Ancile: Enhancing Privacy for Ubiquitous Computing with
Use-Based Privacy

Eugene Bagdasaryan
Cornell Tech, Cornell University
eugene@cs.cornell.edu

Eleanor Birrell
Pomona College
eleanor.birrell@pomona.edu

Griffin Berlstein
Vassar College
grberlstein@vassar.edu

Nate Foster
Cornell University
jnfoster@cs.cornell.edu

Jason Waterman
Vassar College
jawaterman@vassar.edu

Fred B. Schneider

Cornell University
fbs@cs.cornell.edu

Deborah Estrin
Cornell Tech, Cornell University
destrin@cs.cornell.edu

ABSTRACT

Widespread deployment of Intelligent Infrastructure and the In-
ternet of Things creates vast troves of passively-generated data.
These data enable new ubiquitous computing applications—such
as location-based services—while posing new privacy threats. In
this work, we identify challenges that arise in applying use-based
privacy to passively-generated data, and we develop Ancile, a plat-
form that enforces use-based privacy for applications that consume
this data. We find that Ancile constitutes a functional, performant
platform for deploying privacy-enhancing ubiquitous computing
applications.

CCS CONCEPTS

« Security and privacy — Access control; Information flow
control; Pseudonymity, anonymity and untraceability; « Informa-
tion systems — Location based services.

ACM Reference Format:

Eugene Bagdasaryan, Griffin Berlstein, Jason Waterman, Eleanor Birrell,
Nate Foster, Fred B. Schneider, and Deborah Estrin. 2019. Ancile: Enhanc-
ing Privacy for Ubiquitous Computing with Use-Based Privacy. In 18th
Workshop on Privacy in the Electronic Society (WPES’19), November 11, 2019,
London, United Kingdom. ACM, New York, NY, USA, 14 pages. https://doi.
org/10.1145/3338498.3358642

1 INTRODUCTION

The recent proliferation of sensors has created an environment in
which human behaviors are continuously monitored and recorded.
For example, fine-grained location data are generated whenever
a person carries a mobile phone. These passively-generated data—
which are generated without explicit action by the data subject,
and often without the subject’s knowledge or awareness—enable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

WPES’19, November 11, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6830-8/19/11...$15.00

https://doi.org/10.1145/3338498.3358642

many new applications such as smart buildings that reduce energy
consumption by only heating or cooling areas where people are
present, health applications that improve fitness by encouraging
increased mobility, and productivity applications that suggest ad-
hoc meetings when a quorum of a collaborative team is present. As
is the case for mobile and social applications, ubiquitous computing
applications, which consume passively-generated data, are often
developed by third parties.

Many types of passively-generated data are particularly sensi-
tive. For example, real-time location information could facilitate
stalking or other abuse [65]. Presence at particular locations (e.g.,
certain medical clinics or clubs) might be correlated with sensi-
tive attributes (e.g., health conditions or demographics) [7]. Even
when the individual data values are not sensitive, aggregate traces
of passively-generated data may be sensitive. For example, loca-
tions traces can be used to identify shopping, fitness, and eating
habits [64]. Such traces have been used to set insurance rates [21]
and to identify individual users in large, anonymized databases [31].
To develop a trustworthy platform for ubiquitous computing ap-
plications, it is necessary to provide strong privacy guarantees for
passively-generated data.

Use-based privacy [9, 12, 13, 42], which re-frames privacy as
the prevention of harmful uses, appears well suited to address this
problem. Use-based privacy associates data with policies that au-
thorize certain types of data use without permitting unrestricted
access to that data. These policies typically describe how restric-
tions change as data are transformed and as other events occur—
i.e., they are reactive [9, 32]. For example, a policy might state that
a smartphone application developed by an insurance provider may
use location data to provide roadside assistance but that aggregate
location traces may not be used to set insurance rates.

To date, use-based privacy has been implemented only in con-
texts where sensitive data are actively generated, that is where the
data subject is explicitly involved in data generation and collection
(e.g., health records [9] or survey data [8]). In those contexts, data
processing pipelines are known in advance, and there is limited
aggregation of sensitive data values. In this work, we explore how
use-based privacy can be extended to support ubiquitous comput-
ing applications, which consume passively-generated data. Draw-
ing on a series of example location-based services, we show that

such applications rely on data-processing pipelines that combine
data from multiple sources in complex and nuanced ways. Privacy
challenges that arise in these settings are discussed in Section 2.
Capturing the “right” notion of authorization in these applications
requires data- and context-dependent policies, as well as the abil-
ity to synthesize new policies for derived values such as collections.
While it is possible in principle to encode some of these policies in
existing use-based privacy frameworks such as Avenance [9], a bet-
ter approach is to give them a first-class treatment. So this work
extends the Avenance language to meet these challenges. The re-
vised policy language is described in Section 3.

We built Ancile, a system which augments an existing intelli-
gent infrastructure with enforcement mechanisms for use-based
privacy. Because data are passively-generated, Ancile provides an
interface for principals to authorize data import from a data provider
and to specify policies to be associated with all data about a data
subject received by an application from that data provider. These
policies are specified as regular expressions over an “alphabet” of
commands that operate on data; a policy will specify how a data
value may be used and how any derived values may be used. Both
data subjects and policy administrators (e.g., regulatory experts or
faculty PIs) may specify policies. On data ingress into Ancile, each
data value is associated with a policy formed by intersecting the
policies provided by each stakeholder. Ancile implements a reac-
tive mechanism that updates the associated policy when a data
value is used and that synthesizes policies for any derived data val-
ues. To support extensible development of location-based services
by third parties, Ancile offers a library of commands that applica-
tion developers can use to write programs for handling location
data. Ancile executes these programs on behalf of the applications
and enforces that the data are only processed in compliance with
their associated policies. The implementation of the Ancile system
is discussed in Section 4.

We deployed Ancile with campus-wide location service and with
Android location services. We evaluated its functionality by imple-
menting four example applications. We evaluated system perfor-
mance through component benchmarks and system scalability via
load testing. This evaluation is described in Section 5.

Our initial findings suggest that Ancile is both expressive and
scalable. This suggests that use-based privacy is a promising ap-
proach to developing a privacy-enhancing platform for implement-
ing location-based services and other applications that consume
passively-generated data.

2 APPLICATIONS

To identify privacy challenges that arise in ubiquitous computing
applications, we consider four simple applications. We draw these
applications from the domain of location-based services because
passive generation of such data is widespread [24, 67], the associ-
ated privacy risks are well documented [7, 33, 64], and the chal-
lenges are representative of ubiquitous applications more broadly.
For each application, we investigate how location data might be
processed to support application functionality while restricting its
use in accordance with the principle of least privilege.

BookNearMe: This application reserves a meeting room based on
auser’s current location. It looks up a list of rooms using a calendar

service and reserves a nearby, available room. A key privacy goal
for a BookNearMe user is to maintain the secrecy of their current,
fine-grained location. Since precise location information is not nec-
essary to locate a nearby room, approximate data can be used with-
out significantly degrading the quality of service. (The same obser-
vation holds for location-based services that find nearby points of
interest, such as restaurants, ATMs, or shops). So a program that
returns fuzzed location data to the application (which would then
reserve an appropriate room) would enhance privacy without pre-
cluding utility. The data processing pipeline for this application
is depicted in Figure la. A fuzzing function that adds zero noise
would not enhance privacy. So a policy should be able to specify
that location data may be returned to an application only after it
has been perturbed with a specified fuzz factor.

Privacy Challenge 1: To handle parameterized functions, the pol-
icy language must support argument-dependent authorizations.

RoamingOfficeHours: This application is designed for TAs or
professors who wish to hold regular office hours at irregular loca-
tions. It publishes a user’s current location if the user is currently
on campus and the user’s calendar has office hours scheduled for
the current time. The primary privacy goal for a RoamingOffice-
Hours user is to maintain the secrecy of their current location
when they are off campus or are not currently holding office hours.
This goal can be met if data use is context-dependent, that is, lo-
cation data is only released if the desired conditions (on campus
and during scheduled office hours) are true. This data processing
pipeline is shown in Figure 1b.

Privacy Challenge 2: To handle context-dependent policies, the
policy language must be able to express authorizations that depend
on data and external state.

GroupStudy: This application helps small groups of users (e.g.,
students or developers) collaborate by enabling impromptu face-
to-face meetings. It maintains a list of group members and peri-
odically checks whether a quorum of the group is on-site; if so,
it notifies all group members. The primary goal for a GroupStudy
user is to keep their location secret by only releasing a single bit
of information: whether or not a quorum of the group is currently
on-site. This goal can be met if each user’s location is used only to
determine whether or not the user is on site, and if these Boolean
values are employed only to evaluate whether a quorum of the
group is present. This data processing pipeline is depicted in Fig-
ure 1c. Note the use of a function that evaluates a quorum takes
many inputs and produces a single output. Ancile must be able to
support such aggregation functions.

Privacy Challenge 3: To handle uses that take multiple different
data values as inputs, the policy language must be able to authorize
aggregation functions including synthesizing derived policies for
the values they produce.

LocationPredictor: This application is a machine learning service
that predicts the next user location based on that user’s location
trace over time. This application can be used to implement smart
building management, for example, to forecast high or low den-
sity areas and perform temperature adjustment, light adjustment,

fetch "
A fuzz location
location

(a) BookNearMe

user A

fetch compute

location geofence

fetch compute evaluate
location geofence quorum

fetch compute
location geofence
(c) GroupStudy
external call to es

a data provider

data flow

data transformation

conditional branching

data may be sent to)
the application

fetch calendar
event

fetch
location

in geofence?

(b) RoamingOfficeHours

fetch
location

train
fetch prediction model m
location

fetch

location

(d) LocationPredictor

[] location data
— calendar data

combined data

Figure 1: Possible data processing pipelines for privacy-enhancing location-based services.

or elevator positioning. The primary privacy goal for a Location-
Predictor user is to prevent location traces from being leaked or
being used for any purpose other than training or using the pre-
diction model. Before training the model, the location data must
be pre-processed (for example, eliminating data from non-mobile
devices). A possible data processing pipeline that achieves this goal
is depicted in Figure 1d. Note that it combines many individual lo-
cation values into a single value (e.g., a list of locations) and then
eliminates some of those values. In theory, this could be treated
as an aggregation function (construct list) followed by a standard,
one-input function (modify the list by filtering out some elements).
In practice, however, policy synthesis for aggregate values does
not retain provenance information, so it would be difficult to cor-
rectly synthesize policies. Consider a user who places a permis-
sive policy for location data collected from their mobile phones
(because they want to allow applications to use their location) but
arestrictive policy on location data collected from their laptops (to
minimize the risk of theft). A data structure containing all location
data would be restrictive, but the policy for filtered data (which
only contains data from the phone) would be more permissive.

Privacy Challenge 4: To authorize data-processing pipelines that
operate on data structures, the Ancile policy language must sup-
port functions that create and operate on data structures, including
synthesizing derived policies for derived data.

3 POLICY LANGUAGE

Unlike traditional approaches that focus on limiting data collec-
tion, use-based privacy [9, 12, 13, 42] expresses restrictions on how
data may be used. The approach aligns well with the challenges re-
lated to location data, which is both useful and sensitive.

Use-based privacy has been found to need reactive languages
for expressing its policies [9]. A reactive language [32] is one in
which the current restrictions associated with a value may depend
on its history—i.e., how it was derived as well as any environmen-
tal events that may have occurred. For example, a policy might pro-
hibit the use of raw location traces—only allowing specified filter-
ing operations—but might authorize the output of those functions
to be used without restrictions. Or a policy might only permit re-
lease of a user’s current location during work hours.

Avenance [9] is a reactive language designed specifically for
use-based privacy. In Avenance, current use-authorizations are ex-
pressed as triples (I, E, P), where I is an invoking principal (an ap-
plication), E is an executable (an action that may be performed),
and P is a purpose (a reason to get the data). The set of possi-
ble use-authorizations forms a finite state automaton; the state of
this privacy automaton changes when events (either environmen-
tal events or data transformations) occur. Authorization decisions
are based on the current state of the privacy automaton.

The Ancile policy language is a variant of Avenance that intro-
duces advanced features that meet the privacy challenges identi-
fied in Section 2. An Ancile policy is a regular expression on set of
commands C (commands take the place of Avenance executables),
as captured by the grammar in Figure 2. For example:

encrypt
((!decrypt)* +
decrypt on_campus +
decrypt aggregate_trace compute_home)

return_to_app

This policy would allow encrypted data to be used in any way
(('decrypt)™). It would allow plaintext data to be used to deter-
mine whether or not the location is on campus; that Boolean value

P u=C - command
| Py . Py — sequential composition
| (P1 + P2) - union
| (PL &P2) — intersection
| P - negation
| P* - Kleene star
|0 - no operation

Figure 2: Policy Syntax

may be exfiltrated from Ancile to an application. It would also al-

low plaintext data to be aggregated into a location trace, which

may be used to infer the data subject’s home location; that home

location may be exfiltrated from Ancile and sent to an application.
There are two classes of commands:

(1) Transformations are commands that take data as input and
generate derived data. Ancile policies specify whether a trans-
formation is authorized and, if so, what policy to associate
with the derived data.

(2) Uses are commands that take a single data value as input
and return none. Ancile policies specify whether a use is
authorized and, if so, how to modify the policy on the input
value when the use occurs.

Ancile has a pre-defined set of transformations 7~ and uses U.
The current implementation supports a variety of transformations
that process data in different ways (e.g., encrypt, decrypt, etc.).
The command return_to_app, which (as a side-effect) exfiltrates
the data value from Ancile to the application, is an example of a use.
For convenience, Ancile also allows a policy to use the notation
ANYF for authorizing any single command.

Ancile policies specify which commands are authorized to take
a particular data value (e.g., a location or a location trace) as input.
For most commands c, a policy P authorizes c if there exists a string
S with prefix ¢ such that S € L(P) (where L(R) denotes the set
of strings generated by the regular expression R). A command that
sends a data value to the application (e.g., return_to_app) is only
authorized if the string S = ¢ € L(P).

Ancile policies also specify how to synthesize policies for de-
rived values and how to update policies on existing values. Trans-
formations ¢ take an input x and return an output ¢(x); if Py is the
policy associated with x, then Ancile associates derived value ¢(x)
with a derived policy D(Py, t), where D(Px, t) is the derivative [10]
of P, with respect to t. Uses return no values; when an authorized
use u(x) occurs, Ancile changes the policy on input x to be the de-
rivative policy D(Px, u). Intuitively, the derivative policy D(Py, c)
is defined so that a string of commands S € L(D(Py,c)) if and
only if the string of commands ¢S € £ (Py). A formal definition of
how derivative policies are constructed is given in Appendix A.

For example, a policy might state that only anonymized versions
of the data may be returned; this policy would be expressed as

anon . return_to_app

This policy is interpreted as saying that the only command that is
authorized for this data is the command anon and that the derived
value output by this command should be associated with the de-
rived policy D(anon . return_to_app, anon) = return_to_app.

A slightly more permissive policy might allow either anonymized
data or particular simple statistics (e.g., a Boolean value indicating
whether a location is within a specified geofence) to be returned
to applications; this policy would be expressed as

(anon + in_geofence) return_to_app

The derivative policy associated with an anonymized location would
be return_to_app. Likewise, the derivative policy associated with
the Boolean value indicating whether or not this location is inside
the geofence would also be return_to_app.

Similarly, we can think about a negation operation that permits
all the commands except the specified one, for example the follow-
ing policy would authorize any transformations, but would pro-
hibit sending the data to an application

return_to_app

Situations where multiple policies apply to a single piece of data
can be handled using policy intersection. For example, a data sub-
ject might state that their raw location data must be anonymized
before it is returned to an application but that whether or not they
are inside the specified geofence may be shared with an applica-
tion; however, contractual requirements might independently im-
pose the restriction that no identifiable data may be shared with
third parties. The policy expressing how this data may be used
would be expressed as the intersection of these two policies

(Canon + in_geofence) & anon) return_to_app

Note that this policy authorizes execution of the command anon,
since it satisfies both component policies; it does not authorize the
command in_geofence.

Finally, a policy might want to allow the same command to be
executed any number of times; this authorization is expressed with
the Kleene operator. For example, the policy ANYF* is associated
with public data: it authorizes any sequence of commands to be
applied to that data.

Additionally, we define the notation 0 to denote the policy that
authorizes no programs (that is, £(0) = 0), and we define the no-
tation 1 as syntactic sugar for 0%, which is a policy that authorizes
only the empty program with no commands (i.e, L(1) = {e}).

Rather than explicitly including invokers in a policy, Ancile as-
sociates policies with individual applications. When executing a
program on behalf on an application, any data fetched by that pro-
gram is associated with the policy defined for that data provider-
application pair. Data values for which no policy is explicitly spec-
ified are implicitly associated with the public policy ANYF*.

To meet the privacy challenges that arise in applying use-based
privacy to location-based services, the Ancile policy language also
includes four advanced features: argument-dependent commands,
conditions, aggregate transformations, and collections.

Argument-dependent commands: To meet Privacy Challenge 1,
we need to allow a policy to specify not only the command but also
to specify restrictions on arguments to that command. For example,

given a command fuzz_location that takes a mean and a stan-
dard deviation—and returns a fuzzed location defined by adding a
random value (drawn from the normal distribution with the speci-
fied mean and standard deviation), the policy might want to autho-
rize only calls to the command fuzz_location where the mean is
zero and the standard deviation is at least 10. Accordingly, Ancile
policies can place constraints on parameter values. So, for exam-
ple, a BookNearMe user might associate the following policy with
their location data:

fuzz_location(mean=0,std>=10) return_to_app

Conditions: In some cases, authorizations depend on context. This
context might be value dependent, for example, a RoamingOffice-
Hours user might want to share their location only if they are cur-
rently on campus. This context might even depend on other data
values. For example, that user might want to share their location
only if they are currently scheduled to hold office hours. Or this
context might dependent on public system state, for example, that
user might want to share their location only if the current time is
during business hours. To express such preferences, Ancile policies
may include conditions. A condition command executes a specified
predicate (e.g., in_geofence_cond). We also introduce auxiliary
commands _test_True and _test_False. So, for example, a user
could enforce that the RoamingOfficeHours app only releases their
location while they are on campus by defining a policy

in_geofence_cond(geofence=GF)
(_test_True return_to_app +
_test_False . 0)

Observe that conditions are uses: when the predicate is evaluated,
the policy on the data value x is modified by taking the derivative
with respect to the commands

in_geofence_cond(geofence=GF) _test_True

or

in_geofence_cond(geofence=GF) _test_False

depending on whether the predicate in_geofence_cond evaluates
to True or False. Like the use return_to_app, conditions have a
side effect: they exfiltrate a value from Ancile and send it to the ap-
plication. However, instead of sending the input value, conditions
send the Boolean value the predicate evaluates to.

Aggregate Transformations: To support functions that take mul-
tiple arguments, we introduce aggregate transformations, which
combine multiple data values x1,...,x, into a single data value
f(x1,...,xn). The policy associated with the new value is obtained
by intersecting the derivative policies for input value with respect
to f. That is, if x1,...,x, have policies P1,..., Py respectively,
then the aggregate value f(x1,...,x,) is associated with the pol-
icy D(P1, f)&...&D(Py, f). For example, suppose that Alice and
Bob form a two-member study group, and Alice associates policy

in_geofence evaluate_quorum return_to_app

to her location data, and Bob associates the policy

in_geofence evaluate_quorum .ANYF*.return_to_app

to his location data. The application first invokes the command
in_geofence on each location, yielding Boolean values with re-
spective derivative policies and then performs the aggregate trans-
formation evaluate_quorum on the resulting values, yielding a
Boolean value with the policy:

return_to_app & (ANYF* return_to_app)

As this policy allows calls to return_to_app, the resulting value
will then be returned to the GroupStudy application, which will
notify both Alice and Bob if a quorum is present.

Collections: We define a Collection class that stores multiple data
values with individual policies. A collection is a policy-protected
data structure, with the policy defined as the intersection of the
policies associated with the data values in the collection, similar
to aggregate. But in contrast to a aggregate values, Ancile also
tracks the individual policies of each data value in a Collection. This
allows Ancile to support operations that remove elements from a
collection (and synthesize a precise policy for the smaller collec-
tion) and to support operations that extract a single element from
the collection (and admit policies that maintain the invariant that
if value is added to a collection and then removed from the collec-
tion, the final policy associated with that value is the same as the
initial policy associated with that value).

To support this functionality, we introduce two new transfor-
mations: add_to_collection takes a collection and one or more
additional values as arguments and returns a new collection con-
taining all the values, and remove_from_collection takes a col-
lection and an index and removes the value at that index, returning
it as the final result.

Other commands also take collections as inputs. Ancile supports
many standard transformations on collections, such as map, reduce,
and filter. The map and reduce functions are treated in the same
way as aggregation functions—i.e., the command is authorized on
the collection only if it is authorized on all values in the collection,
but filter is handled differently. To authorize the filter com-
mand, a policy must specify the intended behavior for two cases:
filter_keepand filter_remove. For example, a datapoint might
be associated with the following policy:

add_to_collection
(add_to_collection + filter_keep)*
(Caverage + min) return_to_app +
filter_remove ANYF*)

This policy allows the datapoint to be added to a collection, and it
allows other datapoints to be added to the collection afterward. For
collections that contain this datapoint, the functions average and
min may be computed on that collection (and the resulting outputs
returned), but no other functions (other than filter functions and
adding other datapoints) may be applied to the collection. After
this datapoint is removed from the collection, this policy imposes
no further restrictions on how the collection may be used.

4 IMPLEMENTATION

Ancile is designed as a run-time monitor positioned between ubig-
uitous computing applications and passively-generated data. Ap-
plications submit requests to Ancile; each request contains a pro-
gram to be executed in Ancile’s trusted environment along with

User

AncileWeb

access to data
sources + policies

. AncileCore
v, sensitive s
0 Q¢ (@ _du
TS 0 w = —d

Data Providers

|

|

|

|

| user. use-based
| credentlals%' EFE lici
! z > policies
| | |

|

|

|

enforced by policies
o

Application

AncileLib

@ commands

I
I
I
I
]
I
I
|
¥ 1 program
¢
a ! derived data E
Data processing : 4
I
I
I
I
I
I
I

Figure 3: Ancile System.

credentials to authenticate the application to Ancile. Ancile fetches
data from a data provider, executes the program, and sends output
data to the application if and only if all commands are authorized.

4.1 Trust Assumptions

We assume user locations are collected and stored externally by
a third-party data provider, such as an indoor location tracking
service. Users have access to their data and may also authorize
principals such as Ancile to access their data (e.g., using OAuth2).

We assume that adversaries are applications that consume data
to provide some service (e.g., to book rooms near a user). These
applications might attempt to perform unauthorized commands on
data. We assume that applications do not exploit vulnerabilities in
system code, and do not attempt denial of service attacks.

Ancile is a trusted principal. We assume that users trust Ancile
with full access to their data. In particular, users trust Ancile to
only invoke commands on behalf of an application if those com-
mands are authorized, and to only send data to an application if
that release is authorized. We envision two possible ways in which
Ancile might be deployed: it might be operated as a trusted third
party, or companies might deploy an internal version of Ancile to
prevent accidental misuse of data.

4.2 Ancile Overview

Ancile comprises three modules. AncileWeb implements a web in-
terface for specifyings policies and integrating data providers. An-
cileLib provides a library of privileged commands that applications
use to implement programs. AncileCore executes programs on be-
half of applications while enforcing policy compliance. The mech-
anisms of AncileCore ensure that programs cannot violate a user’s
policy. An overview of the system in shown in Figure 3.

We implemented Ancile in Python 3.7 using the Django web
framework [16] to process application requests, control access to
data sources, and perform user management. Ancile utilizes the
PostgreSQL v11 database [48] to store account credentials, Redis
v4.0 [52] to enable in-memory caching of user data and requests,
the Gunicorn WSGI server [20], and NGINX reverse web proxy.

4.3 AncileWeb

A user first creates an account on Ancile, via the AncileWeb inter-
face. During data provider registration, the user links their account

to an external data provider (e.g., a location server) by authenti-
cating to those services. AncileWeb stores delegated authorization
credentials (e.g., OAuth2 tokens) on behalf of the user.

As Ancile is designed to support use-based privacy for passively-
generated data, it needs a mechanism for policies to get associated
with that data. AncileWeb provides an interface for users to specify
policies that will apply to all data imported from a data provider;
to distinguish between different applications, the user is allowed
to specify one policy per data provider-application pair. Each pol-
icy specifies which sequences of commands that application is au-
thorized to invoke on any data imported from that data provider.
Note, that this implies that all values about one user fetched from
one data provider by one application will have the same policy. If
a user wants to express different authorizations for different val-
ues, they can do so by putting a condition at the beginning of their
policy. For example, to distinguish between historical and current
traces one can define the following policy:

is_current_cond.(_test_True.ANYF* + _test_False.0)

Similarly, if a user wants to distinguish between a single location
value and a location trace, they can to do by putting a transforma-
tion at the beginning. For example:

create_trace . O + !create_trace return_to_app

Currently, policies are defined manually using the syntax de-
scribed in Section 3. However, in the future, we envision users
choosing from a small number of predefined policies created by
a policy administrator. Ancile policy administrators are also autho-
rized to add policies for any Ancile user or for groups of Ancile
users. If no policy is defined for a data provider-application pair,
Ancile prohibits all uses of that data by that application.

Since Ancile policies authorize data use for specific applications,
Ancile must be able to authenticate applications. Applications reg-
ister with Ancile through AncileWeb. Once approved, they receive
a JSON Web Token (JWT) [29] that authenticates them to Ancile.

4.4 AncileLib

Policies are specified as regular expressions over commands; An-
cileLib provides implementations of those commands organized as
Python modules; there is a module for each data provider regis-
tered with Ancile. We chose the Python language because it is one
of the most common programming languages [50], thereby allow-
ing us to support a wide range of applications.

AncileLib commands may be called by application programs,
and the commands are then executed by Ancile on behalf of the
application. Each call to an AncileLib command interrupts pro-
gram execution and invokes AncileCore, a reference monitor that
enforces policy compliance before allowing the command to pro-
ceed. We use Python decorators to instrument the program so it
performs the necessary checks.

AncileLib commands have four different types. Three types were
introduced in Section 3: transformations (both basic transforma-
tions and aggregate transformations), conditions (which are uses),
and returns (which are also uses). A fourth type of of command,
called an external command, imports data from a data provider into
Ancile. These commands operate as follows:

(1) Transformation commands take one or more data values as
input and return a single derived value as output. A transfor-
mation should only be executed if it is authorized by the pol-
icy associated with the input values, so transformations in-
clude a reference monitor hook—the decorator @transform—
that invokes the AncileCore reference monitor to check for
policy compliance before the command is executed. In a
Python implementation of a transformation, return sends
the data value to the AncileCore monitor that synthesizes a
policy for that value. See Figure 4a for an example.

(2) Condition commands take a data value as input and eval-
uate some predicate. Conditions are a type of use, which
means that they should only be performed if authorized.
Moreover, calling a condition might modify the policy asso-
ciated with the input value, so a call to a condition includes
the decorator @condition_use, which invokes AncileCore.
AncileCore also updates the policy associated with the in-
put data value. In a Python implementation of a condition,
return invokes the AncileCore monitor, which exfiltrates
the Boolean value (the output of the predicate) to the pro-
gram. See Figure 4b for an example.

(3) Return commands are uses with a side effect: they send the
input value to the application. A return should be executed
only if authorized, so returns include a reference monitor
hook—the @return_use decorator—that invokes the refer-
ence monitor. AncileCore also updates the policy associated
with the input data value. Note that in a Python implemen-
tation of a return, return sends the value to the AncileCore
monitor, which exfiltrates the value to the application. See
Figure 4c for an example.

(4) External commands receive access tokens from AncileWeb
and request data from a data provider. In theory, use-based
privacy policies only restrict how data may be used, so An-
cile should be allowed to request any data value from any
data provider at any time. In practice, however, it is often
more convenient to request many data values at the same
time (e.g., all data matching a particular query), implicitly
aggregating those values together into a single value (e.g.,
a list). Since user and policy administrators might or might
not want to authorize this implicit transformation, external
commands include a reference monitor hook—the decora-
tor @external—that invokes the AncileCore reference mon-
itor to check for policy compliance before the command is

executed. In a Python implementation of an external com-
mand, return sends the data value to the AncileCore mon-
itor which synthesizes a policy for that data value. See Fig-
ure 4d for an example.

Applications use AncileLib commands to write programs that
operate on passively-generated data. Applications may implement
any program, and these programs may call any command. How-
ever, these programs will be executed by Ancile—and successfully
complete—only if the sequence of commands called by the applica-
tion is authorized for that application. For example:

data = fetch_data(url=URL, user=userl)
data = fuzz_location(data, mean=0, std=10)
return_to_app(data)

This program fetches, fuzzes, and returns the data.

4.5 AncileCore

AncileCore implements a reference monitor that receives and ex-
ecutes programs on behalf of applications while enforcing the re-
strictions on data use embodied in policies.

Applications primarily communicate with Ancile by making re-
quests for data. When an application requires data from Ancile, it
sends a request with the following elements:

(1) Application Token: This secret is used to authenticate the
application to Ancile.

(2) Users: The users that the application is requesting data for.

(3) Program: A piece of computation to be executed within An-
cile and whose result, if policy compliant, will be returned
to the application.

When AncileCore receives a request, it communicates with An-
cileWeb to authenticate the application. After successful authenti-
cation, AncileCore executes that program on behalf of the applica-
tion while enforcing the associated policies.

Policy enforcement in Ancile is achieved because AncileCore
extends programs that operate on data values to be programs that
operate on tagged values known as DataPolicyPairs. A DataPolicy-
Pair contains two restricted fields: _data and _policy. To prevent
programs from directly manipulating data or policies, submitted
programs are compiled with RestrictedPython [19] before execu-
tion. RestrictedPython limits the application’s program to prede-
fined Ancile commands and prevents access to internal data struc-
tures by transforming the code before compilation and raising er-
rors if a program attempts to use certain built-in features, such as
class creation or access protected data fields marked with a leading
underscore. In particular, compilation with RestrictedPython guar-
antees that DataPolicyPairs are opaque to the submitted program
and so their internal fields can neither be inspected nor manipu-
lated. Thus, the only way for an application’s program to interact
with a data value is through AncileLib commands that invoke the
reference monitor hooks.

Policy Tagging. There are two ways to create a new DataPolicy-
Pair in Ancile: by importing a raw data value from a data provider
and by computing a derived value using a transformation.

Raw values are imported from data providers using external
commands. Note that fetching a data value is always authorized.
AncileCore determines (1) which user is the subject of that value

@transform
def fuzz_location(data, mean, std):
import numpy as np

data['x'] += np.random.normal (mean, std)
datal['y'] += np.random.normal (mean, std)
return data

(a) Transformation Command
@return_use
def return_to_app(data):

import json
return json.dumps(data)

(c) Return Command

@condition_use
def equal_cond(data, key, value):
return datalkey]l == value

(b) Condition Command

@external
def fetch_data(url,user):

import requests

token = get_token(user)

header = {"Authorization”: "Bearer " + token}
result = requests.get(url, headers=[header])
if result.status_code == 200:

return result. json()

(d) External Command

Figure 4: Example commands from AncileLib.

(specified by the request issued by the application), (2) which ap-
plication is requesting the data (determined from the application
token in the request issued by the application), and (3) which data
provider acts as the source of the data (determined from the exter-
nal command). AncileCore then retrieves the corresponding policy
from AncileWeb. To execute an external command, AncileCore re-
quests the data value from the external data provider and creates
a new DataPolicyPair comprising the value returned by the data
provider and the policy returned by AncileWeb.

In practice, it is convenient to allow external commands to fetch
multiple data values at the same time (e.g., all data matching a
particular query). From a theoretical perspective, these external
commands are syntactic sugar for a sequence of requests issued
to a data provider (each of which returns a single data value) fol-
lowed by an aggregation transformation, which combines those
values into a single data value. When a multi-value external com-
mand is called, AncileCore interacts with AncileWeb to determine
the set of implied policies P;myp that would be associated with the
imported data values. That is, AncileCore determines which users
the application is requesting data (specified by the request issued
by the application), which application is requesting the data (de-
termined by the application token in the request issued by the ap-
plication), and which data provider acts as the source of the data
(determined by the external command). AncileCore then invokes
its policy enforcement method for the transformations (discussed
below) to determine whether the implicit aggregation transforma-
tion is authorized. If it is, AncileCore issues a fetch request to the
data provider and creates a new DataPolicyPair whose value is the
data returned by the data provider and whose policy is the inter-
section of the derivative policies computed by taking each policy

in the set P;mp and computing the derivative with respect to the
implicit aggregation transformation.

Derived values are generated from input DataPolicyPairs when
transformation commands are called. If authorized, Ancile executes
the command, computes the derivative policy of each input, and
then creates a new DataPolicyPair comprised of the data value re-
turned by the command and the intersection of the derivative poli-
cies for each input (or simply the derivative policy of the one input,
if the transformation command has only one input).

In addition to creating new DataPolicyPairs, AncileCore must
also modify the policy in an existing DataPolicyPair when a use
command is called. For return commands, AncileCore simply re-
places the policy in the DataPolicyPair with the derivative of the
original policy with respect to the return command. For conditions,
it evaluates the specified predicate. It then replaces the policy in the
DataPolicyPair with the derivate policy with respect to the condi-
tion followed by _test_True if the predicated evaluated to true,
or _test_False otherwise.

Policy Enforcement. Every time the program attempts to call a
command, AncileCore checks whether that command is authorized.
If a program attempts to call an unauthorized command, AncileCore
immediately stops program execution and returns an error mes-
sage to the application. The checks are performed using syntactic
derivatives, as described formally in Appendix A.

5 EVALUATION

To demonstrate functionality (and to demonstrate that Ancile suc-
cessfully addresses the identified privacy challenges), we imple-
mented the four location-based services described in Section 2. The

dpp = fetch_last_location(user="'userl")
dpp2 = fuzz_location(data=dpp,

std=10,

mean=0)

return_to_app(data=dpp2)

(a) BookNearMe

dp_1 = get_last_location(user="'user1')
dp_2 = compute_geofence(data=dp_1,
lat=0, lon=0, radius=10)
dp_3 = get_last_location(user="'user2')
dp_4 = compute_geofence(data=dp_3,lat=0,
lon=0, radius=10)

dp_aggr = evaluate_quorum(
data=[dp_2, dp_41],
threshold_percent=100)

return_to_app(data=dp_aggr)

(c) GroupStudy

cal_dp = get_calendar_events(user='userl')
loc_dp = get_last_location(user='userl')

if in_geofence_cond(data=loc_dp,
geofence=GF):
if event_occurring_cond(data=cal_dp,
event_name='0ffice Hours',
dependent=loc_dp):

return_to_app(data=loc_dp)

(b) RoamingOfficeHours

collection = fetch_location_history(

user="'userl',
fr=DATE_FROM, to=DATE_TO)

filter_train = lambda x:

x["timestamp'] <= DATE_TEST
train_data = filter(collection, filter_train)
model = train(data=train_data, epochs=10)

filter_test = lambda x:
x['timestamp']l > DATE_TEST
test_data = filter(collection, filter_test)

preds = serve(model=model, data=test_data)
return_to_app(data=preds)

(d) LocationPredictor

Figure 5: Ancile programs for example location-based services.

BookNearMe, RoamingOfficeHours, and GroupStudy are built as
Slackbot applications (Section 5.1), while LocationPredictor is real-
ized in terms of several different machine learning pipelines (Sec-
tion 5.2). We also performed a series of benchmarks to evaluate the
overhead incurred by Ancile (Section 5.3).

To provide these sample applications with location data, we de-
veloped two standalone location servers: one indoor and one out-
door. The indoor location tracking uses a campus-wide deploy-
ment of the Aruba WiFi system with enabled positioning service [57]
that our server queries every 30 seconds; the outdoor location server
fetches data through a companion Android application using An-
droid’s location services [4]. Both servers expose OAuth2 protected
endpoints that release location data. Additionally, we tested An-
cile with third-party data providers for non-location data, includ-
ing Google and Outlook Calendars.

5.1 Location-Aware Slackbot applications

In our setup, Slackbot applications communicate with the user through

the Slack API and can only access users’ data through Ancile. The

privacy policies shown below are constructed by the policy admin-
istrator. These policies do not block the applications’ main func-
tionality, but they enhance privacy by restricting unnecessary uses.

BookNearMe: Our location server data provider returns the cur-
rent indoor position of the user. Our goal is to prevent the appli-
cation from learning an exact location, but provide a location suf-
ficient to decide on nearby meeting rooms. The privacy policy for
this application is as follows:

fuzz_location(std>=10, mean=0) return_to_app

This policy authorizes execution of the fuzz_location command
to add Gaussian noise to the indoor position; the reactive nature of
our policies enforces that data cannot be returned to the applica-
tion until it has been fuzzed by this command. Note that this policy
only authorizes the fuzz_location command when called with a
standard deviation greater than or equal to ten and a mean of zero.

An Ancile program that would comply with this policy is shown
in Figure 5a. Calling external command fetch_last_location re-
turns a new DataPolicyPair, dpp, containing the most recent loca-
tion value from the indoor location service and the policy shown

above. Any application wishing to get location data must invoke
the fuzz_location command with appropriate parameters. This
command transforms the location data and returns the fuzzed lo-
cation in a new DataPolicyPair dpp2 associated with the derived
policy return_to_app. The program is then authorized to invoke
the return command return_to_app on dpp2 to send the fuzzed
location back to the application, which can use this data to book a
nearby meeting room on behalf of the user.

RoamingOfficeHours: This application requires access to both
calendar and location data, and the policy protecting location data
is dependent on the calendar data.

This application uses the outdoor location server to fetch data
using the command get_last_location. The in_geofence com-
mand determines if the user is in the specified geofence. In this sce-
nario, we want to release the exact location only when the user is
inside the specified geofence and office hours are occurring. Thus,
we define the following policy on location:

in_geofence_cond(geofence=GF)
_test_True
event_occurring_cond(event_name='0ffice Hours',
calendar="user1'")
_test_True return_to_app
As this application uses calendar data in addition to location data,
users or policy administrators will also need to define a policy for
how calendar data may be used. If users only care about privacy
for location data, they could associate the calendar data provider
with the public policy ANYF*. Alternatively, if they only want their
calendar to be used to check for office hours, they could associate
the calendar data provider with the restrictive policy:

event_occurring_cond(event_name='0ffice Hours')*

There is no return command in this policy, so calendar data is never
sent directly to the application. Instead, calendar data may only be
used to determine whether office hours are currently scheduled.

A program that implements the core functionality of the Roaming-
OfficeHours application and that complies with these policies is
given in Figure 5b. The program retrieves both data values and
evaluates the conditionals in sequence. The program returns loca-
tion data only when both predicates hold.

GroupStudy: This application aggregates data from a predefined
group of users. We use the compute_geofence transformation that
takes the raw location and outputs one of the specified geofences.
Aggregate transformation evaluate_quorum takes a list of data-
points, a threshold, and a list of users in the group and outputs
whether the specified users are co-located. The reference monitor
checks that data provided to evaluate_quorum method belong to
the users mentioned in the policy.

compute_geofence(lat=0, lon=0, radius=10)
evaluate_quorum(threshold_percent=100,
users=['user1', 'user2'])
return_to_app

See Figure 5c for a policy-compliant implementation.

Although these applications are simple, they show how Ancile
could be used to support development of a broad range of location-
based applications, given a more complete library of commands for
common data providers.

5.2 Machine Learning Pipelines

We now consider an application that uses indoor location data to
train and use a location-prediction model. We want to control how
location data are used individually, how aggregate location traces
are used, and how derived machine learning models are used. An-
cile collections facilitate implementation of a privacy-enhancing
version of the LocationPredictor application.

We might consider four possible approaches to developing the
LocationPredictor application with varying levels of privacy pro-
tection for the location data used to train the model:

(1) Release training data to the application. This approach does
not impose any restrictions on data use. A user comfortable
with releasing location data to the application might use the
ANYF* policy, which treats all data as public.

Train the model inside Ancile and release the model to the ap-
plication. Even if a user is unwilling to release raw location
data to an application, that user might be willing to allow
the application to receive a machine learning model trained
on location data. Such a user might use the following policy,

—
S
~

add_to_collection
train

filter_keep*
return_to_app

which only permits use of the model not the training data.
Train the model inside Ancile and release predictions to the
application. Existing attacks can perform membership infer-
ence on training data and even extract data [6], so some
users might not want to release a model (trained on their lo-
cation data) to an application. However, those users might
allow Ancile to train a model on location data and to use
current data to predict future locations. This policy would
be expressed as:

—~
[SY)
=

add_to_collection filter_keep™*

(train.serve + serve) return_to_app

An aggregation function serve takes the trained model and
the data and returns the predicted future location. Note that
this policy does not allow direct use of the model or training
data.

(4) Trainthe model using a differentially-private mechanism. There
exist model inference attacks that learn a model given only
black-box access to the model, so some users might not be
comfortable releasing predictions based on a standard model
trained on their location data. Such users might require that
the model be trained using a differentially-private mecha-
nism that ensures privacy of individual data values [1, 40].
The following policy enforces this case:

add_to_collection
train_dp(eps<10)

filter_keep”®
return_to_app

This policy requires use of a specific differentially-private
training algorithm.

We implemented variants of the LocationPredictor application

that satisfy each of the four proposed policies described above. We
used one of the authors’ location trace containing three months
of location data collected by our indoor location server (a campus-
wide deployment of the Aruba WiFi system with enabled position-
ing services). The location trace contains 29K datapoints that rep-
resent 118 distinct locations. For the LocationPredictor application
we built a model that predicts the next location given the 20 most
recent locations. The model shares structure and hyperparameters
with the next-word prediction example from the PyTorch repos-
itory [51]. We implemented the normal training of the model as
an AncileLib command train and used differentially-private ver-
sion of the SGD algorithm, DP-SGD [40], for train_dp. The nor-
mal training in cases (1), (2), and (3) achieves 85% accuracy on test
data. Training a model in case (4) achieves 75% accuracy and repre-
sents a (e = 2.11, § = 1076)-DP mechanism (single digit e values
provide acceptable guarantees [1]). The program that satisfies the
policy (3) is given in Figure 5d.
Encryption. To support applications that want to use the same
model during multiple requests, Ancile allows encrypted copies of
the model to be returned to the application. Encrypted copies can
be sent back to Ancile with future requests. This enables a model
trained during one request to be used on new location values in a
subsequent request.

Third-party libraries. As in the example above, a policy might
require complex transformations to be performed on data, such as
computing certain statistics using data science tools, that are ex-
pensive to re-implement as AncileLib commands. Ancile can treat
methods from trusted third-party libraries (e.g. NumPy [45] or Py-
Torch) as transformation commands, hence library methods can
accept DataPolicyPairs as arguments and also transform policies.

5.3 System Performance

Interposing Ancile between applications and data sources adds a
layer of indirection that impacts when applications receive data.
The latency of requests to Ancile can vary greatly, depending on
the executed program and the latency of data providers. In many
cases, much of the computation done by Ancile—such as calculat-
ing geofences or training machine learning models—would other-
wise fall to the application; the complexity of these computations
cannot be controlled by Ancile. Similarly, the latency from data
providers is unpredictable, often exceeding several seconds, and
equally unavoidable. Thus, we focus on measuring the time needed
to retrieve policies and data and execute policy checks.

We benchmarked the policy evaluation time for our example ap-
plications. The time to evaluate a single policy ranges between 1 to
15 microseconds based on the complexity of the policy, introduc-
ing negligible overhead. The other source of overhead comes in
fetching the corresponding credentials, compiling programs, and
parsing policies, which on average ranges between 30 to 90 mil-
liseconds depending on the number of users and length of submit-
ted program. However, we cache user credentials, compiled pro-
grams, and parsed policies, which reduces overhead to between 3
to 9 milliseconds for subsequent requests. Compared to the latency
of retrieving data and executing commands, policy enforcement
does not add a significant delay in typical applications.

To test the scalability of our system, we performed concurrent
load testing of Ancile using the wrk2 benchmarking tool [66]. We
tested on a virtual machine running Ubuntu 18.04 with 8 Gb of
RAM and 4 Intel(R) Xeon(R) CPU E5-2620 2.1 GHz processors. To
eliminate impact of data source latency, we use static sample data
with simple policy: ANYF and a simple program that fetches the
test data and returns. Without caching, the system can handle up
to 200 requests per second. However, with caching enabled, the
system can handle 700 requests per second, with an average re-
sponse latency of 428 milliseconds. Given the settings where we
intend to deploy Ancile, we believe the performance of our proto-
type system is already sufficient to support many applications that
poll data at regular intervals.

6 RELATED WORK

Ancile extends privacy research that aims to control application ac-
cess to users’ sensitive data [12, 26, 27, 34, 35, 47, 54]. We compare
our framework with solutions that analyze or control data usage.

Policy-based systems: The recently proposed Almond system [11]
allows users to express policies using natural language which is
later converted into programs that control access to data. Almond
focuses on translating policies, whereas Ancile adds policies to
application programs directly and allows control over data uses.
The privacy-enforcing language Jeeves [68] enables enforcement
of policies that access particular fields in an application’s program.
Instead, Ancile supports reactive policies that change as commands
are executed, using policies that are attached directly to data.

The Pilot policy language [46] has a similar integration of a pol-
icy language, but uses static analysis of submitted code, whereas
Ancile policy enforcement is interleaved with the execution of an
application’s program and can change based not only commands
but also on data. While the Houdini project [27] supports context-
aware data sharing, it does not support reactive privacy policies.
Decentralized policy enforcement [30] can be further applied to
Ancile and increase range of supported applications. The Open Al-
gorithms project [22] proposes a system similar to AncileLib that
contains trusted implementations of data processing, but lacks a
formal policy language to enforce control over data.

Inspection-based systems: PrivacyStreams [38] integrates into
the development flow of Android applications. However, it lacks
a policy enforcement component and can only report performed
data usage. The TaintDroid [18] and FlowDroid [5] projects can in-
fer an application’s usage of sensitive data without access to source
code, but cannot enforce policy restrictions. Similarly, data inspec-
tion projects [23, 37, 49, 61] only track usage but do not support
policy control. On the other hand, ProtectMyPrivacy [2] allows one
to implement access protection on data sources, but cannot act dy-
namically and does not impose usage control.

Personal private spaces: Systems such as Databox [41] and open-
PDS [15] implement private storage for sensitive data or a Personal
Data Space [36]. Databox requires applications to run locally, and
openPDS only releases an “answer” to data queries. Instead, An-
cile returns transformed data to external applications outside of
the trusted environment, allowing arbitrary programs and guaran-
teeing data release according to defined policies.

Data Flow Control Systems: Projects focusing on ensuring infor-
mation flow security [43, 53] do not focus on privacy and reactive
policies. Usage Control (UCON) [47] and Privacy Proxy [35] ex-
tend a traditional access-based approach but lack reactive policy
changes. Thoth [17] and Grok [56] operate on the data provider
side and focus on high-performance computing, but do not allow
for the integration of policies inside program execution. Ancile, in
contrast, focuses on deployment within enterprises dealing with
users’ sensitive data and assumes no changes to data provider work
flow. Software Guard Extensions (SGX) [3, 14] provide additional
guarantees for safe execution of programs in untrusted environ-
ments. In our current work, we don’t consider SGX-based policy
enforcement [8, 28, 39, 55] and assume Ancile commands have
been inspected and are run in a trusted environment.

Privacy in ubiquitous systems: Sensitive data generated by ubiq-
uitous sensors have been shown to reveal details such as behav-
ioral patterns [21, 25, 64] and physical presence [62, 69, 70] and
can lead to stalking or disparate treatment [21, 65] and have been
extensively studied [59, 60]. In our experiments, we focus on lo-
cation data because it is one of the commonly-used sensors for
privacy research and it has been extensively studied over last two
decades [7, 33, 44]. We use common techniques for data filtering
and controlled data release to experiment with potential applica-
tions that preserve users’ privacy. More advanced techniques of
location obfuscation [58, 63] are not considered in this paper, but
since Ancile supports adding wide range of commands, it is easy
to extend Ancile in this manner.

7 CONCLUSION AND FUTURE WORK

We explored the problem of applying use-based privacy to passively-
generated data. Using location-based services as an example, we
identified privacy challenges that arise in ubiquitous computing
applications, extended the existing Avenance language to address
these challenges, and implemented a framework for enforcing use-
based privacy in ubiquitous computing applications.

This work constitutes the first evidence that use-based privacy
can be leveraged to enhance privacy in ubiquitous computing ap-
plications, but it leaves several open questions. First, we hypoth-
esize that the privacy-challenges that arise in location-based ser-
vices are representative of the challenges that arise in ubiquitous
computing applications more broadly. However, this hypothesis is
untested to date. The extent to which Ancile solves the problem of
applying use-based privacy to the full range of ubiquitous comput-
ing applications is left as future work. Second, we believe it would
be possible to implement a full data-analytics toolkit in AncileLib
that would support a broad range of general-purpose applications
that depend on data from many different data providers. However,
the current implementation is more tailored to the example appli-
cations considered in this work. Future work is needed to confirm
that Ancile can support extensible application development. Third,
Ancile separates policy from code, relieving application developers
of sole responsibility for ensuring that data are only used in com-
pliance with all relevant policies. However, adoption will depend
on the ease with which developers can implement new programs
that run on top of Ancile. Further evaluation is needed to establish

whether Ancile allows non-experts to easily implement privacy-
enhancing ubiquitous computing applications.

ACKNOWLEDGEMENTS

The authors would like to thank Arnaud Sahuguet, Ed Kiefer, Mo-
hamad Safadieh, Michael Sobolev, Matthew Griffith, and Corin Rose.
This work was supported in part by NSF Grants 1642120 and 1700832.
Schneider is also supported in part by AFOSR grant F9550-16-0250.

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 308-318.

Yuvraj Agarwal and Malcolm Hall. 2013. ProtectMyPrivacy: detecting and mit-

igating privacy leaks on iOS devices using crowdsourcing. In Proceeding of the

11th annual international conference on Mobile systems, applications, and services.

ACM, 97-110.

Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In Proceedings of the 2nd inter-

national workshop on hardware and architectural support for security and privacy,

Vol. 13. ACM New York, NY, USA.

Android 2019. Documentation for app developers. https://developer.android.

com/docs.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259-269.

Giuseppe Ateniese, Giovanni Felici, Luigi V Mancini, Angelo Spognardi, Anto-

nio Villani, and Domenico Vitali. 2013. Hacking smart machines with smarter

ones: How to extract meaningful data from machine learning classifiers. arXiv
preprint arXiv:1306.4447 (2013).
[7] Alastair R Beresford and Frank Stajano. 2003. Location privacy in pervasive
computing. IEEE Pervasive computing 1 (2003), 46-55.

[8] Eleanor Birrell, Anders Gjerdrum, Robbert van Renesse, Havard Johansen, Dag
Johansen, and Fred B Schneider. 2018. SGX Enforcement of Use-Based Privacy.
In Proceedings of the 2018 Workshop on Privacy in the Electronic Society. ACM,
155-167.

[9] Eleanor Birrell and Fred B Schneider. 2017. A Reactive Approach for Use-Based

Privacy. Technical Report.

Janusz A Brzozowski. 1964. Derivatives of regular expressions. In Journal of the

ACM. Citeseer.

[11] Giovanni Campagna, Silei Xu, Rakesh Ramesh, Michael Fischer, and Monica S
Lam. 2018. Controlling Fine-Grain Sharing in Natural Language with a Virtual
Assistant. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2, 3 (2018), 95.

[12] Fred H Cate. 2002. Principles for protecting privacy. Cato 7. 22 (2002), 33.

[13] Fred H Cate, Peter Cullen, and Viktor Mayer-Schonberger. 2013. Data protection
principles for the 21st century. (2013).

[14] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016, 086 (2016), 1-118.

[15] Yves-Alexandre De Montjoye, Erez Shmueli, Samuel S Wang, and Alex Sandy
Pentland. 2014. openpds: Protecting the privacy of metadata through safean-
swers. PloS one 9, 7 (2014), €98790.

[16] Django 2019. Django: The Web framework. https://www.djangoproject.com/.

[17] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and

Peter Druschel. 2016. Thoth: Comprehensive Policy Compliance in Data Re-

trieval Systems.. In USENIX Security Symposium. 637-654.

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon

Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.

TaintDroid: an information-flow tracking system for realtime privacy monitor-

ing on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),

5

[2

[3

—_
=t

[5

G

=
S

oy
)

[19] Zope Foundation. 2019. RestrictedPython. https://github.com/zopefoundation/
RestrictedPython.

[20] Gunicorn 2019. Documentation for Gunicorn. https://gunicorn.org.

[21] Peter Hindel, Jens Ohlsson, Martin Ohlsson, Isaac Skog, and Elin Nygren. 2013.
Smartphone-based measurement systems for road vehicle traffic monitoring and
usage-based insurance. IEEE systems journal 8, 4 (2013), 1238-1248.

[22] Thomas Hardjono and Alex Pentland. 2018. Open algorithms for identity feder-

ation. In Future of Information and Communication Conference. Springer, 24-42.

Alexander Hicks, Vasilios Mavroudis, Mustafa Al-Bassam, Sarah Meiklejohn,

and Steven J. Murdoch. 2018. VAMS: Verifiable Auditing of Access to Confi-

dential Data. CoRR abs/1805.04772 (2018). arXiv:1805.04772 http://arxiv.org/

)
&

[24]

[25

[26]

[27

[28]

[29]
[30

[31]

[32

[33]

[34

[35]

[36

[37]

[38

[39

[40]

[41]

[42]

[43

[50]

(51

[52]

abs/1805.04772

Jeffrey Hightower, Sunny Consolvo, Anthony LaMarca, lan Smith, and Jeff
Hughes. 2005. Learning and recognizing the places we go. In International Con-
ference on Ubiquitous Computing. Springer, 159-176.

Peter Holley. 2019. Wearable technology started by tracking steps. Soon, it may
allow your boss to track your performance. https://wapo.st/2NIITfh.

Jason I Hong and James A Landay. 2004. An architecture for privacy-sensitive
ubiquitous computing. In Proceedings of the 2nd international conference on Mo-
bile systems, applications, and services. ACM, 177-189.

Richard Hull, Bharat Kumar, Daniel Lieuwen, Peter F Patel-Schneider, Arnaud
Sahuguet, Sriram Varadarajan, and Avinash Vyas. 2004. Enabling context-aware
and privacy-conscious user data sharing. In IEEE International Conference on Mo-
bile Data Management, 2004. Proceedings. 2004. IEEE, 187-198.

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016.
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data.. In
OSDI. 533-549.

JWT 2019. JSON Web Tokens. https://jwt.io.

Florian Kelbert and Alexander Pretschner. 2015. A fully decentralized data us-
age control enforcement infrastructure. In International Conference on Applied
Cryptography and Network Security. Springer, 409-430.

Daniel Kondor, Behrooz Hashemian, Yves-Alexandre de Montjoye, and Carlo
Ratti. 2018. Towards matching user mobility traces in large-scale datasets. IEEE
Transactions on Big Data (2018).

Elisavet Kozyri and Fred B Schneider. 2019. RIF: Reactive information flow labels.
Technical Report.

John Krumm. 2009. A survey of computational location privacy. Personal and
Ubiquitous Computing 13, 6 (2009), 391-399.

Marc Langheinrich. 2001. Privacy by design—principles of privacy-aware ubiq-
uitous systems. In International conference on Ubiquitous Computing. Springer,
273-291.

Marc Langheinrich. 2002. A privacy awareness system for ubiquitous comput-
ing environments. In international conference on Ubiquitous Computing. Springer,
237-245.

Tuukka Lehtiniemi. 2017. Personal Data Spaces: An Intervention in Surveillance
Capitalism? Surveillance & Society 15, 5 (2017), 626—639.

Tianshi Li, Yuvraj Agarwal, and Jason I Hong. 2018. Coconut: An IDE plugin for
developing privacy-friendly apps. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 2, 4 (2018), 178.

Yuanchun Li, Fanglin Chen, Toby Jia-Jun Li, Yao Guo, Gang Huang, Matthew
Fredrikson, Yuvraj Agarwal, and Jason I Hong. 2017. Privacystreams: Enabling
transparency in personal data processing for mobile apps. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 76.
Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, P Aublin,
Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rudiger Kapitza,
et al. 2017. Glamdring: Automatic application partitioning for Intel SGX.
USENIX.

H Brendan McMahan and Galen Andrew. 2018. A General Approach to
Adding Differential Privacy to Iterative Training Procedures. arXiv preprint
arXiv:1812.06210 (2018).

Richard Mortier, Jianxin Zhao, Jon Crowcroft, Liang Wang, Qi Li, Hamed Had-
dadi, Yousef Amar, Andy Crabtree, James Colley, Tom Lodge, et al. 2016. Per-
sonal data management with the databox: What’s inside the box?. In Proceedings
of the 2016 ACM Workshop on Cloud-Assisted Networking. ACM, 49-54.

Craig Mundie. 2014. Privacy Pragmatism; Focus on Data Use, Not Data Collec-
tion. Foreign Aff. 93 (2014), 28.

Andrew C Myers and Andrew C Myers. 1999. JFlow: Practical mostly-static
information flow control. In Proceedings of the 26th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages. ACM, 228-241.

Ginger Myles, Adrian Friday, and Nigel Davies. 2003. Preserving privacy in envi-
ronments with location-based applications. IEEE Pervasive Computing 1 (2003),
56-64.

NumPy 2019. Scientific computing with Python. https://www.numpy.org/.
Raul Pardo and Daniel Le Métayer. 2019. Analysis of Privacy Policies to Enhance
Informed Consent. arXiv preprint arXiv:1903.06068 (2019).

Jaehong Park and Ravi Sandhu. 2002. Towards usage control models: beyond tra-
ditional access control. In Proceedings of the seventh ACM symposium on Access
control models and technologies. ACM, 57-64.

PostgreSQL 2019. PostgreSQL documentation. https://www.postgresql.org/
docs/.

Evangelos Pournaras, Izabela Moise, and Dirk Helbing. 2015. Privacy-preserving
ubiquitous social mining via modular and compositional virtual sensors. In 2015
IEEE 29th International Conference on Advanced Information Networking and Ap-
plications. IEEE, 332-338.

PYPL 2019. PopularitY of Programming Language. http://pypl.github.io/PYPL.
html.

PyTorch GitHub 2019. https://github.com/pytorch/. [Online; accessed 14-May-
2019].

Redis 2019. Redis documentation. https://redis.io/documentation.

[53

Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on selected areas in communications 21, 1 (2003), 5-19.
Vagner Sacramento, Markus Endler, and Fernando N Nascimento. 2005. A pri-
vacy service for context-aware mobile computing. In First International Confer-
ence on Security and Privacy for Emerging Areas in Communications Networks
(SECURECOMM 05). IEEE, 182-193.

Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus

Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy

data analytics in the cloud using SGX. In Security and Privacy (SP), 2015 IEEE

Symposium on. IEEE, 38-54.

[56] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K Rajamani, Janice Tsai, and

Jeannette M Wing. 2014. Bootstrapping privacy compliance in big data systems.

In Security and Privacy (SP), 2014 IEEE Symposium on. IEEE, 327-342.

Company Data Sheet. 2019. ARUBA 310 SERIES ACCESS POINTS. https:

//www .arubanetworks.com/assets/ds/DS_AP310Series.pdf.

Reza Shokri, George Theodorakopoulos, and Carmela Troncoso. 2017. Privacy

games along location traces: A game-theoretic framework for optimizing loca-

tion privacy. ACM Transactions on Privacy and Security (TOPS) 19, 4 (2017), 11.

Eran Toch, Justin Cranshaw, Paul Hankes-Drielsma, Jay Springfield,

Patrick Gage Kelley, Lorrie Cranor, Jason Hong, and Norman Sadeh. 2010.

Locaccino: a privacy-centric location sharing application. In Proceedings of

the 12th ACM international conference adjunct papers on Ubiquitous computing-

Adjunct. ACM, 381-382.

Janice Y Tsai, Patrick Kelley, Paul Drielsma, Lorrie Faith Cranor, Jason Hong, and

Norman Sadeh. 2009. Who’s viewed you?: the impact of feedback in a mobile

location-sharing application. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. ACM, 2003-2012.

Haoyu Wang, Jason Hong, and Yao Guo. 2015. Using text mining to infer the

purpose of permission use in mobile apps. In Proceedings of the 2015 ACM Inter-

national Joint Conference on Pervasive and Ubiquitous Computing. ACM, 1107-

1118.

Hao Wang, Daqing Zhang, Junyi Ma, Yasha Wang, Yuxiang Wang, Dan Wu, Tao

Gu, and Bing Xie. 2016. Human respiration detection with commodity wifi

devices: do user location and body orientation matter?. In Proceedings of the

2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.

ACM, 25-36.

Leye Wang, Dingqi Yang, Xiao Han, Tianben Wang, Daqing Zhang, and Xiaojuan

Ma. 2017. Location privacy-preserving task allocation for mobile crowdsensing

with differential geo-obfuscation. In Proceedings of the 26th International Confer-

ence on World Wide Web. International World Wide Web Conferences Steering

Committee, 627-636.

[64] Stephen B Wicker. 2012. The loss of location privacy in the cellular age. Commun.
ACM 55, 8 (2012), 60-68.

[65] Delanie Woodlock. 2017. The Abuse of Technology in Domestic Violence and
Stalking. Violence Against Women 23, 5 (2017), 584-602. https://doi.org/10.1177/
1077801216646277

[66] wrk2 2019. Modern HTTP benchmarking tool. https://github.com/giltene/wrk2.

[67] Jie Xiong and Kyle Jamieson. 2013. ArrayTrack: a fine-grained indoor location
system. Usenix.

[68] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. 2012. A language for

automatically enforcing privacy policies. In ACM SIGPLAN Notices, Vol. 47. ACM,

85-96.

Daging Zhang, Hao Wang, and Dan Wu. 2017. Toward centimeter-scale human

activity sensing with Wi-Fi signals. Computer 50, 1 (2017), 48-57.

Yongpan Zou, Weifeng Liu, Kaishun Wu, and Lionel M Ni. 2017. Wi-fi radar:

Recognizing human behavior with commodity wi-fi. IEEE Communications Mag-

azine 55, 10 (2017), 105-111.

[54

[55

[57

[58

[59

[60

[61

[62

[63

=
20,

<
=

A FORMALIZING POLICY ENFORCEMENT

To implement policy enforcement in Ancile, we use syntactic im-
plementations of an emptiness check and the derivative operation.
The emptiness check E(P) produces a Boolean value indicating
whether or not the value can currently be used. Formally, it checks
whether the language £(P) generated by the policy P contains the
empty string €. By definition, £(0) = 0, so E(0) = 0. A policy de-
fined by a single command P = C requires that command to be in-
voked on the data, so E(C) = 0. The policy P; .P2 accepts the empty
string only if both P; and P2 do so, thus E(P1.P2) = E(P1) AE(P2).
Union, intersection, and negation are defined in the natural way.

E(D) =0

E(C) =0

E(Py . P2) = E(P1) A E(P2)
E(Py + Py) = E(P, (P2)
E(P1 & Pa) = E(P1) A E(P2)
E(P¥) =1

E(!P) IE(P)

D(0,C) =0

D(C,C) =1

D(C,C’) = 0 (forC# (')

D(P; . P2,C) = D(P1,C) . Py + E(P1) . D(P2,C)
D(P1 + P2,C) = D(P1,C) + D(P2,C)

D(P1 & P2,C) = D(P1,C) & D(P2,C)

D(P*,C) = D(P,C) . P*

D(IP,C) = ID(P,C)

Figure 7: A summary of the syntactic operation D

An iterated policy P* accepts any number of iterations of P, includ-
ing zero (i.e., the empty string ¢), so E(P*) = 1. A summary of the
operation E is given in Figure 6.

We can now formalize how Ancile tracks the policy associated
with each data value. Ancile executes programs (i.e., sequences of
commands) on behalf of applications. When it executes a use u(x),
it updates the policy associated with the input x to be the deriv-
ative [10] D(Pyx,u), where Py is the policy associated with x be-
fore the use u occurs. The formal definition of the derivative policy
D(P,C) is given in Figure 7.

Note that if the derivative policy D(P, ¢) for a command ¢ eval-
uates to the policy 0, that command will continue to be unautho-
rized at all points in the future. Hence, as an optimization, Ancile
blocks any unauthorized commands and terminates the program
that attempted to execute that command.

Example. Consider the policy Py = anon.return_to_app as-
sociated with a data value x, which requires that x must be to de-
identified (anon) before it may be sent to the application
(return_to_app).

When the application submits a program that executes the com-
mand anon followed by the command return_to_app, Ancile sys-
tem will compute the following derivative policy P; to associate
with the derived data value anon(x).

P; = D(Py, anon)
= D(anon.return_to_app, anon)
= D(anon, anon).return_to_app
+ E(anon).D(return_to_app, anon)
= 1.anon + 0.D(anon.anon)
=anon+ 0
= anon

When the program executes the second command return_to_app,
Ancile will compute the derivative policy Py and associate it with
the value anon(v):

Py = D(Pq,return_to_app)
= D(return_to_app, return_to_app)
=1
Observe that the command return_to_app is authorized because
E(Py) = 1.
Note that we are using the equation 1.P=P (which holds be-
cause the policy 1 accepts exactly the empty string) the equation

0.P=0 (which holds because the policy O rejects all strings), and
the equation P + 0 = P (which holds as + corresponds to union).

	Abstract
	1 Introduction
	2 Applications
	3 Policy Language
	4 Implementation
	4.1 Trust Assumptions
	4.2 Ancile Overview
	4.3 AncileWeb
	4.4 AncileLib
	4.5 AncileCore

	5 Evaluation
	5.1 Location-Aware Slackbot applications
	5.2 Machine Learning Pipelines
	5.3 System Performance

	6 Related work
	7 Conclusion and future work
	References
	A Formalizing Policy Enforcement

