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Abstract. We investigate two P1 finite element methods for an elliptic state-constrained
distributed optimal control problem with Neumann boundary conditions on general polyg-
onal domains.

1. Introduction

Let Ω ⊂ R2 be a bounded polygonal domain. We consider the following optimal control
problem (cf. [20]):

(1.1) Find (ȳ, ū) = argmin
(y,u)∈Kg

[1

2
‖y − yd‖2

L2(Ω) +
β

2
‖u‖2

L2(Ω)

]
,

where (y, u) ∈ H1(Ω)× L2(Ω) belongs to Kg if and only if∫
Ω

∇y · ∇wdx+

∫
Ω

ywdx =

∫
Ω

uwdx+

∫
∂Ω

gwds ∀w ∈ H1(Ω),(1.2)

y ≤ ψ a.e. in Ω.(1.3)

Remark 1.1. Throughout this paper we follow the standard notation for differential opera-
tors, functions spaces and norms that can be found for example in [22, 1, 14].

We assume that

(i) yd belongs to L2(Ω) and β is a positive constant,

(ii) g =
∂ζg
∂n

for some ζg ∈ H4(Ω),

(iii) ψ belongs to H3
loc(Ω) ∩W 2,∞

loc (Ω) such that
∂ψ

∂n
> g on ∂Ω.
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We can reformulate the optimal control problem in terms of ȳ alone. To this end, we
introduce the affine subspace Vg of H1(Ω) defined by

Vg =
{
y ∈ H1(Ω) : there exists u ∈ L2(Ω) such that∫

Ω

∇y · ∇wdx+

∫
Ω

ywdx =

∫
Ω

uwdx+

∫
∂Ω

gwds ∀w ∈ H1(Ω)
}
.

In the homogeneous case where g = 0, we will denote the linear subspace V0 of H1(Ω) by V .

Remark 1.2. The constraint (1.2) in the definition of Vg is the weak form of the following
boundary value problem:

−∆y + y = u in Ω and ∂y/∂n = g on ∂Ω,

where ∆y is understood in the sense of distributions, and g ∈ H− 1
2 (∂Ω) is understood as the

normal trace of ∇y ∈ H(div,Ω). Therefore an alternative definition of Vg is given by

Vg =
{
y ∈ H1(Ω) : L y ∈ L2(Ω) and ∂y/∂n = g on ∂Ω

}
,

where L y = −∆y + y defines an isomorphism from Vg onto L2(Ω).

Due to elliptic regularity [33, 23, 41], Vg is an affine subspace of H1+α(Ω) for some α ∈
(1

2
, 1], where α = 1 if Ω is convex, and

(1.4) ‖z‖H1+α(Ω) ≤ CΩ

[
‖L z‖L2(Ω) + ‖ζg‖H2(Ω)

]
∀ z ∈ Vg.

Note that Vg is also an affine subspace of H2
loc(Ω) by interior elliptic regularity.

It follows from (1.4) and the Sobolev inequality [1] that Vg ⊂ C(Ω̄) and we can reformulate
the minimization problem (1.1)–(1.3) as follows:

(1.5) Find ȳ = argmin
y∈Kg

[1

2
‖y − yd‖2

L2(Ω) +
β

2
‖L y‖2

L2(Ω)

]
,

where

(1.6) Kg = {v ∈ Vg : v ≤ ψ in Ω}.
Our goal is to develop P1 finite element methods (FEMs) for (1.5)–(1.6).

FEMs for elliptic distributed optimal control problems with pointwise state constraints
have been studied by many authors (cf. [24, 42, 34, 36, 40, 37, 4, 50, 32, 16, 21, 9, 17, 43,
13, 15, 11, 10, 18, 12] and the references therein). In [18], a C0 interior penalty method for
the optimal control problem (1.1)–(1.3) on convex domains with the homogeneous boundary
condition (g = 0) was analyzed by the tools developed in [15]. In [11], theoretical and
numerical results for two P1 FEMs for a state-constrained elliptic distributed optimal control
problem with Dirichlet boundary conditions were obtained for general polygonal/polyhedral
domains, where the analysis extended the framework in [15]. In this paper, we will extend
the results in [11] to (1.5)–(1.6). We note the convergence results in [11, 10] and the current
paper are the first ones for nonconvex and nonsmooth domains.

The remainder of the paper is organized as follows. In the next section, we recall some
results regarding the continuous problem (1.5)–(1.6), and we present two discrete problems
in Section 3. Preliminary estimates for the convergence analysis are gathered in Section 4,
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followed by the convergence analysis of the FEMs in Sections 5 and 6. We present numerical
results in Section 7 that corroborate the theoretical results and end with some concluding
remarks in Section 8.

We will use C (with or without subscript) to denote a generic positive constant independent
of the mesh size. To avoid the proliferation of constants, we will also use the notation A . B
to denote the inequality A ≤ (constant)B, where the hidden constant is independent of the
mesh size. The notation A ≈ B is equivalent to the statement that A . B and B . A.

2. The Continuous Problem

In this section we will collect information on the continuous problem (1.5)–(1.6). From
here on we use (·, ·) to denote the inner product for L2(Ω) (or [L2(Ω)]2).

Let z̄ = ȳ − ζg. We can rewrite (1.5)–(1.6) as

(2.1) z̄ = argmin
z∈K

[1

2
‖z − (yd − ζg)‖2

L2(Ω) +
β

2
‖L (z + ζg)‖2

L2(Ω)

]
,

where

(2.2) K = {v ∈ V : v ≤ ψ − ζg in Ω}.
Since V is a Hilbert space under the inner product

((y, z)) = (y, z) + (L y,L z),

it follows from the standard theory [39, 26, 38] that (2.1)–(2.2) (and hence (1.5)–(1.6)) has
a unique solution characterized by the variational inequality

(2.3) (ȳ − yd, y − ȳ) + β(L ȳ,L (y − ȳ)) ≥ 0 ∀ y ∈ Kg.

Interior Regularity of ȳ
By the interior regularity results for fourth order variational inequalities in [29, 30, 19],

we have

(2.4) ȳ ∈ H3
loc(Ω) ∩W 2,∞

loc (Ω).

Lagrange Multiplier µ
Recall that V ⊂ C(Ω̄). Let φ ∈ C∞(Ω)∩V be nonnegative. Then y = ȳ−φ ∈ Kg and we

have, by (2.3),

(2.5) (ȳ − yd, φ) + β(L ȳ,L φ) ≤ 0.

Since C∞(Ω)∩V is dense in C(Ω̄), it follows from (2.5) and the Riesz representation theorem
[45, 46, 28] that

(2.6) (ȳ − yd, z) + β(L ȳ,L z) =

∫
Ω̄

z dµ ∀ z ∈ V,

where µ is a nonpositive finite Borel measure on Ω̄.
Let A = {x ∈ Ω : ȳ(x) = ψ(x)} be the active set for the constraint (1.3). Under the

assumption ∂ψ/∂n > g, we have (cf. [18, Appendix])

(2.7) A is a compact subset of Ω.
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For any z ∈ V whose support is disjoint from A, ±εz + ȳ belong to Kg for sufficiently
small ε. Therefore, by (2.3), we have

(2.8) (ȳ − yd, z) + β(L ȳ,L z) = 0

for all z ∈ V such that supp(z) ∩ A = ∅. Hence, in view of (2.6),

(2.9) µ is a nonpositive finite Borel measure supported on A,

which is equivalent to

(2.10)

∫
Ω

(ȳ − ψ)dµ = 0.

Remark 2.1. The conditions (2.6), (2.9) and (2.10) are the Karush-Kuhn-Tucker (KKT)
conditions that characterize the solution of (1.5)–(1.6).

Let Φ belong to C∞c (Ω) (the space of C∞ functions with compact supports in Ω) such that
Φ = 1 in an open neighborhood of the compact subset A of Ω. Given any z ∈ V , We have,
by (2.6) and (2.9),∫

Ω

z dµ =

∫
Ω̄

zΦ dµ

= (ȳ − yd, zΦ) + β(L ȳ,L (zΦ))

= (ȳ − yd, zΦ) + β(L ȳ,−∆(zΦ) + (zΦ))

= (ȳ − yd, zΦ) + β(∇(L ȳ),∇(zΦ)) + β(L ȳ, zΦ),

where the integration by parts is justified by (2.4) and the fact that z belongs to H2
loc(Ω). It

follows that

(2.11)
∣∣∣ ∫

Ω

z dµ
∣∣∣ ≤ C‖z‖H1(G) ∀ z ∈ V,

where G is an open neighborhood of the support of Φ such that G ⊂⊂ Ω (i.e., the closure of
G is a compact subset of Ω).

Given any z ∈ H1(Ω), we can construct a sequence zn ∈ V such that ‖zn − z‖H1(G) → 0
as n → ∞. (In fact we can choose zn from C∞c (Ω).) In view of (2.11), limn→∞

∫
Ω
zndµ is

independent of the choices of zn. We can therefore define

(2.12) 〈µ, z〉 = lim
n→∞

∫
Ω

zndµ ∀ z ∈ H1(Ω).

Note that 〈µ, z〉 =
∫

Ω
z dµ for z ∈ V because we can take zn = z for all n in (2.12).

It follows from (2.11) and (2.12) that

(2.13) |〈µ, z〉| ≤ C‖z‖H1(Ω) ∀ z ∈ H1(Ω).
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Regularity of ū
In view of (2.13), we can define the adjoint state p̄ ∈ H1(Ω) by

(∇p̄,∇z) + (p̄, z) = (ȳ − yd, z)− 〈µ, z〉 ∀ z ∈ H1(Ω).

It then follows from the definition of V (cf. Remark 1.2 with g = 0) that

(2.14) (p̄,L z) = (ȳ − yd, z)−
∫

Ω

z dµ ∀ z ∈ V.

Comparing (2.6) and (2.14), we find

(p̄− βL ȳ,L z) = 0 ∀ z ∈ V,

and hence, since L : V −→ L2(Ω) is an isomorphism,

(2.15) ū = L ȳ = β−1p̄ ∈ H1(Ω).

Global Regularity of ȳ
According to (1.4), we have

(2.16) ȳ ∈ H1+α(Ω),

where α belongs to (1
2
, 1] in general. In the case where Ω is convex, the constraint (1.2) and

the regularity of ū in (2.15) imply that 1 < α ≤ 2 (cf. [33, Chapter 5] and [23, Section 18]).
The assumption ζg ∈ H4(Ω) ensures that the Neumann boundary condition does not interfere
with the higher regularity for convex domains.

3. The Discrete Problems

Let Th be a regular triangulation of Ω and Vh ⊂ H1(Ω) be the P1 finite element space
associated with Th. The diameter of T ∈ Th is denoted by hT and h = maxT∈Th hT is the
mesh parameter.

3.1. The First P1 Finite Element Method. The first P1 FEM is to find

(3.1) ȳh = argmin
yh∈Kh

[1

2
‖yh − yd‖2

L2(Ω) +
β

2
(Lh,gyh,Lh,gyh)

]
,

where

(3.2) Kh = {vh ∈ Vh : vh ≤ Ihψ},

and Ih : C(Ω̄) −→ Vh is the nodal interpolation operator. In other words, the discrete
constraint is only imposed at the vertices of Th. The affine map Lh,g : H1(Ω) −→ Vh is
defined by

(3.3) (Lh,gw, vh) = (∇w,∇vh) + (w, vh)−
∫
∂Ω

gvhds ∀ vh ∈ Vh.

Remark 3.1. The P1 FEM defined by (3.1) and (3.2) is identical to the method in [42], but
our convergence analysis in Section 5 is completely different. In particular our convergence
results do not require Ω to be convex and we also have error estimates in L∞(Ω).
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Notice that

(3.4) Lh,gz = QhLz ∀ z ∈ Vg,
where Qh : L2(Ω)→ Vh is the L2(Ω) orthogonal projection. This is true, since

(Lh,gz, vh) = (∇z,∇vh) + (z, vh)−
∫
∂Ω

gvh ds = (L z, vh) = (QhL z, vh) ∀ vh ∈ Vh,

by Remark 1.2 and (3.3).
In the case where g = 0, the affine map Lh,0 becomes a linear map that will be denoted

simply by Lh, i.e., Lh : H1(Ω) −→ Vh satisfies

(3.5) (Lhw, vh) = (∇w,∇vh) + (w, vh) ∀w ∈ H1(Ω), vh ∈ Vh.
We have a useful relation

(3.6) Lh,gv1 −Lh,gv2 = Lh(v1 − v2) ∀ v1, v2 ∈ H1(Ω)

that follows immediately from (3.3) and (3.5).
Using (3.6) and a standard computation, we can characterize the unique solution ȳh ∈ Kh

of (3.1)–(3.2) by the following discrete variational inequality:

(3.7) (ȳh − yd, yh − ȳh) + β(Lh,gȳh,Lh(yh − ȳh)) ≥ 0 ∀ yh ∈ Kh.

3.2. The Second P1 Finite Element Method. To construct the second P1 FEM, we first
introduce another inner product (·, ·)h defined by

(3.8) (vh, wh)h =
∑
p∈Vh

( ∑
T∈Tp

|T |
3

)
vh(p)wh(p) ∀ vh, wh ∈ Vh,

where Vh is the set of the vertices in the triangulation Th, Tp denotes the collection of all
elements that have p as a common vertex, and |T | is the area of T .

The second P1 FEM is to find

(3.9) ȳh = argmin
yh∈Kh

[1

2
‖yh − yd‖2

L2(Ω) +
β

2
(L̃h,gyh, L̃h,gyh)h

]
,

where Kh is defined in (3.2), and the affine map L̃h,g : H1(Ω) −→ Vh is given by

(3.10) (L̃h,gw, vh)h = (∇w,∇vh) + (w, vh)−
∫
∂Ω

gvhds ∀ vh ∈ Vh.

As before, we will denote L̃h,g by L̃h when g = 0, i.e., L̃h : H1(Ω) −→ Vh satisfies

(3.11) (L̃hw, vh)h = (∇w,∇vh) + (w, vh) ∀ vh ∈ Vh.
Then we again have

(3.12) L̃h,gv1 − L̃h,gv2 = L̃h(v1 − v2) ∀ v1, v2 ∈ H1(Ω),

and the unique solution ȳh ∈ Kh of (3.9) can be characterized by the following discrete
variational inequality:

(3.13) (ȳh − yd, yh − ȳh) + β(L̃h,gȳh, L̃h(yh − ȳh))h ≥ 0 ∀ yh ∈ Kh.
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Remark 3.2. The P1 FEM defined by (3.9) and its counterpart in [11] are new methods
for elliptic distributed optimal control problems with pointwise state constraints. The mo-
tivation for introducing these methods is the fact that, unlike traditional P1 FEMs (such
as the P1 FEM from Section 3.1), the system matrices for FEMs with mass lumping are
readily available because the mass matrix for the inner product (·, ·)h is diagonal. Therefore
it is straightforward to solve the discrete variational inequalities by a primal-dual active
algorithm [5, 6, 35] that converges superlinearly.

4. Preliminary Estimates

In this section we derive some estimates that will be used in the convergence analysis in
Sections 5 and 6. We assume that Th is either quasi-uniform [22, 14] or graded around the
reentrant corners [33, 31, 2, 8].

4.1. The Interpolation Operator Ih. We summarize here some estimates regarding the
nodal interpolation operator that we need in the convergence analysis. They follow from (1.4)
and the standard error estimates of the nodal interpolation operator Ih in [33, 22, 3, 25, 14]:

(4.1) ‖z − Ihz‖L2(Ω) + h|z − Ihz|H1(Ω) + h‖z − Ihz‖L∞(Ω) . h1+τ (‖L z‖L2(Ω) + ‖ζg‖H2(Ω))

for all z ∈ Vg, where

(4.2) τ =

{
α if Th is quasi-uniform,

1 if Th is graded around the reentrant corners.

In particular, we have

(4.3) ‖z − Ihz‖L2(Ω) + h|z − Ihz|H1(Ω) + h‖z − Ihz‖L∞(Ω) . h1+τ‖L z‖L2(Ω) ∀ z ∈ V.
Let φ ∈ H2(Ω) be arbitrary. We have, by (3.5), standard inverse and interpolation error

estimates [22, 14],

(Lh(φ− Ihφ), vh) = (∇(φ− Ihφ),∇vh) + (φ− Ihφ, vh)
≤ ‖φ− Ihφ‖H1(Ω)‖vh‖H1(Ω) . h|φ|H2(Ω)‖vh‖H1(Ω) . |φ|H2(Ω)‖vh‖L2(Ω),

and hence

(4.4) ‖Lh(φ− Ihφ)‖L2(Ω) . |φ|H2(Ω) ∀φ ∈ H2(Ω).

We conclude by using (3.4) and (4.4) that

‖Lh(Ihφ)‖L2(Ω) ≤ ‖Lh(Ihφ− φ)‖L2(Ω) + ‖QhLφ‖L2(Ω),(4.5)

. |φ|H2(Ω) + ‖Lφ‖L2(Ω) . ‖φ‖H2(Ω) ∀φ ∈ H2(Ω) ∩ V.

4.2. The Operator Eh. The operator Eh : Vh −→ V is defined by

(4.6) LEhvh = Lhvh ∀ vh ∈ Vh,
or equivalently

(4.7) (∇Ehvh,∇w) + (Ehvh, w) = (Lhvh, w) ∀w ∈ H1(Ω).

Due to the interior elliptic regularity (cf. [27]), Ehvh belongs to H2
loc(Ω) and

(4.8) ‖Ehvh‖H2(G) ≤ CG‖Lhvh‖L2(Ω)
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for any open set G ⊂⊂ Ω.
Comparing (3.5) and (4.7), we see that vh ∈ Vh is the H1(Ω) orthogonal projection of

Ehvh ∈ V . It then follows from (4.3) and (4.6) that

‖Ehvh − vh‖H1(Ω) = inf
wh∈Vh

‖Ehvh − wh‖H1(Ω)(4.9)

≤ ‖Ehvh − IhEhvh‖H1(Ω) . hτ‖LEhvh‖L2(Ω) = hτ‖Lhvh‖L2(Ω).

Furthermore, by a standard duality argument, we get

(4.10) ‖Ehvh − vh‖L2(Ω) . h2τ‖Lhvh‖L2(Ω).

Combining (4.8), (4.9) and the local error estimate in [49, Theorem 9.1], we also have

(4.11) |vh − Ehvh|H1(G(A)) . h‖Lhvh‖L2(Ω) ∀ vh ∈ Vh,

where G(A) ⊂⊂ Ω is an open neighborhood of the active set A.
According to (1.4) (with ζg = 0) and the Sobolev inequality, we have

(4.12) ‖z‖L∞(Ω) + ‖z‖H1(Ω) ≤ CΩ‖Lz‖L2(Ω) ∀ z ∈ V.

We can use the operator Eh to obtain a discrete analog of (4.12).

Lemma 4.1. There exists a positive constant C independent of h such that

‖vh‖L∞(Ω) + ‖vh‖H1(Ω) ≤ C‖Lhvh‖L2(Ω) ∀ vh ∈ Vh.

Proof. Since vh ∈ Vh is the H1(Ω) orthogonal projection of Ehvh, we have, by (4.6) and
(4.12),

‖vh‖H1(Ω) ≤ ‖Ehvh‖H1(Ω) . ‖LEhvh‖L2(Ω) = ‖Lhvh‖L2(Ω).

Observe that we have a discrete Sobolev inequality [14, Lemma 4.9.2]

(4.13) ‖vh‖L∞(Ω) . (1 + | lnh|)
1
2‖vh‖H1(Ω) ∀ vh ∈ Vh,

which together with (4.3), (4.6), (4.9) and (4.13) implies

‖vh − Ehvh‖L∞(Ω) ≤ ‖vh − IhEhvh‖L∞(Ω) + ‖IhEhvh − Ehvh‖L∞(Ω)

. (1 + | lnh|)
1
2‖vh − IhEhvh‖H1(Ω) + hτ‖LEhvh‖L2(Ω)

≤ (1 + | lnh|)
1
2 (‖vh − Ehvh‖H1(Ω) + ‖Ehvh − IhEhvh‖H1(Ω)) + hτ‖Lhvh‖L2(Ω)

. (1 + | lnh|)
1
2hτ‖Lhvh‖L2(Ω).

On the other hand, we have, by (4.6) and (4.12),

‖Ehvh‖L∞(Ω) . ‖LEhvh‖L2(Ω) = ‖Lhvh‖L2(Ω).

The estimate for ‖vh‖L∞(Ω) follows from these two estimates. �
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4.3. The Operator Rh. The Riesz projection Rh : H1(Ω) −→ Vh is defined by

(4.14) (∇Rhv,∇vh) + (Rhv, vh) = (∇v,∇vh) + (v, vh) ∀ vh ∈ Vh.

It follows immediately from (3.5) and (4.14) that

(4.15) LhRhz = Lhz ∀ z ∈ H1(Ω),

and hence also, in view of (3.6),

(4.16) Lh,gRhz = Lh,gz ∀ z ∈ H1(Ω).

Note that (3.4) and (4.16) imply

(4.17) Lh,gRhz = QhL z ∀ z ∈ Vg.

Similarly, we have, by (3.11), (3.12) and (4.14),

(4.18) L̃h,gRhz = L̃h,gz ∀ z ∈ H1(Ω).

As in (4.9) and (4.10), we have the following standard error estimates:

‖ȳ −Rhȳ‖H1(Ω) ≤ Chτ ,(4.19)

‖ȳ −Rhȳ‖L2(Ω) ≤ Ch2τ .(4.20)

Combining the interior regularity (2.4) and the L2 error estimate (4.20) with the local error
estimate in [49, Theorem 10.1] , we have

(4.21) ‖ȳ −Rhȳ‖L∞(G(A)) . | lnh|h2 + h2τ .

Finally, it follows from (4.1), (4.13) and (4.19) that

‖ȳ −Rhȳ‖L∞(Ω) ≤ ‖ȳ − Ihȳ‖L∞(Ω) + ‖Ihȳ −Rhȳ‖L∞(Ω)

. hτ + (1 + | lnh|)
1
2‖Ihȳ −Rhȳ‖H1(Ω)(4.22)

. hτ + (1 + | lnh|)
1
2

[
‖Ihȳ − ȳ‖H1(Ω) + ‖ȳ −Rhȳ‖H1(Ω)

]
. (1 + | lnh|)

1
2hτ ,

and hence

(4.23) lim
h→0
‖ȳ −Rhȳ‖L∞(Ω) = 0.

5. Convergence Analysis of the First P1 Finite Element Method

We will use the mesh dependent norm ‖ · ‖h defined by

(5.1) ‖v‖2
h = (v, v) + β(Lhv,Lhv).
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5.1. An Abstract Error Estimate. Let ȳ ∈ Kg be the solution to (1.5)–(1.6), ȳh ∈ Kh

be the solution to the discrete problem (3.1)–(3.2), and yh ∈ Kh be arbitrary.
It follows from (3.6), (3.7) and (5.1) that

‖yh − ȳh‖2
h = (yh − ȳh, yh − ȳh) + β(Lh(yh − ȳh),Lh(yh − ȳh))

= (yh − ȳ, yh − ȳh) + β(Lh(yh − ȳ),Lh(yh − ȳh))
+ (ȳ − yd, yh − ȳh) + β(Lhȳ,Lh(yh − ȳh))
− (ȳh − yd, yh − ȳh)− β(Lhȳh,Lh(yh − ȳh))

= (yh − ȳ, yh − ȳh) + β(Lh(yh − ȳ),Lh(yh − ȳh))(5.2)

+ (ȳ − yd, yh − ȳh) + β(Lh,gȳ,Lh(yh − ȳh))
− (ȳh − yd, yh − ȳh)− β(Lh,gȳh,Lh(yh − ȳh))

≤ ‖yh − ȳ‖h‖yh − ȳh‖h +
[
(ȳ − yd, yh − ȳh) + β(Lh,gȳ,Lh(yh − ȳh))

]
.

Remark 5.1. The derivation of (5.2) is the only place where we use the fact that ȳh is the
solution to (3.1)–(3.2). The relation (5.3), the estimate (5.4) and Lemma 5.1 below actually
hold for any ȳh ∈ Vh.

Using (2.6), (3.4) and (4.6), we can rewrite the second term on the last line of (5.2) as

(ȳ − yd, yh − ȳh) + β(Lh,gȳ,Lh(yh − ȳh))
= (ȳ − yd, (yh − ȳh)− Eh(yh − ȳh))(5.3)

+
[
(ȳ − yd, Eh(yh − ȳh)) + β(L ȳ,LEh(yh − ȳh))

]
= (ȳ − yd, (yh − ȳh)− Eh(yh − ȳh)) +

∫
Ω

Eh(yh − ȳh)dµ,

and we have, by (4.10),

(5.4) (ȳ − yd, (yh − ȳh)− Eh(yh − ȳh)) ≤ Ch2τ‖Lh(yh − ȳh)‖L2(Ω).

The next Lemma will give a bound on the last term of the right-hand side of (5.3).

Lemma 5.1. We have∫
Ω

Eh(yh − ȳh)dµ . h‖Lh(yh − ȳh)‖L2(Ω) + h2 + ‖yh − Ihȳ‖L∞(A) ∀ ȳh, yh ∈ Kh,

where A = {x ∈ Ω : ȳ(x) = ψ(x)} is the active set for the constraint (1.3).

Proof. We begin with the estimate∫
Ω

Eh(yh − ȳh)dµ =

∫
Ω

[
Eh(yh − ȳh)− (yh − ȳh)

]
dµ+

∫
Ω

(Ihψ − ȳh)dµ

+

∫
Ω

Ih(ȳ − ψ)dµ+

∫
Ω

(yh − Ihȳ)dµ(5.5)

≤
∫

Ω

[
Eh(yh − ȳh)− (yh − ȳh)

]
dµ+

∫
Ω

Ih(ȳ − ψ)dµ

+

∫
Ω

(yh − Ihȳ)dµ
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that follows from (2.9) and (3.2).
We can bound the terms on the right-hand side of (5.5) in the following way:∫

Ω

[
Eh(yh − ȳh)− (yh − ȳh)

]
dµ . ‖Eh(yh − ȳh)− (yh − ȳh)‖H1(G(A))(5.6)

. h‖Lh(yh − ȳh)‖L2(Ω)

by (2.9), (2.13) and (4.11);∫
Ω

Ih(ȳ − ψ)dµ =

∫
A

[
Ih(ȳ − ψ)− (ȳ − ψ)

]
dµ(5.7)

. ‖Ih(ȳ − ψ)− (ȳ − ψ)‖L∞(A) ≤ Ch2

by (2.9), (2.10) and the fact that ψ, ȳ ∈ W 2,∞
loc (Ω); and

(5.8)

∫
Ω

(yh − Ihȳ)dµ . ‖yh − Ihȳ‖L∞(A)

by (2.9). �

Putting (5.2)–(5.4) and Lemma 5.1 together, we find

‖yh − ȳh‖2
h . ‖yh − ȳ‖h‖yh − ȳh‖h + h2τ‖Lh(yh − ȳh)‖L2(Ω)

+ h‖Lh(yh − ȳh)‖L2(Ω) + h2 + ‖yh − Ihȳ‖L∞(A)

.
(
‖yh − ȳ‖h + h

)
‖yh − ȳh‖h + h2 + ‖yh − Ihȳ‖L∞(A),

which together with the inequality of arithmetic and geometric means implies

(5.9) ‖yh − ȳh‖h . ‖yh − ȳ‖h + h+ ‖yh − Ihȳ‖
1
2

L∞(A) ∀ yh ∈ Kh.

Finally by applying the triangle inequality twice, we conclude from (5.9) that

‖ȳ − ȳh‖h ≤ ‖ȳ − yh‖h + ‖yh − ȳh‖h

. ‖ȳ − yh‖h + h+ ‖yh − Ihȳ‖
1
2

L∞(A)

. ‖ȳ − yh‖h + h+ ‖ȳ − yh‖
1
2

L∞(A) + ‖ȳ − Ihȳ‖
1
2

L∞(A)

. ‖ȳ − yh‖h + h+ ‖ȳ − yh‖
1
2

L∞(A) ∀ yh ∈ Vh,

where we have also used the interior regularity ȳ ∈ W 2,∞
loc (Ω). It follows that

(5.10) ‖ȳ − ȳh‖h . h+ inf
yh∈Kh

[
‖ȳ − yh‖h + ‖ȳ − yh‖

1
2

L∞(A)

]
.

Remark 5.2. The abstract error estimate (5.10) implies that ‖ȳ− ȳh‖h is uniformly bounded
with respect to h. Indeed, let c be a sufficiently large positive number so that ζg − c < ψ on
Ω̄. Then ȳ − ζg + c belongs to V and yh = Ih(ζg − c) belongs to Kh. We obtain from (5.10)
that

‖ȳ − ȳh‖h . 1 + ‖ȳ − Ih(ζg − c)‖h + ‖ȳ − Ih(ζg − c)‖
1
2

L∞(Ω)

. 1 + ‖ȳ − Ih(ζg − c)‖L2(Ω) + β‖Lh(ȳ − Ih(ζg − c))‖L2(Ω) + ‖ȳ − Ih(ζg − c)‖
1
2

L∞(Ω)
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and the right-hand side is uniformly bounded with respect to h because

‖Lh(ȳ − Ih(ζg − c))‖L2(Ω) ≤ ‖Lh(ȳ − ζg + c)‖L2(Ω) + ‖Lh(ζg − c− Ih(ζg − c))‖L2(Ω)

. ‖L (ȳ − ζg + c)‖L2(Ω) + |ζg|H2(Ω)

by (3.4) (applied to the case where g = 0) and (4.4).

5.2. Concrete Error Estimates. We can obtain concrete error estimates from (5.10) by
producing yh ∈ Kh that is an accurate approximation of ȳ.

Lemma 5.2. For h sufficiently small, there exists yh ∈ Kh such that

‖yh − ȳ‖h + ‖yh − ȳ‖
1
2

L∞(A) ≤ C(| lnh|
1
2h+ hτ ),

where the positive constant C is independent of h.

Proof. Let εh = ‖ȳ −Rhȳ‖L∞(G(A)). It follows from (4.21) that

(5.11) εh . | lnh|h2 + h2τ .

We claim that

(5.12) yh = Rhȳ − εhIhφ
belongs to Kh for h� 1, where φ ∈ C∞c (Ω) is nonnegative and φ = 1 on G(A).

Indeed, since ψ − ȳ ≥ δ > 0 on Ω \G(A), by the definition of yh in (5.12) we have

yh ≤ Rhȳ = ȳ + (Rhȳ − ȳ) ≤ ψ − δ + (Rhȳ − ȳ) on Ω \G(A),

and therefore, by (4.23),

yh(p) < ψ(p) for all vertices p ∈ Ω \G(A)

if h is sufficiently small. On the other hand, we can use (5.11), (5.12) and the fact that φ = 1
on G(A) to get

yh = ȳ + (Rhȳ − ȳ)− εh ≤ ȳ ≤ ψ on G(A),

and therefore
yh(p) ≤ ψ(p) for all vertices p ∈ G(A).

So yh belongs to Kh. Moreover, we have

‖ȳ − yh‖2
h = ‖ȳ − yh‖2

L2(Ω) + β‖Lh(ȳ − yh)‖2
L2(Ω)

. ‖Rhȳ − ȳ‖2
L2(Ω) + ‖εhIhφ‖2

L2(Ω) + ‖εhLhIhφ‖2
L2(Ω) . h4τ + ε2h . | lnh|2h4 + h4τ

by (4.5), (4.15), (4.20) and (5.11); and

‖yh − ȳ‖L∞(A) ≤ ‖Rhȳ − ȳ‖L∞(A) + ‖εhIhφ‖L∞(A) . | lnh|h2 + h2τ

by (4.21) and (5.11).
Putting these together, we finally reach

‖yh − ȳ‖h + ‖yh − ȳ‖
1
2

L∞(A) . | lnh|
1
2h+ hτ .

�

The following theorem presents a concrete error estimate for the first P1 FEM.
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Theorem 5.1. Suppose (ȳ, ū) ∈ Kg is the solution of (1.1)–(1.3), ȳh ∈ Kh is the solution
of (3.1)–(3.2), and ūh = Lh,gȳh. Then, we have

(5.13) ‖ū− ūh‖L2(Ω) + ‖ȳ − ȳh‖H1(Ω) ≤ C(| lnh|
1
2h+ hτ ),

where the positive constant C is independent of h.

Proof. For h sufficiently small, we have by (5.1), (5.10), and Lemma 5.2,

(5.14) ‖ȳ − ȳh‖L2(Ω) + ‖Lh(ȳ − ȳh)‖L2(Ω) . | lnh|
1
2h+ hτ .

It follows from (2.15), (3.4), (3.6) and (5.14) that

‖ūh − ū‖L2(Ω) = ‖Lh,gȳh −L ȳ‖L2(Ω)

≤ ‖Lh,gȳh −Lh,gȳ‖L2(Ω) + ‖Lh,gȳ −L ȳ‖L2(Ω)(5.15)

≤ ‖Lh(ȳh − ȳ)‖L2(Ω) + ‖QhL ȳ −L ȳ‖L2(Ω)

. | lnh|
1
2h+ hτ ,

where we have also used the standard estimate

(5.16) ‖Qhw − w‖L2(Ω) ≤ Ch|w|H1(Ω) ∀w ∈ H1(Ω).

Next, since

‖Rhȳ − ȳh‖H1(Ω) ≤ ‖Lh(Rhȳ − ȳh)‖L2(Ω) = ‖Lh(ȳ − ȳh)‖L2(Ω) . | lnh|
1
2h+ hτ

by Lemma 4.1, (4.15) and (5.14), and

‖ȳ −Rhȳ‖H1(Ω) ≤ Chτ

by (4.19), we have

‖ȳ − ȳh‖H1(Ω) ≤ ‖ȳ −Rhȳ‖H1(Ω) + ‖Rhȳ − ȳh‖H1(Ω) . | lnh|
1
2h+ hτ .

The estimate (5.13) is also valid for h bounded away from 0 because the left-hand side of
(5.13) is uniformly bounded with respect to h. The uniform boundedness of ‖ȳ − ȳh‖H1(Ω)

follows immediately from Lemma 4.1 and Remark 5.2, and from (5.15) we find

‖ū− ūh‖L2(Ω) ≤ ‖Lh(ȳ − ȳh)‖L2(Ω) + ‖QhL ȳ −L ȳ‖L2(Ω) ≤ ‖ȳ − ȳh‖h + ‖L ȳ‖L2(Ω),

which together with Remark 5.2 implies the uniform boundedness of ‖ū− ūh‖L2(Ω). �

We also have the following L∞ error estimate that indicates, up to a term of magnitude
O(| lnh| 12h+ hτ ), the L∞ error for the optimal control problem is the same as the L∞ error
for the P1 FEM for a second order elliptic boundary value problem.

Theorem 5.2. Suppose ȳ ∈ Kg is the solution of (1.5)–(1.6) and ȳh ∈ Kh is the solution of
(3.1)–(3.2). Then we have

‖ȳ − ȳh‖L∞(Ω) ≤ C(| lnh|
1
2h+ hτ ) + ‖ȳ −Rhȳ‖L∞(Ω),

where the positive constant C is independent of h,
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Proof. The theorem follows from the triangle inequality, Lemma 4.1, (4.15) and (5.14):

‖ȳ − ȳh‖L∞(Ω) ≤ ‖ȳ −Rhȳ‖L∞(Ω) + ‖Rhȳ − ȳh‖L∞(Ω)

≤ ‖ȳ −Rhȳ‖L∞(Ω) + C‖Lh(Rhȳ − ȳh)‖L2(Ω)

= ‖ȳ −Rhȳ‖L∞(Ω) + ‖Lh(ȳ − ȳh)‖L2(Ω)

≤ ‖ȳ −Rhȳ‖L∞(Ω) + C(| lnh|
1
2h+ hτ ).

�

6. Convergence of the Second P1 Finite Element Method

We will use the following mesh dependent norm

(6.1) |||v|||2h = (v, v) + β(L̃hv, L̃hv)h

in the analysis of the second P1 FEM, which relies on the results for the first P1 FEM in
Section 5 and the relation between Lh,g and L̃h,g.

6.1. Relations between Lh,g and L̃h,g. It is clear from the definition of the two discrete
operators (3.3) and (3.10) that, for any w ∈ H1(Ω), we have

(6.2) (Lh,gw, vh) = (L̃h,gw, vh)h ∀ vh ∈ Vh,

and in particular,

(6.3) (Lhw, vh) = (L̃hw, vh)h ∀w ∈ H1(Ω), vh ∈ Vh.

One can easily verify that

(6.4) (vh, vh)h ≈ (vh, vh) ∀ vh ∈ Vh,

and by a property of mass lumping (cf. [44, 48]), we have

(6.5) |(vh, wh)− (vh, wh)h| .
( ∑
T∈Th

h2
T |vh|2H1(T )

) 1
2‖wh‖L2(Ω) ∀ vh, wh ∈ Vh.

Using (6.2) and (6.5), we find

|(L̃h,gw −Lh,gw,wh)h| = |(Lh,gw,wh)− (Lh,gw,wh)h|(6.6)

. h|Lh,gw|H1(Ω)‖wh‖L2(Ω) ∀w ∈ H1(Ω), wh ∈ Vh,

and so by (6.4),

(6.7) ‖L̃h,gw −Lh,gw‖L2(Ω) . h|Lh,gw|H1(Ω) ∀w ∈ H1(Ω).

It is also easy to show that

(6.8) (Lh,gw,Lh,gw) . (L̃h,gw, L̃h,gw)h ∀w ∈ H1(Ω).
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6.2. An Abstract Error Estimate. We will need the following estimate regarding Lh and
L̃h to derive an abstract error estimate for the second P1 FEM.

From (3.4), (6.1), (6.6) and (6.8), we have

|(L̃h,gȳ −Lh,gȳ, L̃h(yh − ȳh))h| . h|Lh,gȳ|H1(Ω)‖L̃h(yh − ȳh)‖L2(Ω)

. h|QhL ȳ|H1(Ω)|||yh − ȳh|||h(6.9)

. h|L ȳ|H1(Ω)|||yh − ȳh|||h,

where we have used the estimate (cf. [7, 47])

(6.10) |Qhw|H1(Ω) . |w|H1(Ω) ∀w ∈ H1(Ω).

Using (3.12), (3.13), (6.1), (6.3) and (6.9), we may proceed as in (5.2) to obtain

|||yh − ȳh|||2h ≤ |||yh − ȳ|||h|||yh − ȳh|||h + (ȳ − yd, yh − ȳh) + β(L̃h,g(ȳ), L̃h(yh − ȳh))h
= |||yh − ȳ|||h|||yh − ȳh|||h + (ȳ − yd, yh − ȳh) + β(Lh,gȳ, L̃h(yh − ȳh))h

+ β(L̃h,gȳ −Lh,gȳ, L̃h(yh − ȳh))h(6.11)

. |||yh − ȳ|||h|||yh − ȳh|||h +
[
(ȳ − yd, yh − ȳh) + β(Lh,gȳ,Lh(yh − ȳh))

]
+ h|L ȳ|H1(Ω)|||yh − ȳh|||h.

Notice that since the term (ȳ − yd, yh − ȳh) + β(Lh,gȳ,Lh(yh − ȳh)) appearing in the last
inequality of (6.11) is identical to the last term that appears in (5.2), we can directly apply
the estimates (5.3), (5.4) and Lemma 5.1 from Section 5.1 (cf. Remark 5.1).

Continuing from (6.11), we find

|||yh − ȳh|||2h . |||yh − ȳ|||h|||yh − ȳh|||h + (h‖Lh(yh − ȳh)‖L2(Ω) + h2 + ‖yh − Ihȳ‖L∞(A))

+ h|||yh − ȳh|||h
. |||yh − ȳ|||h|||yh − ȳh|||h + h|||yh − ȳh|||h + h2 + ‖yh − Ihȳ‖L∞(A),

which together with the inequality of arithmetic and geometric means implies

|||yh − ȳh|||h . |||yh − ȳ|||h + h+ ‖yh − Ihȳ‖
1
2

L∞(A) ∀ yh ∈ Kh.

So by the triangle inequality, we arrive at

(6.12) |||ȳ − ȳh|||h . h+ inf
yh∈Kh

[
|||yh − ȳ|||h + ‖yh − ȳ‖

1
2

L∞(A)

]
.

6.3. Concrete Error Estimates. Let yh ∈ Kh be defined by (5.12). Then, by using
(4.18), (6.4) and (6.7), one can show that Lemma 5.2 also holds with ‖yh − ȳ‖h replaced by
|||yh − ȳ|||h. That is, for h sufficiently small, yh satisfies

|||yh − ȳ|||h + ‖yh − ȳ‖
1
2

L∞(A) . | lnh|
1
2h+ hτ .

Therefore it follows from (6.12) that

(6.13) |||ȳ − ȳh|||h . | lnh|
1
2h+ hτ ,

and we have the following concrete error estimates.
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Theorem 6.1. Suppose (ȳ, ū) ∈ Kg is the solution of (1.1)–(1.3), ȳh ∈ Kh is the solution

of (3.9) and ūh = L̃h,gȳh. Then we have

‖ū− ūh‖L2(Ω) + ‖ȳ − ȳh‖H1(Ω) ≤ C(| lnh|
1
2h+ hτ ),

where the positive constant C is independent of h.

Proof. We have, by (2.15), (3.4), (5.16), (6.1), (6.4), (6.7), (6.10) and (6.13),

‖ū− ūh‖L2(Ω) = ‖L ȳ − L̃h,gȳh‖L2(Ω)

≤ ‖L ȳ −Lh,gȳ‖L2(Ω) + ‖Lh,gȳ − L̃h,gȳ‖L2(Ω) + ‖L̃h,gȳ − L̃h,gȳh‖L2(Ω)

= ‖L ȳ −QhL ȳ‖L2(Ω) + ‖Lh,gȳ − L̃h,gȳ‖L2(Ω) + ‖L̃h(ȳ − ȳh)‖L2(Ω)

. h|L ȳ|H1(Ω) + h|L ȳ|H1(Ω) + |||ȳ − yh|||h

. | lnh|
1
2h+ hτ .

Next, it follows from Lemma 4.1, (4.15) , (6.1), (6.8) and (6.13) that

‖ȳ − ȳh‖H1(Ω) ≤ ‖ȳ −Rhȳ‖H1(Ω) + ‖Rhȳ − ȳh‖H1(Ω)

. hτ + ‖Lh(Rhȳ − ȳh)‖L2(Ω)

= hτ + ‖Lh(ȳ − ȳh)‖L2(Ω) . hτ + |||ȳ − ȳh|||h . | lnh|
1
2h+ hτ .

�

We also have the following L∞ error estimate as we did for the first P1 FEM. The proof
proceeds as in Theorem 5.2 but by additionally using (6.8) and (6.13).

Theorem 6.2. Suppose ȳ ∈ Kg is the solution of (1.5)–(1.6) and ȳh ∈ Kh is the solution of
(3.9). We have

‖ȳ − ȳh‖L∞(Ω) ≤ C(| lnh|
1
2h+ hτ ) + ‖ȳ −Rhȳ‖L∞(Ω),

where the positive constant C is independent of h.

7. Numerical Results

In this section, we report numerical results that corroborate the theory and illustrate the
performance of the two P1 FEMs. We solved the discrete problem for the first P1 FEM by
using the MATLAB quadprog M-function, and we solved the discrete problem for the second
P1 FEM by a primal-dual active set algorithm [5, 6, 35]. The approximate optimal state and
optimal control on the k-th level mesh are denoted by ȳk and ūk respectively.

In the first two examples, we consider convex domains with the homogeneous Neumann
boundary condition. Nonhomogeneous boundary conditions are treated in the other two
examples. Since the results for the two FEMs are very similar, for brevity we only report
the results for the second P1 FEM after the first example.

Example 7.1. In this example Ω is the pentagon (cf. Figure 7.1) with vertices (0.5, 0), (0, 0.5),
(−0.5, 0.5), (−0.5,−0.5) and (0.5,−0.5). Following [18, Section 6, Example 3], we choose
yd(x) = 2− |x|2, ψ(x) = 1.85 + (x1 + 0.25)4 + (x2 + 0.25)4, β = 0.001 and g = 0. Since we do
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not know the exact solution (ȳ, ū) of this problem, we report the errors between consecutive
approximations in Tables 7.1 and 7.2.

k ‖ȳk+1 − ȳk‖L2(Ω) rate |ȳk+1 − ȳk|H1(Ω) rate ‖ȳk+1 − ȳk‖L∞(Ω) rate ‖ūk+1 − ūk‖L2(Ω) rate

0 2.04e-02 1.36e-01 7.45e-02 6.92e-01
1 1.08e-02 0.92 6.45e-02 1.08 4.37e-02 0.77 3.28e-01 1.08
2 3.01e-03 1.84 4.58e-02 0.49 9.77e-03. 2.16 2.67e-01 0.30
3 1.15e-03 1.39 2.50e-02 0.87 3.95e-03 1.31 1.10e-01 1.28
4 2.92e-04 1.98 1.28e-02 0.97 1.24e-03 1.67 3.29e-02 1.74
5 6.54e-05 2.16 6.43e-03 0.99 3.83e-04 1.69 1.43e-02 1.20
6 1.81e-05 1.85 3.23e-03 0.99 1.09e-04 1.82 4.18e-03 1.78
7 4.08e-06 2.15 1.62e-03 1.00 3.40e-05 1.68 1.36e-03 1.62

Table 7.1. Results for the first P1 FEM on uniform meshes for Example 7.1

k ‖ȳk+1 − ȳk‖L2(Ω) rate |ȳk+1 − ȳk|H1(Ω) rate ‖ȳk+1 − ȳk‖L∞(Ω) rate ‖ūk+1 − ūk‖L2(Ω) rate

0 2.95e-02 2.23e-01 1.19e-01 4.29e-01
1 1.32e-02 1.16 9.34e-02 1.25 5.56e-02 1.10 3.09e-01 0.47
2 3.19e-03 2.05 5.42e-02 0.79 6.94e-03 3.00 2.50e-01 0.31
3 8.32e-04 1.94 2.65e-02 1.03 3.17e-03 1.13 9.00e-02 1.48
4 2.20e-04 1.92 1.29e-02 1.04 8.45e-04 1.91 2.85e-02 1.66
5 3.62e-05 2.61 6.45e-03 1.00 2.58e-04 1.71 1.36e-02 1.07
6 1.08e-05 1.75 3.23e-03 1.00 7.91e-05 1.70 4.02e-03 1.76
7 3.29e-06 1.71 1.62e-03 1.00 3.24e-05 1.29 1.30e-03 1.63

Table 7.2. Results for the second P1 FEM on uniform meshes for Example 7.1

For both FEMs, we observe O(h) convergence for the approximation of ȳ in the H1 semi-
norm which agrees with Theorems 5.1 and 6.1. The convergence rates for the approximations
of ȳ and ū in the L2-norm are better than the estimates in Theorems 5.1 and 6.1, and the
convergence for the approximation of ȳ in the L∞ norm is also better than the estimates in
Theorems 5.2 and 6.2. These higher convergence rates are consistent with the fact that the
optimal state ȳ (and hence the optimal control ū) has higher interior and global regularities
since Ω is convex and the free boundary ∂A is sufficiently smooth.

The graphs of ȳ8 and ū8 and the active set obtained by the second P1 FEM are displayed
in Figure 7.1. All of them match the ones obtained in [18] by a quadratic C0 interior penalty
method.

Example 7.2. In this example Ω = (−4, 4)2 and we construct the exact solution ȳ as in [11,
Section 7, Example 1] but modify it in a way that ȳ satisfies the homogeneous Neumann
boundary condition.

We construct ȳ(x) in the following way:

ȳ(x) =


|x|2 − 1 if |x| ≤ 1,

v(|x|) + [1 + φ(|x|)]w(|x|) if 1 ≤ |x| ≤ 3,

w(x) if |x| ≥ 3,
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(a) State (b) Control (c) Active Set

Figure 7.1. State, control and active set for Example 7.1

where

v(t) = (t2 − 1)
(

1− t− 1

2

)4

+
1

4
(t− 1)2(t− 3)4,

φ(t) =
[
1 + 4

(t− 1

2

)
+ 10

(t− 1

2

)2

+ 20
(t− 1

2

)3](
1− t− 1

2

)4

,

w(x) = 2 cos
(π

8
(x1 + 4)

)
cos
(π

8
(x2 + 4)

)
.

The control ū is then equal to −∆ȳ + ȳ. Now we choose ψ(x) = |x|2 − 1, β = 1, and

yd(x) =

{
β∆2ȳ − 2β∆ȳ + βȳ + ȳ if |x| ≥ 1,

β∆2ȳ − 2β∆ȳ + βȳ + ȳ + 1 if |x| ≤ 1.

By construction, such choices of ψ, β, yd and ȳ satisfy the KKT conditions (cf. Remark 2.1)
with the measure µ in (2.6) defined by

(7.1)

∫
Ω

zdµ = −42

∫
∂A

z ds−
∫
A

zdx ∀ z ∈ V,

and the active set A is the closed disc with radius 1 centered at the origin.

k ‖ȳ − yk‖L2(Ω) rate |ȳ − yk|H1(Ω) rate ‖Ikȳ − yk‖L∞(Ω) rate ‖ū− uk‖L2(Ω) rate

0 8.13e+00 8.01e+00 1.38e+00 1.51e+01
1 9.84e+00 -0.28 9.72e+00 -0.28 2.58e+00 -0.90 1.64e+01 -0.12
2 1.05e+01 -0.09 1.19e+01 -0.29 2.61e+00 -0.02 1.80e+01 -0.13
3 1.40e+00 2.91 4.63e+00 1.36 3.45e-01 2.92 1.20e+01 0.58
4 2.99e-01 2.22 2.35e+00 0.98 9.76e-02 1.82 5.03e+00 1.25
5 8.28e-02 1.85 1.19e+00 0.99 3.48e-02 1.49 1.67e+00 1.59
6 2.89e-02 1.52 5.92e-01 1.00 1.37e-02 1.35 5.33e-01 1.64
7 9.14e-03 1.66 2.95e-01 1.00 3.68e-03 1.89 1.83e-01 1.54
8 3.11e-03 1.56 1.48e-01 1.00 1.13e-03 1.70 6.13e-02 1.58

Table 7.3. Results for the second P1 FEM on uniform meshes for Example 7.2

The results for the second P1 FEM on uniform meshes are reported in Table 7.3, where
we use Ik to denote the nodal interpolation operator onto the finite element space associated
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with the k-th level mesh. The reduction rate of ‖Ikȳ − yk‖L∞(Ω) represents the order of
convergence of ȳ in the L∞-norm.

The O(h) convergence of the approximation of ȳ agrees with Theorem 6.1. The convergence
rates for the approximations of ȳ in L2 and L∞ norms and for the approximation of ū in the
L2 norm are better than those predicted by Theorem 6.1 and Theorem 6.2. These higher
convergence rates are consistent with the higher regularity enjoyed by ȳ and ū.

The graphs of ȳ8 and ū8 and the active set obtained by the second P1 FEM are displayed
in Figure 7.2. The active set has clearly been correctly captured.

(a) State (b) Control (c) Active Set

Figure 7.2. State, control and active set for Example 7.2

Example 7.3. This example is a modification of Example 7.2 so that the exact solution has
non-homogeneous Neumann boundary condition. We take Ω = (−4, 4)2, β = 1, q(x) = x1,
ψ? = ψ + q,

y?d = yd + (1 + β)q, ȳ? = ȳ + q and ū? = ū+ q,

where ψ, yd, ȳ and ū are identical to the ones in Example 7.2.
Then ȳ? is the exact solution of the following slightly more general problem:

(7.2) ȳ? = argmin
y∈K?

g

[1

2
‖y − yd‖2

L2(Ω) +
β

2
‖L y‖2

L2(Ω) − β
∫
∂Ω

gy ds
]
,

where g = ∂q/∂n and

(7.3) K?
g = {v ∈ Vg : v ≤ ψ? in Ω}.

Indeed, we have ȳ? ≤ ψ?, A? = A (the active set from Example 7.2), and since q is
harmonic,

(ȳ? − y?d, z) + β(L ȳ∗,L z)−
∫
∂Ω

qz ds =

∫
Ω

z dµ∗ ∀ z ∈ V,

where µ∗ = µ is defined in (7.1). Therefore the KKT conditions for (7.2) are satisfied.

Remark 7.1. Note that (7.2) is identical to (1.5) when g = 0. For nonhomogeneous Neumann
boundary conditions, the more general cost functional in (7.2) facilitates the construction of
an exact solution from the exact solution of the corresponding problem with the homogeneous
Neumann boundary condition.
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We can solve (7.2) by a straightforward modification of the P1 FEMs in Sections 3.1 and
3.2, where the additional term β

∫
∂Ω
gyhds is included in the cost functionals in (3.1) and

(3.9). It is easy to check that the error estimates in Sections 5 and 6 remain valid.
The numerical results for the second P1 FEM on uniform meshes are given in Table 7.4.

The performance is similar to what we observed in Example 7.2. This is not surprising since
the difference between the exact solutions of Example 7.2 and Example 7.3 is just the linear
polynomial q.

k ‖ȳ? − yk‖L2(Ω) rate |ȳ? − yk|H1(Ω) rate ‖Ikȳ? − yk‖L∞(Ω) rate ‖ū? − uk‖L2(Ω) rate

0 4.39e+01 2.42e+01 1.21e+01 3.83e+01
1 8.61e+00 2.35 8.62e+00 1.49 2.99e+00 2.02 1.78e+01 1.10
2 9.34e+00 -0.12 1.22e+01 -0.50 2.56e+00 0.22 1.75e+01 0.03
3 1.44e+00 2.70 4.63e+00 1.40 3.45e-01 2.89 1.20e+01 0.54
4 3.32e-01 2.12 2.40e+00 0.95 1.76e-01 0.97 4.93e+00 1.28
5 8.48e-02 1.97 1.19e+00 1.01 4.93e-02 1.84 1.63e+00 1.59
6 2.35e-02 1.85 5.92e-01 1.00 1.36e-02 1.86 5.23e-01 1.64
7 5.83e-03 2.01 2.96e-01 1.00 3.24e-03 2.07 1.80e-01 1.54
8 2.66e-03 1.13 1.48e-01 1.00 8.03e-04 2.01 6.06e-02 1.57

Table 7.4. Results for the second P1 FEM on uniform meshes for Example 7.3

The graphs of ȳ8 and ū8 and the active set obtained by the second P1 FEM are displayed
in Figure 7.3. The relations ȳ? = ȳ + q and ū? = ū + q can be observed by comparing
Figure 7.2 and Figure 7.3. The active set has also been correctly captured.

(a) State (b) Control (c) Active Set

Figure 7.3. State, control and active set for Example 7.3

Example 7.4. In this example, we use the L-shaped domain Ω = (−8, 8)2\
(
[0, 8] × [−8, 0]

)
(cf. Figure 7.4) and solve the minimization problem (7.2) with a nonhomogeneous Neumann
boundary condition.

First of all, let a = (−4, 4) and take ψ and yd to be the functions from Example 2. If we
use ψa(x) = ψ(x− a) and yad(x) = yd(x− a) as the input with β = 1, then the exact solution
of (1.1)–(1.3) with g = 0 will be ȳa(x) = ȳ(x− a) and ūa(x) = ū(x− a), where (ȳ, ū) is the
exact solution of Example 2. Furthermore, the active set in this case will simply be the shift
of the active set of Example 2 by a.
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Let the harmonic function q in polar coordinates be defined by

q(r, θ) = r
2
3 cos(2θ/3)

and take
ψ? = ψa + 4q and y?d = yad + (1 + β)4q.

As in Example 7.3, the exact solution of (7.2) with g = 4(∂q/∂n) is then given by

(ȳ?, ū?) = (ȳa + 4q, ūa + 4q).

Note that the singularity due to the reentrant corner is captured by q.
In Table 7.5, we report results for the second P1 FEM on uniform meshes. In this case,

the estimates in Theorems 6.1 and 6.2 hold with τ = 2/3, and the reduction in the order
of convergence (compared to previous examples) is noticeable except for the L2-error of the
control.

k ‖ȳ? − yk‖L2(Ω) rate |ȳ? − yk|H1(Ω) rate ‖Ikȳ? − yk‖L∞(Ω) rate ‖ū? − uk‖L2(Ω) rate

0 4.62e+01 1.86e+01 1.14e+01 4.19e+01
1 1.19e+01 1.96 1.16e+01 0.67 2.80e+00 2.03 1.94e+01. 1.11
2 9.79e+00 0.28 1.31e+01 -0.17 2.56e+00 0.13 1.78e+01 0.12
3 1.72e+00 2.51 5.25e+00 1.32 4.62e-01 2.47 1.20e+01 0.56
4 4.57e-01 1.91 2.79e+00 0.91 2.67e-01 0.79 4.94e+00 1.28
5 1.40e-01 1.70 1.47e+00 0.93 1.60e-01 0.74 1.64e+00 1.59
6 4.79e-02 1.55 7.95e-01 0.88 9.92e-02 0.69 5.24e-01 1.64
7 1.68e-02 1.52 4.43e-01 0.84 6.18e-02 0.68 1.80e-01 1.54
8 6.55e-03 1.35 2.53e-01 0.80 3.88e-02 0.67 6.08e-02 1.57

Table 7.5. Results for the second P1 FEM on uniform meshes for Example 7.4

We have also run the same numerical example on graded meshes of the L-shaped domain.
The graded meshes are generated by the refinement procedure in [31], and they are depicted
in Figure 7.4. The results are presented in Table 7.6. The observed improvement in the
convergence rates agrees with Theorems 6.1 and 6.2, since τ is improved to 1 for graded
meshes (cf. (4.2)).

k ‖ȳ? − yk‖L2(Ω) rate |ȳ? − yk|H1(Ω) rate ‖Ikȳ? − yk‖L∞(Ω) rate ‖ū? − uk‖L2(Ω) rate

0 1.96e+01 1.40e+01 5.36e+00 2.30e+01
1 9.77e+00 1.01 1.07e+01 0.38 3.02e+00 0.83 1.76e+01 0.39
2 4.86e+00 1.01 8.28e+00 0.37 1.98e+00 0.61 1.38e+01 0.35
3 7.87e-01 2.63 3.47e+00 1.26. 3.45e-01 2.52 6.76e+00 1.03
4 2.09e-01 1.92 1.61e+00 1.11 1.51e-01 1.19 2.91e+00 1.21
5 6.11e-02 1.77 7.70e-01 1.06 4.00e-02 1.92 1.05e+00 1.47
6 1.36e-02 2.16 3.80e-01 1.02 1.08e-02 1.89 4.40e-01 1.26
7 2.93e-03 2.22 1.89e-01 1.01 4.25e-03 1.34 1.74e-01 1.34
8 9.89e-04 1.57 9.46e-02 1.00 2.46e-03 0.79 5.98e-02 1.54

Table 7.6. Results for the second P1 FEM on graded meshes for Example 7.4
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Figure 7.4. Graded meshes on the L-shaped domain with grading parameter 0.6

The graphs of ȳ8 and ū8 and the active set are displayed in Figure 7.5. Again the active
set has been correctly captured.

(a) State (b) Control (c) Active Set

Figure 7.5. State, control and active set for Example 7.4

8. Concluding Remarks

The P1 FEMs from Sections 3.1 and 3.2 can also be applied to the optimal control problem
(1.1)–(1.3) on a three dimensional polyhedral domain. This was carried out in [11] for the
Dirichlet boundary condition.

The analysis of the P1 FEMs are considerably simpler under the condition that the active
set is a compact subset of Ω. In the Dirichlet case, this condition is satisfied in any dimension
as long as the (pointwise) constraint for the state is separated from the boundary condition
of the state. In the Neumann case, this condition is implied by our assumption ∂ψ/∂n > g
for two dimensional domains. Unfortunately the arguments in [18, Appendix] do not extend
immediately to three dimensions. This is the reason that the three dimensional case is not
addressed in this paper.

Higher order FEMs are advantageous when ȳ enjoys additional regularities (cf. [18]).
Therefore it will be interesting to extend the approach in this paper to higher order FEMs
based on discontinuous Galerkin discretizations of the constraint (1.2), for which mass lump-
ing is not required.
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