0, 8] x [-8,0])
(cf. Figure 7.4) and solve the minimization problem (7.2) with a nonhomogeneous Neumann
boundary condition.

First of all, let a = (—4,4) and take ¢ and y4 to be the functions from Example 2. If we
use Y, (z) = ¥(z —a) and y4(z) = ya(x — a) as the input with 5 = 1, then the exact solution
of (1.1)—(1.3) with g = 0 will be y,(z) = y(z — a) and u,(x) = u(x — a), where (g, @) is the
exact solution of Example 2. Furthermore, the active set in this case will simply be the shift
of the active set of Example 2 by a.
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Let the harmonic function ¢ in polar coordinates be defined by
q(r,0) = ri cos(260/3)
and take
V=1 +4q and yi=y;+ (1+F)dq.
As in Example 7.3, the exact solution of (7.2) with g = 4(0q/0n) is then given by
(7", ") = (Vo + 4q, Ua + 4q).

Note that the singularity due to the reentrant corner is captured by gq.

In Table 7.5, we report results for the second P FEM on uniform meshes. In this case,
the estimates in Theorems 6.1 and 6.2 hold with 7 = 2/3, and the reduction in the order

of convergence (compared to previous examples) is noticeable except for the L*-error of the
control.

k ||jlj* — kaL2(Q) rate |:lj* — yk|H1(Q) rate ||Ik§* — kaLoo(Q) rate H’l]* — Uk||L2(Q) rate
0 4.62e+01 1.86e+01 1.14e+01 4.19e+01

1 1.19e+01 1.96 1.16e+01 0.67 2.80e+4-00 2.03 1.94e+01. 1.11
2 9.79e+00 0.28 1.31e+01 -0.17 2.56e+-00 0.13 1.78e+01 0.12
3 1.72e+4-00 2.51 5.25e+00 1.32 4.62e-01 2.47 1.20e+01 0.56
4 4.57e-01 1.91 2.79e+00 0.91 2.67e-01 0.79 4.94e+00 1.28
5 1.40e-01 1.70 1.47e4-00 0.93 1.60e-01 0.74 1.64e+00 1.59
6 4.79e-02 1.55 7.95e-01 0.88 9.92e-02 0.69 5.24e-01 1.64
7 1.68e-02 1.52 4.43e-01 0.84 6.18e-02 0.68 1.80e-01 1.54
8 6.55e-03 1.35 2.53e-01 0.80 3.88e-02 0.67 6.08e-02 1.57

TABLE 7.5. Results for the second P, FEM on uniform meshes for Example 7.4

We have also run the same numerical example on graded meshes of the L-shaped domain.
The graded meshes are generated by the refinement procedure in [31], and they are depicted
in Figure 7.4. The results are presented in Table 7.6. The observed improvement in the

convergence rates agrees with Theorems 6.1 and 6.2, since 7 is improved to 1 for graded
meshes (cf. (4.2)).

E o =yl rate | |7 —yrlar) rate | [Ixg* — yrllre() rate | ||a* —ug|lL2q) rate
0 1.96e+01 1.40e+01 5.36e+00 2.30e+01

1 9.77e+00 1.01 1.07e+01 0.38 3.02e+00 0.83 1.76e+01 0.39
2 4.86e+00 1.01 8.28e+00 0.37 1.98e+-00 0.61 1.38e+01 0.35
3 7.87e-01 2.63 3.47e+00 1.26. 3.45e-01 2.52 6.76e+00 1.03
4 2.09e-01 1.92 1.61e4-00 1.11 1.51e-01 1.19 2.91e+00 1.21
5 6.11e-02 1.77 7.70e-01 1.06 4.00e-02 1.92 1.05e+00 1.47
6 1.36e-02 2.16 3.80e-01 1.02 1.08e-02 1.89 4.40e-01 1.26
7 2.93e-03 2.22 1.89%e-01 1.01 4.25e-03 1.34 1.74e-01 1.34
8 9.89¢e-04 1.57 9.46e-02 1.00 2.46e-03 0.79 5.98e-02 1.54

TABLE 7.6. Results for the second P, FEM on graded meshes for Example 7.4
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e s 4 2 0 2+ 5 8 & s 4 2 0z &« 5 @ s s <+ 2 0 2 4

FiGURE 7.4. Graded meshes on the L-shaped domain with grading parameter 0.6

The graphs of ys and ug and the active set are displayed in Figure 7.5. Again the active
set has been correctly captured.

P 4 oy

(a) State (b) Control (c) Active Set

8
s s 4+ 2 0

FIGURE 7.5. State, control and active set for Example 7.4

8. CONCLUDING REMARKS

The P, FEMs from Sections 3.1 and 3.2 can also be applied to the optimal control problem
(1.1)-(1.3) on a three dimensional polyhedral domain. This was carried out in [11] for the
Dirichlet boundary condition.

The analysis of the P; FEMs are considerably simpler under the condition that the active
set is a compact subset of €2. In the Dirichlet case, this condition is satisfied in any dimension
as long as the (pointwise) constraint for the state is separated from the boundary condition
of the state. In the Neumann case, this condition is implied by our assumption dv/0n > g
for two dimensional domains. Unfortunately the arguments in [18, Appendix]| do not extend
immediately to three dimensions. This is the reason that the three dimensional case is not
addressed in this paper.

Higher order FEMs are advantageous when y enjoys additional regularities (cf. [18]).
Therefore it will be interesting to extend the approach in this paper to higher order FEMs
based on discontinuous Galerkin discretizations of the constraint (1.2), for which mass lump-
ing is not required.
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