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Abstract

Defect engineering is a strategy that has been widely used to design active semiconductor
52 photocatalysts. However, understanding the role of defects, such as oxygen vacancies, in

54 controlling photocatalytic activity remains a challenge. Here we report the use of chemically-
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triggered fluorogenic probes to study the spatial distribution of active regions in individual
tungsten oxide nanowires using super-resolution fluorescence microscopy. The nanowires show
significant heterogeneity along their lengths for the photocatalytic generation of hydroxyl radicals.
Through quantitative, coordinate-based colocalization of multiple probe molecules activated by
the same nanowires, we demonstrate that the nanoscale regions most active fo the photocatalytic
generation of hydroxyl radicals also possess a greater concentration of oxygen vacancies.
Chemical modifications to remove or block access to surface oxygen vacancies, supported by
calculations of binding energies of adsorbates to different surface sites on tungsten oxide, show
how these defects control catalytic activity at both the ensemble and single-particle level. These
findings reveal that clusters of oxygen vacancies activate surface-adsorbed water molecules
towards photooxidation to produce hydroxyl radicals, a critical intermediate in several

photocatalytic reactions.

Keywords: tungsten oxide, oxygen vacancies, fluorescence, single-molecule localization

microscopy, colocalization

Introduction

Metal oxide semiconductors are promising photocatalysts for a number of important chemical
transformations including solar water splitting,'-* CO, reduction,®® coupling of amines,!*-!! and
the partial methane oxidation to produce methanol.'>!3 They can be fabricated using inexpensive,
solution-phase synthesis, and they are more resistant to corrosion compared to elemental,
chalcogenide, and III-V semiconductors. However, as most metal oxides possess electronic

bandgap energies greater than 2.5 eV, their efficiency is limited by low absorption coefficients
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where incoming solar radiation is most intense. Furthermore, due to low electron and hole
mobilities, photoexcited charge carriers have a high probability of recombining before they reach
the surface to oxidize or reduce adsorbed substrate molecules.® 415 These limitations can be
mitigated if the surface of the photocatalyst possesses sites that are highly active for the chemical

transformation of interest.

The presence of structural defects, including vacancies, substitutional impurities, and
unpassivated atoms, at the surface of a semiconductor can introduce surface states within the band
gap that act as recombination centers and deactivate photoexcited charges. However, rather than
act as recombination centers, oxygen vacancies appear to enhance catalytic activity in many metal
oxide photocatalysts, including tungsten, indium, titanium, molybdenum, and zinc oxide.3-!1 16-20
Several studies have reported higher catalytic activity in these materials as the oxygen vacancy
concentration is increased through thermal or chemical treatments, although various mechanisms
have been proposed to explain this observation.’-% 10-11. 16 Density-functional-theory (DFT)
calculations suggest that oxygen vacancies act both as preferential adsorption sites for reactant
molecules and create new states within the electronic band gap of the semiconductor.® 1% Tt is
currently debated whether or not charge carriers in these localized defect states can participate in
photochemical reactions.*% 10 Furthermore, the plasmon resonance induced by an increased free-
electron density increases absorption at longer wavelengths.>-% 2! Currently, there is not a clear
consensus as to which of these mechanisms is dominant. A major obstacle in understanding the
role oxygen vacancies play in catalytic activity is that different metal oxide particles within a single
batch exhibit variations in the concentration and distribution of oxygen vacancies. This
heterogeneity makes it difficult to correlate specific morphological and structural features with

catalytic activity when measurements are made on large groups of particles. Thus, methods are

ACS Paragon Plus Environment



oNOYTULT D WN =

ACS Catalysis

needed that can spatially map variations in activity for individual particles and correlate those

variations with the specific structural features that lead to high or low activity.

Single-molecule imaging has been applied to study size and shape effects in chemical reactions
catalyzed by inorganic nano- and microstructures, including metal nanoparticles,??-3! layered and
mesoporous materials,3!-** metal oxides,3!- 3540 and metal-metal oxide heterostructures.’!-41-42 By
localizing the positions of individual redox-active probe molecules that are chemically triggered
by interfacial charge transfer, one can obtain a map of reaction events at the surface of these
materials with nanoscale spatial resolution. Several studies have compared electron microscopy
and single-molecule fluorescence images of the same catalyst particles to show that their activity
can vary along a single crystal facet or in the regions between groups of closely-spaced particles.
However, because the spatial resolution provided by this technique (typically 10 to 25 nm) still
averages over many atoms on the surface of the catalyst, in most cases the chemical structure of

the active regions could not be conclusively identified.?3-28 36-39

In this report, we use single-molecule super-resolution imaging of chemically-activated
molecular probes to map variations in the catalytic activity of tungsten oxide (W;3049) nanowires.
Activation of the first probe molecule requires photoexcitation above the bandgap of the
semiconductor to generate hydroxyl radicals. The second reaction does not require photoexcitation
but instead relies on the presence of either oxygen vacancies or hydroxyl groups at the surface of
the nanowires. Through quantitative colocalization of the spatial distribution of the two probes,
we show that the nanowires contain inactive regions dispersed among segments that are
catalytically active for both transformations. The high degree of spatial correlation between the
two probe reactions enabled us to elucidate the structural nature of the active regions. Segments

along each nanowire that contain clusters of oxygen vacancies activate surface-adsorbed water
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molecules during the photocatalytic generation of hydroxyl radicals, an important intermediate in

the production of chemical fuels from sunlight.

Results and Discussion

Oxygen vacancies in tungsten oxide nanowires. W,3O,9 nanowires were synthesized using a
solvothermal method (see the Supporting Information for further details). An x-ray diffraction
pattern of the as-synthesized sample (Figure S1) matched the standard pattern for monoclinic
Wi5049 (PDF card # 00-005-0392). Transmission electron microscopy (TEM) images show that
the nanowires possess an average diameter of 14 £ 8 nm (average * 1 standard deviation) and
lengths of several micrometers (Figure 1a). A high-resolution TEM (HRTEM) image (Figure
1b) of a section along a single nanowire shows lattice fringes with a spacing of 3.8 A aligned
perpendicular to the nanowire length. This lattice spacing matches the d-spacing for the (010)
plane of monoclinic W3Oy, indicating the nanowire grew along the [010] direction (see Figure

S2 for additional HRTEM images).!- 4

The monoclinic phase of tungsten oxide corresponding to W;3O49 can accommodate variations
in the W:O stoichiometry that arise due to oxygen vacancies.% 2! Evidence of the presence of
oxygen vacancies in the as-synthesized W ;3049 nanowires was provided by x-ray photoelectron
spectroscopy (XPS) (Figure 1d). The W 4f core level peaks obtained by XPS can be assigned to
a mixture of Wé", W>* and W**.1%4* Tungsten ions in the +5 and +4 oxidation states compensate
the positive charge left by the removal of O>~. We also observe a shoulder peak in the region for
O Is at a higher binding energy than the peak corresponding to lattice oxygen (Figure S3). This

peak has been previously attributed to surface-adsorbed oxygen species that bind to metal ions left
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exposed by oxygen vacancies.” - 19 Furthermore, the absorption spectrum of a film of W3Oy
nanowires measured using an integrating sphere shows an absorption edge near 440 nm (Figure
le), which corresponds to bandgap excitation of tungsten oxide (E, = 2.8 e¢V). The broad
absorption at wavelengths beyond 500 nm has been previously attributed to free carrier absorption
induced by surface oxygen vacancies in WgQ49.>% 21 Oxidation of the nanowires using either
hydrogen peroxide, H,O,, or thermal annealing in air led to the disappearance of free carrier
absorption (Figure S4). Oxidation using H,0O, preserved the monoclinic W;3O49 phase of the
nanowires (Figure S5) enabling us to compare the catalytic activity of nanowires with and without

oxygen vacancies.
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34 Figure 1. Structural characterization of W3O49 nanowires. (a) Low-magnification and (b) high-
resolution TEM images of W3049 nanowires. (c) Models for an oxygen vacancy (top) and a
39 hydroxyl group (bottom) at the surface of W;3049. (d) X-ray photoelectron spectrum for W3Oy
41 nanowires in the binding energy region for W 4f electrons. (e) Absorption spectrum of a dry film

of W;3049 nanowires.
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Figure 2. Single-molecule imaging of catalytic reactions using fluorogenic probes. (a)
Experimental set-up for total internal reflection fluorescence (TIRF) microscopy. One or more
lasers are sent through a microscope objective at an angle such that they are internally reflected at
a glass coverslip. The W;3O49 nanowires catalyze the reactions shown in (b) and (c) to convert
non-fluorescent substrate molecules (orange triangles) into fluorescent products (red stars). The
fluorescence emission is collected through the same objective and imaged by an electron-
multiplying CCD camera. (b) Oxidation of 3’-(p-aminophenyl) fluorescein (APF) by hydroxyl
radicals produces fluorescein. (c) Acid-catalyzed condensation of furfuryl alcohol produces

fluorescent oligomers.
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Single-molecule super-resolution imaging. Hydroxyl radicals (*OH) are a key intermediate in
several reactions photocatalyzed by metal oxide semiconductors, including water oxidation, the
degradation of environmental pollutants, and methane to methanol conversion.!?-13. 38, 45-47 We
hypothesized that differences in the local structure of W13O49 nanowires would affect their activity
for generating *OH radicals. To image spatial variations in activity along the length of individual
Wi15049 nanowires, we first chose a fluorogenic probe that is activated in the presence of *OH
radicals (Figure 2b). Cleavage of the aminophenyl group of 3’-(p-aminophenyl) fluorescein (APF)
by *OH generates fluorescein.*® Control experiments using dispersions of W30, nanowires in
solution show that both nanowires containing oxygen vacancies and illumination with photon
energies above the band gap of W30y are needed to induce this reaction at the ensemble level
(Figures S13, S14, S15, and S16). Individual reaction events for single nanowires dispersed on a

glass coverslip were then detected using fluorescence microscopy.

Single-molecule super-resolution microscopy was conducted using total internal reflection
fluorescence (TIRF) excitation. In this imaging mode, only fluorophores activated near the surface
of the coverslip are detected (Figure 2a).2224 3738 A 405-nm laser coupled into the objective of
an inverted microscope was used to excite W;gO49 nanowires dispersed on a glass coverslip.
Simultaneous illumination with a 488-nm laser was used to excite the product fluorescein
molecules. After adding a solution of APF (30 nM in a solution of phosphate buffer with pH =
7.4), fluorescence intensity bursts were observed (Figure 3a). We attribute these fluorescence
bursts to the generation of fluorescein after reaction with photogenerated *OH radicals adsorbed
on the surface of the nanowires. We performed the following control experiments to support this

hypothesis. Using APF as a probe, fluorescence signals were not observed on blank coverslips
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(i.e., without nanowires, Figure S25). Secondly, fluorescence signals were only observed when
using both excitation beams (405- and 488-nm). Furthermore, fluorescence signals were not
observed when the reaction was carried out in either pure phosphate buffer solution or when
dimethyl sulfoxide (DMSO) was added to the solution of APF. DMSO has been previously shown
to act as a scavenger for *OH radicals.?>#?> Similar to the ensemble studies, very few fluorescence
bursts (a number comparable to a blank sample) were observed for nanowires treated with H,O,
to remove oxygen vacancies. Under TIRF excitation, the generation of *OH radicals in solution
using the Fenton reaction (i.e., H;O, and Fe(CIlO,),) did not produce fluorescent bursts, showing
that the activation of APF by *OH radicals occurs on the surface of the nanowires. Finally, simply
adding a solution of fluorescein (30 nM in phosphate buffer) to the nanowires did not produce
fluorescent bursts, which indicates that fluorescein (which has a higher density of negative charge
than APF) does not bind as strongly to the W3049 surface as APF. Thus, the turn-off events are
attributed to either the desorption of fluorescein from the surface of a WgO,49 nanowire or its

decomposition to a non-fluorescent product.

By localizing the positions of individual fluorescence bursts collected over 1500-2500 frames
(50 ms exposure), we acquired activity maps for single W;3O49 nanowires with a localization
precision of 22 nm (see Figure S28c for a histogram of the localization precision). The number
of fluorescence bursts localized per nanowire ranged from 130 to 4000 among the 35 nanowires
analyzed for this reaction. We did not observe any obvious correlation between morphological
irregularities in the nanowires imaged by electron microscopy and the variations in activity imaged
by single-molecule fluorescence (Figure S30. Furthermore, we kept the imaging short (typically
below 5 minutes) to avoid photodegradation of the nanowires. Under the same illumination

conditions used for single-molecule fluorescence (405-nm and 488-nm laser, buffer solution
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added), thin films of the nanowires showed no obvious structural changes after 5 minutes of

irradiation as evidenced by XPS and Raman spectroscopy (see Figures S11 and S12). However,

oNOYTULT D WN =

we did observe loss of crystallinity in the nanowires after 30 minutes of irradiation. While
10 catalytically active sites, such as oxygen vacancies may diffuse during the time course of these
experiments, their diffusion coefficients are too low to observe their mobility over this time
15 period.*-% Figure 3¢ shows the activity map for photocatalytic *OH radical generation of a
17 representative nanowire, where the color scale indicates the number of fluorescence bursts detected
in each accumulation bin (120 X 120 nm?). Significant variations in activity are seen along the
22 W5049 nanowire, and similar variations were observed for all 35 nanowires imaged (see Figures

24 S26, S31, S32, and S33 in the Supporting Information for additional examples).
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Figure 3. Imaging the catalytic activity of single W;30O49 nanowires. (a) Trajectory of photons
detected ina 1 x 1 um region for a single W;3049 nanowire using APF as a probe molecule. (b)
Diffraction-limited image of a W3O49 nanowire under the same conditions as in (a). (c) Super-
resolution image of the nanowire in (b) containing the positions of all fluorescence bursts. Color

scale: number of fluorescence bursts per bin. (d) Diffraction-limited image of a W13O49 nanowire
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using furfuryl alcohol (FA) as a probe molecule. (e) Super-resolution image of the nanowire in

(d) containing the positions of all fluorescence bursts. Scale bars: 2 um.

Tungsten oxide has been used as a solid-acid catalyst, similar to zeolites, due to the presence
of both surface oxygen vacancies (Figure 1c¢, top), which act as Lewis acid sites, and surface
hydroxyl groups (Figure 1¢, bottom), which act as Bronsted acid sites.!'!> 312 Fourier-transform
infrared spectroscopy (FT-IR) of chemically-adsorbed pyridine indicated that dry powders of the
W 3049 nanowires possessed both Lewis and Bronsted acid sites (Figure S10, and Table S4).>2
Bulk titration of acid sites in the presence or absence of 2,6-dimethylpyridine to selectively poison
Bronsted sites gave concentrations of 0.305 mmol of Bronsted sites and 0.110 mmol of Lewis sites
per gram of tungsten oxide (see the Supporting Information for further experimental details).>*
6 However, our single-molecule studies were conducted in an aqueous solution of phosphate
buffer with a pH of 7.4. At this pH, hydroxyl groups at the surface of the nanowires are expected
to be deprotonated due to the strong acidity of tungsten oxide (pH = 0.34 at the point of zero charge)
leading to a negative surface charge on the nanowires.’’” Consistent with this expectation, zeta
potential measurements gave a value of —44.9 £ 0.3 mV (average * 1% standard deviation from 3

measurements) when the nanowires were dispersed in a buffer solution at a pH of 7.4.
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Figure 4. Colocalization of hydroxyl radical generation and Lewis acid sites for two representative
W5049 nanowires. Super-resolution images of the initial nanowires using (a), (f) APF as a probe
to detect hydroxyl radicals and (b), (g) furfuryl alcohol (FA) as a probe to identify Lewis acid sites.
Color scale: number of fluorescence bursts per bin. Inset: diffraction-limited images of each
imaging condition. Coordinate-based colocalization (CBC) of (¢), (h) APF and (d), (i) furfuryl
alcohol bursts. Color scale: median colocalization score in each bin ranging from -1 for anti-
correlated through 0 for random to +1 for perfectly correlated burst distributions. White lines
depict boundaries of the nanowire regions. All scale bars are 2 um. The top scale bars apply to
the diffraction-limited images in the insets of (a), (b) and (f), (g). The bottom scale bars apply to
all super-resolution images in (a)-(d) and (f)-(i). (e), (j) CBC scores for APF (green) and furfuryl
alcohol (orange) bursts within the nanowire regions. Segments of other nanowires are seen in each

super-resolution image. Only fluorescent bursts detected within the white outlines are included in

(e) and (j).
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We next selected furfuryl alcohol as a probe molecule that can undergo acid-catalyzed
condensation to generate fluorescent oligomers (Figure 2¢).33 3% The formation mechanism of
fluorescent oligomers using both Lewis and Bronsted acids to catalyze this reaction has been
previously described,’*®® and tungsten oxide powders have been shown to catalyze the
condensation of furfuryl alcohol.® Similar to the conditions used for APF, only Lewis acid sites
are expected to be active in the as-synthesized W ;3049 nanowires as surface hydroxyl groups will
be deprotonated at a pH of 7.4. As this reaction does not require photoexcitation of the nanowires,
TIRF excitation with a 561-nm laser (i.e., below the bandgap energy of W;3049) was used to detect
the oligomeric products. After addition of furfuryl alcohol, video recordings showed fluorescence
intensity bursts similar to the case of APF (Figure S29a). These intensity bursts were not observed
on blank coverslips in the same solution (Figure S25). Figure 3e shows a representative activity
map, revealing that the W;3049 nanowires also displayed variations in activity along their length
for this acid-catalyzed reaction. Similar variations in activity were observed for all 35 nanowires
imaged using furfuryl alcohol as a probe molecule (see Figures S26, S31, S32, and S33 for

additional examples).

Coordinate-based colocalization. To directly correlate the active regions for photocatalytic *OH
radical generation with the distribution of Lewis acid sites, we sequentially performed single-
molecule imaging with both APF and furfuryl alcohol as probe molecules on the same W30y
nanowires (Figure 4a and f for APF and Figure 4b and g for furfuryl alcohol). Control
experiments showed that APF used in the first round of imaging did not lead to fluorescent

contamination during sequential imaging with the furfuryl alcohol probe (see the Supporting
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Information and Figure S34 for further discussion). We used a coordinate-based colocalization
(CBC) algorithm®! to quantify the spatial correlation of each fluorescent burst from the two probes,
yielding a value ranging from -1 for anti-correlated, through zero for random, to +1 for perfectly-
correlated distributions. The colocalization maps (Figure 4¢, d, h and i) and the distribution of
the CBC score across the entire nanowires (Figure 4e and j) show that the regions of each
nanowire that are more active for generating *OH radicals are also more active for the condensation
of furfuryl alcohol. Figures S31, S32, and S33 provide additional examples of this colocalization
analysis performed on the initial W,gO49 nanowires. CBC analysis of 33 nanowires shows a high
degree of colocalization between the two fluorogenic probes. Thus, not only is the catalytic
activity heterogeneous along the lengths of individual nanowires, but to a large extent the same
segments within each nanowire are active for both reactions. The number of active regions along
each nanowire is much lower than the bulk concentration of oxygen vacancies determined by acid
titration, suggesting that clusters of vacancies rather than isolated defects are responsible for higher
activity. Evidence that the crystallinity of the nanowires varies along their length comes from

HRTEM images of different segments of the same nanowire (Figure S2).

As regions containing surface-oxygen vacancies (i.e., Lewis acid sites) are active for both
hydroxyl-radical generation and furfuryl-alcohol condensation, changing the availability of these
sites should alter the catalytic activity of the nanowires. On the other hand, the availability of
Bronsted acid sites should affect only the condensation reaction. To test this hypothesis, we
applied different chemical modifications to the W ;3049 nanowires and measured their resulting
photocatalytic activity at both the ensemble and single-particle level. We first oxidized the WgO49
nanowires using H,O, to remove oxygen vacancies, similar to previous reports.” The x-ray

diffraction pattern of the oxidized W;3049 nanowires was indistinguishable from the original
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pattern (Figure S5). However, the diffuse reflectance spectrum (Figure S4) of the oxidized
nanowires showed significantly reduced absorption at long wavelengths (600 to 2000 nm). XPS
showed both a decrease in the intensity of peaks corresponding to W4 and W>* as well as a
decrease in surface-adsorbed oxygen species (Figures S8, S9 and Table S3). Hydrogen peroxide
adsorbed on the surface of the nanowires was not detected by FT-IR spectroscopy (Figure S7).
FT-IR spectra measured for dry powders of the nanowires after pyridine adsorption showed a
decrease in the intensity of the peaks corresponding to Lewis acid sites, while the peaks
corresponding to Bronsted acid sites did not change significantly (Figure S10). The zeta potential
after oxidation (—42.1 = 7.32 mV) was similar to the nanowires before oxidation (—44.9 + 0.3 mV),
indicating that the density of deprotonated surface hydroxyl groups did not change significantly.
Similarly, acid titration of the oxidized nanowires gave a slightly reduced concentration of
Bronsted acid sites (0.229 mmol per gram of tungsten oxide) compared to the initial nanowires
(0.305 mmol/g), but a significantly decreased concentration of Lewis acid sites (0.003 vs. 0.110
mmol/g). Together, these results demonstrate that the oxidation of the W;3049 nanowires using
H,0, decreases both the concentration of oxygen vacancies and the availability of Lewis acid sites

but does not significantly change the availability of Bronsted acid sites.

We next treated both the initial and oxidized W ;3049 nanowires with polyvinylpyrrolidone
(PVP), a polymeric surfactant frequently used in the synthesis and assembly of metal and metal
oxide nanoparticles.®?%* PVP aids in the colloidal stability and dispersibility of metal oxide
particles. Tungsten oxide nanowires with PVP on their surface have been used as photocatalysts
and electrocatalysts,%-6 but the effect of the PVP coating on their activity has not been studied.
After functionalization, XPS of the nanowires showed an increase in the signal from surface-

adsorbed oxygen species without significant changes in the distribution of oxidation states for
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tungsten (Figures S8, S9 and Table S3). FT-IR spectra of the PVP-functionalized nanowires after
pyridine adsorption displayed weaker and broader peaks for both Bronsted acid and Lewis acid
sites (Figure S10 and Table S4), indicating that PVP was bound to both sites. In aqueous solution,
the binding of PVP to surface-hydroxyl groups can suppress deprotonation of the Bronsted acid
sites. Evidence for this suppression is provided by differences in the zeta potential of the two
samples. While the zeta potential was between —42 and —45 mV for the initial and oxidized
nanowires before PVP treatment, it dropped to —8.4 + 0.7 mV (average + 1% standard deviation
from 3 measurements) for the initial nanowires and to —5.6 £ 5.6 mV for the oxidized nanowires

after functionalization with PVP.
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Figure 5. Ensemble catalytic activity of W;3049 nanowires. (a) The rate of photocatalytic *OH
generation for the initial W;3O49 nanowires (blue squares), oxidized nanowires (black triangles),
and PVP-functionalized nanowires (red circles) as measured by the reaction between *OH and
coumarin to produce fluorescent umbelliferone. (b) Rate of O, evolution for different nanowire
samples during photocatalytic H,O oxidation. (c) Amount of ethanol produced by different

nanowire samples after the acid-catalyzed condensation of ethyl acetate for 24 hours.

ACS Paragon Plus Environment

Page 18 of 43



Page 19 of 43

oNOYTULT D WN =

ACS Catalysis

Both APF and coumarin were used as fluorogenic probes to measure the rates of photocatalytic
hydroxyl radical generation (see Supporting Information for further details) using dispersions of
Wi5049 nanowires in solution. Coumarin reacts with *OH radicals to generate the highly
fluorescent umbelliferone (Figure S17).4-46 As shown in Figure 5a, the initial W3O49 nanowires
produced *OH radicals at a greater rate compared to the ones functionalized with PVP. Nanowires
oxidized with H,O, produced a negligible amount of *OH radicals (see also Figures S16 and S19).
Removing oxygen vacancies via thermal annealing of the nanowires in air also gave negligible
activity for *OH generation. We next tested the activity of the different nanowire samples for both
photocatalytic water oxidation and the degradation of Rhodamine B as these reactions rely on the
generation of *OH radicals.?® 47 As shown in Figure 5b, the initial nanowires showed the
highest rate of oxygen evolution. PVP treatment led to a moderate reduction in activity, and
oxidizing the nanowires led to a significant reduction in their activity for water oxidation. Similar
activity trends were observed for the photocatalytic degradation of Rhodamine B (Figures S20
and S21). These ensemble measurements show that oxygen vacancies are necessary for

photocatalytic activity in agreement with previous studies.3-!!- 17-19

Different mechanisms have been proposed to explain the increased photocatalytic activity for
metal oxide nanocrystals containing oxygen vacancies. These mechanisms include changes in the
electronic structure induced by oxygen vacancies that lead to a narrowing of the band gap,* 1
absorption enhancement through the sub-band gap, free carrier absorption,> ¢ and the activation
of molecules adsorbed onto metal ions exposed by oxygen vacancies.”> 111 The high degree of
colocalization between *OH radical generation and the presence of oxygen vacancies imaged by
single-molecule fluorescence reveals that regions containing oxygen vacancies are active sites for

water oxidation. Previous DFT calculations show that an H,O molecule will preferentially bind
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to a tungsten ion exposed by an oxygen vacancy at the (001) surface of WO;, which activates the
H,0 molecule towards dissociation to H and OH.7-70 An adsorbed OH™ ion can then be oxidized
to an *OH radical using photoexcited holes in the metal oxide.”! These previous computational
studies examined activation of water at isolated oxygen vacancies. Our results indicate that

clusters of oxygen vacancies form the catalytically active regions along W;3O49 nanowires.

While PVP lowered the activity of the nanowires for the photocatalytic reactions described
above, it increased their activity for acid-catalyzed reactions not requiring photoexcitation. As the
condensation of furfuryl alcohol produces a complex distribution of products,”*¢® we used the
acid-catalyzed hydrolysis of ethyl acetate in aqueous solution to compare the activity of different
nanowires.”>” Oxidized nanowires, in which Lewis acid sites had been removed, produced a
lower amount of ethanol than the initial nanowires (Figure 5¢). However, PVP functionalization
increased the relative activity of both the initial and oxidized nanowires. To further examine the
role of PVP in modifying the surface of the nanowires, we used DFT to calculate the binding
energy of a PVP monomer to different surface sites of tungsten oxide (see the Supporting
Information for details of the calculations). For ease of calculation, we used a slab of WO;
exposing the (001) surface, similar to previous studies,®’-7% 74 While the W30y structure is more
complex, the (001) facets of both W;304 and WO; contain W—O bonds normal to the surface
allowing us to look at the interaction of a PVP monomer unit to either a single oxygen vacancy
(i.e., Lewis acid site) or hydroxyl group (i.e., Bronsted acid site). The strongest binding
interactions were found between the electron-donating atoms of the PVP monomer and Lewis acid
sites (i.e., —2.1 eV for binding via the O atom of PVP and —1.9 eV for binding via the N atom, see
Figure S23 and Table S2). The lower activity observed for PVP-treated nanowires in reactions

requiring photocatalytic ®¢OH generation arises from competitive binding of the polymer to these
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surface sites. Hydrogen bonding of the PVP monomer to a surface hydroxyl group was also
favorable (i.e., —0.9 eV for binding via the O atom of PVP and —0.8 eV for binding via the N atom).
While the hydrogen bonding interaction was weaker than binding to an oxygen vacancy, it was
stronger than the PVP monomer binding to a deprotonated hydroxyl group (i.e., —0.6 eV between
the deprotonated surface O atom and the carbonyl C atom of PVP). Thus, hydrogen bonding of
PVP to surface hydroxyl groups appears to suppress their deprotonation at neutral pH, which is
supported by the lower surface charge observed for PVP-treated nanowires. Dynamic hydrogen
bonding of monomer units along the PVP polymer would allow Bronsted acid sites to still be
available for the acid-catalyzed condensation of ethyl acetate consistent with the higher activity
seen for PVP-treated nanowires. In the future, incorporating the effects of different configurations
of PVP oligomers could provide more accurate estimates of PVP binding to different surface sites

of tungsten oxide.”>-76
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Figure 6. Colocalization of hydroxyl radical generation and Lewis acid sites for PVP-
functionalized W 30,49 nanowires. Super-resolution images of the nanowires using (a), (f) APF as
a probe to detect hydroxyl radicals and (b), (g) furfuryl alcohol (FA) as a probe to identify Lewis
and Bronsted acid sites. Color scale: number of fluorescence bursts per bin. Inset: diffraction-
limited images of each imaging condition. Coordinate-based colocalization (CBC) of (c), (h) APF
and (d), (i) furfuryl alcohol bursts. Color scale: median of the colocalization score in each bin,
ranging from -1 for anti-correlated through O for random to +1 for perfectly-correlated burst
distributions. White lines depict boundaries of the nanowire regions. All scale bars are 3 um. The
top scale bars apply to the diffraction-limited images in the insets of (a), (b) and (f), (g). The

bottom scale bars apply to all super-resolution images in (a)-(d) and (f)-(i). (e), (j) CBC scores for
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APF (green) and furfuryl alcohol (orange) bursts within the nanowire regions. Segments of other
nanowires are seen in each super-resolution image. Only fluorescent bursts detected within the

white outlines are included in (e) and (j).

The ensemble changes in photocatalytic activity described above arise from the activation or
deactivation of different sites on the nanowires. We next conducted the same correlative, single-
molecule imaging on PVP-functionalized W 3049 nanowires using both APF and furfuryl alcohol
as probes. Figure 6a, b, f and g show the activity maps for both *OH radical generation and
furfuryl alcohol condensation obtained by localizing all fluorescence bursts. While they are
strongly correlated in the initial nanowires (Figure 4e and j), PVP treatment consistently reduced
the correlations between APF and FA localizations (Figure 6c-e and h-j), as reflected by a broader
range of CBC scores (see Figures S36 and S37 for additional examples). Accumulating the CBC
scores across all 33 initial nanowires (Figure 7a and b) versus all 40 PVP-functionalized
nanowires (Figure 7¢ and d) shows that PVP treatment simultaneously reduces the CBC scores
for both species within each nanowire and increases the heterogeneity of CBC scores across
nanowires (Figure 7e). Specifically, the per-nanowire CBC scores of APF (0.92 + 0.08, average
+ 1t standard deviation of median CBC score) and FA (0.89 £ 0.13) for the initial nanowires
dramatically reduce to 0.19 + 0.33 for APF and 0.54 + 0.37 for FA for the PVP-functionalized
ones (Figure 7e). Moreover, the heterogeneous effects of PVP functionalization are evidenced by
the increased variation in CBC scores across nanowires after the treatment. We also attempted
colocalization analysis for the oxidized nanowires. Similar to the low ensemble activity shown in
Figure 5, the number of fluorescent bursts generated by the oxidized nanowires was reduced for

both probe reactions to a level comparable to the background. Interestingly, after functionalizing
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the oxidized nanowires with PVP, the number of fluorescence bursts for the APF transformation
was still low (Figure S35i), but the nanowires recovered their activity for FA condensation

(Figure S35i1).

Negative CBC scores seen for localizations in the PVP-functionalized nanowires represent
mutually exclusive sites for *OH radical generation and furfuryl-alcohol condensation. The
photocatalytic generation of *OH radicals at Lewis acid sites is inhibited after treating the
nanowires with PVP. DFT calculations indicate PVP inhibits activity by binding to the tungsten
ions exposed by oxygen vacancies, thus blocking these sites for the adsorption of H,O (Figure
S23). This type of binding is supported by FT-IR spectroscopy (Figure S10a and Table S4) and
the reduced ensemble photocatalytic activity for the PVP-functionalized nanowires seen in Figure
5. On the other hand, the binding of PVP to surface-hydroxyl groups can suppress their
deprotonation, such that they become active for the acid-catalyzed condensation of both ethyl
acetate and furfuryl alcohol. This mode of binding is also supported by FT-IR spectroscopy and
the change in zeta potential after PVP functionalization. The intermediate binding energy
calculated for hydrogen bonding between a PVP monomer and a surface hydroxyl group suggests
that dynamic PVP binding in solution allows this Bronsted acid site to still protonate FA during
the condensation reaction. Thus, we propose that the regions of the nanowire active for FA
condensation, but not active for *OH radical generation, expose Bronsted acid sites. Quantitative
colocalization analysis of the two fluorogenic probes reveals this nanowire heterogeneity that

cannot be observed at the ensemble level.
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25 Figure 7. APF and furfuryl alcohol colocalization behavior on initial and PVP-functionalized
27 W5049 nanowires. Accumulated (a), (¢) APF and (b), (d) furfuryl alcohol (FA) colocalization
scores on 33 initial (blue) and 40 PVP-functionalized (red) nanowires. () per-wire furfuryl alcohol
32 versus APF colocalization scores for 73 initial and PVP-functionalized nanowires. Open and filled
34 circles are the medians of the CBC scores across each nanowire. Dashed lines show CBC score
ranges from 25% to 75 percentile of individual nanowires. Top and right, median APF (top) and
39 furfuryl alcohol (right) CBC scores for each of the initial (blue) and PVP-functionalized (red)

41 nanowires, where counts are given in fractions of the total population.

Conclusions

In summary, tungsten oxide nanowires show significant spatial variations in their catalytic
53 activity. By spatially correlating the nanoscale regions that trigger two fluorogenic probe

55 molecules, we demonstrate that segments containing clusters of oxygen vacancies are more active
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for generating hydroxyl radicals. While ensemble measurements can be used to measure average
changes in the catalytic activity of a sample after chemical or thermal treatments, through this
quantitative colocalization, we demonstrate how new sites become active in a photocatalyst after
surface functionalization (i.e., Bronsted acid sites) while others are deactivated (i.e., metal ions
bound by PVP) heterogeneously across nanowires. In the future, this method may be used to
quantify the spatial correlation for other pairs of reactions, such as the locations of electron and

hole extraction in nanostructured photoelectrodes.?”

Experimental Section

Catalyst preparation. W 3049 nanowires were prepared using a hydrothermal method. Tungsten
chloride (0.040 g) and 1-butanol (40 mL) were mixed together, transferred to an acid-digestion
vessel, and heated at 453 K (180°C) for 24 hours. The product was washed repeatedly with ethanol
and dried overnight in a vacuum oven. Oxidation of W;3O49 nanowires was performed by mixing
the W 3049 powder with hydrogen peroxide and 1 M sulfuric acid. The mixture was then washed
repeatedly with ethanol and dried overnight. PVP-functionalization of W3O49 nanowires was
carried out by sonicating the W3049 powder in an ethanolic solution of PVP. The mixture was

then washed repeatedly with ethanol and dried overnight in a vacuum oven at 313 K (40°C).

Ensemble photocatalytic reactions. The W;3049 nanowire powder was dispersed in an aqueous
solution of phosphate buffer (pH = 7.4) containing either APF (5 uM) and KIO; (10 uM), coumarin
(0.1 uM) and KIO; (1 uM), or Rhodamine B (5 uM) and KIO;3 (1 uM). The suspension was

irradiated with a 405-nm LED while stirring. Aliquots were collected periodically and centrifuged
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to remove the nanowires. Fluorescence spectra of the supernatants were then measured in a quartz

cuvette using a Cary Eclipse spectrometer.

Photocatalytic water oxidation. The W;30,49 nanowire powder (0.02 g) was dispersed in an
aqueous solution of 0.1 M KIO;. The suspension was then purged with argon for 30 minutes.
Photocatalytic water oxidation was performed using a 350 W Xenon lamp under argon flow and
stirring of the reaction vessel. For each sample, the amount of O, produced was measured every

30 minutes using a Shimadzu GC-2014 gas chromatograph.

Acid catalyzed hydrolysis of ethyl acetate. The W ;3049 nanowire powder (5 mg) was dispersed
in a solution of 1.9 mL of ethyl acetate and 0.1 mL of 0.1 M sodium phosphate buffer (pH = 7).
The suspension was sealed and stirred at 60°C for 24 hours. The amount of ethanol generated

from each sample was then quantified using a Varian Unity Inova-600 NMR spectrometer.

Single-molecule fluorescence microscopy with APF and furfuryl alcohol probe molecules.
Glass microscope coverslips were cleaned, rinsed with DI water, and dried under N, flow before
depositing the W3049 nanowires. A well-dispersed suspension (30 pL) of the W3O49 nanowires
in ethanol (10-* % w/v) was then spin-coated onto a cleaned coverslip. After drying under N, flow,
the nanowire-coated coverslip was left in a vacuum oven at 10> atm and room temperature for 30

minutes to remove residual solvent.

A Nikon N-STORM super-resolution microscopy system with a Nikon CFI-6-APO TIRF 100
X oil-immersion objective lens was used for single-molecule fluorescence imaging. The incident
angles of the laser illumination (405 and 488 nm or 561 nm) were adjusted to provide TIRF
excitation at the coverslip surface. A quad-band filter set (405/488/561/647, CHROMA,

TRF89902-NK) was used to collect emission from the fluorogenic probes, and an Andor iXon 897
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electron-multiplying CCD with 160 nm effective pixel size was used for imaging. Image stacks
of 2500 frames for APF oxidation and 1500 frames for the condensation of furfuryl alcohol were
recorded at an exposure time of 50 milliseconds. All measurements were carried out within 15

minutes after placing the coverslip on the microscope stage to limit system drift.

For imaging the oxidation of APF to produce fluorescein, a solution of 30 nM APF in
phosphate buffer (pH = 7.4) with 1 uM of KIO; was dropped onto the coverslip. For this reaction,
405-nm and 488-nm lasers were used to photoexcite the W;3O49 nanowires and fluorescein,
respectively. For imaging the condensation of furfuryl alcohol, 100 pL of a solution of 10%
furfuryl alcohol (v/v) in phosphate buffer was dropped onto the coverslip. A 561-nm laser was
used to excite the fluorescent oligomers generated in this reaction. For both reactions, the solutions
were purged with argon for 30 minutes before imaging. When imaging both reactions sequentially
on the same set of W;304 nanowires, the oxidation of APF was performed prior to the
condensation of furfuryl alcohol to avoid contamination from the deposition of the polymeric
product. In between imaging using the two probe molecules, the coverslip was repeatedly washed

with phosphate buffer.

Image analysis and colocalization. All post-processing on the captured images was performed
using MATLAB (Mathworks, R2019a) and ImageJ with the ThunderSTORM plugin.”” Captured
image stacks after offset subtraction using dark images were further background corrected by a
temporal quantile filter with 0.4 quantile and 200-frame sliding window (see Supporting
Information, Sec. 20 and Figure S24 for further details). Single-molecule bursts in the corrected
images were localized by using ThunderSTORM with default settings and custom camera
parameters. Only localizations of single molecules with acceptable widths of the fitted point

spread function (80 nm < ¢ <220 nm) were retained for the following process. Detected photons
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per localization were obtained by summing up all photons within a region (5x5 pixels) centered at
the localized positions. The estimated localization precision was calculated based on the photons
detected and the estimated background as previously described.”® Localized single-molecule
positions in each frame were grouped across consecutive frames in order to count intensity “bursts”
of probe molecules on the nanowires (Supporting Information, Sec. 21 and Figures S28 and
S29). 2D nanowire activation maps were then visualized by binning all single-molecule bursts
within 120x120 nm? bins. Colocalization of APF and furfuryl alcohol super-resolution images
was performed using coordinate-based colocalization (CBC) analysis.®! First, system drift caused
by the washing procedure in-between APF and furfuryl alcohol imaging was estimated and
removed by measuring shifts in the peaks of the cross-correlation between the diffraction-limited
images of the two probes. CBC analysis calculates the colocalization between two super-
resolution datasets directly using the localized coordinates of each molecule instead of the
pixelized super-resolution reconstructions. Specifically, the spatial density surrounding each burst
in the APF dataset was calculated from the neighboring bursts in both the APF and furfuryl alcohol
datasets within discs of radius r (from 50 nm to 500 nm in 50 nm steps). The ordered-rank
correlation coefficient is calculated using the two sets of the density distributions. Each coefficient
was scaled by a weighting factor, depending on the distance to the nearest neighbor, in order to
eliminate false positive colocalizations for bursts whose nearest neighbor is far away. The final
value was assigned as the colocalization (CBC) score of each burst in the APF dataset, and scores
for each burst in the furfuryl alcohol dataset were calculated similarly. Colocalization scores vary
from -1, representing perfectly-excluded (anti-correlated) localizations, to +1 for perfectly-

colocalized localizations.
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colocalization analysis of additional nanowires, and correlation between SEM and fluorescence

microscopy images. This material is available free of charge via the internet at http://pubs.acs.org
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