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Abstract—This paper investigates a novel regularized system
identification approach to physiological modeling using limited
data. The proposed approach operates in two steps: 1) limited
data from individual subjects are consolidated and leveraged to
determine a population-average physiological model; then, 2) a
subject-specific model for an individual subject is derived from
a regularized system identification procedure whose objective is
to reconcile the model’s capability to predict individual-specific
behavior and to retain typical population-representative trends.
This is achieved by embedding a regularizing condition into the
cost function for system identification that enforces parsimony
in parametric deviation from the population-average model. A
few unique advantages of the proposed approach are that 1) it
offers superior predictive accuracy in both measured as well as
unmeasured physiological system responses when compared to
a standard system identification approach; and 2) it provides
high-sensitivity parameters in the model associated with each
individual subject, thus potentially eliminating the necessity for
post-hoc parametric sensitivity analysis. Merits and limitations
of the proposed regularized approach are illustrated with a real
world case study on physiological modeling of hemodynamics
in response to burn injury and resuscitation.

I. INTRODUCTION

Development of a parsimonious and transparent model of
a physiological system is an important pre-requisite toward
disciplined closed-loop automation of therapy in critically ill
patients. To be useful, such a physiological model must show
the relevant macroscopic behavior of a patient’s response to
therapy using meaningful components and interactions. A
grey-box modeling approach is often desirable in this regard
as it provides opportunity for both robust estimation of model
parameters from experimental data as well as transparency of
model structure.

A unique, important challenge in modeling physiological
systems lies in the variability of behavior between individual
subjects. While an individualized model is desirable in order
to capture subject-specific behavior, available data from real
clinical scenarios are often sparse, limited and non-
standardized. Using such data for system identification often
results in an over-fitted model in which internal component
interactions are not predicted accurately. Having limited data
also directly affects the sensitivity of model output error to
changes in model parameters. This results in the presence of
insensitive parameters that do not affect the output prediction
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error significantly, or redundant subsets of parameters that
exhibit the same effect on the measured output.

A prevalent class of approaches to partially address this
problem are based on the concept of parametric sensitivity
analysis: variance-based approaches such as Sobol [1] and
Monte-Carlo [2] techniques give useful information about the
effect of each parameter and also parametric combinations on
the model output, while profile likelihood [3] approaches
give valuable insight into redundancies among parameters
and opportunities for potentially useful extra measurements.
Conducting sensitivity analysis, however, does not always
give a clear pathway toward preventing the negative effects
of limited data on the model’s predictive capability. One
effective solution to this problem would be to fix insensitive
parameters to nominal values [4], [5]. Another interesting
solution is to simplify the model toward a more lumped
macroscopic structure [6], [7]. Alternatively, one can prevent
overfitting to limited data by adding acceleration terms to the
error minimization algorithm [8]. Parameter regularization
[9], [10] and assumption of Bayesian priors [11] are also
effective tools widely used in data-based black-box modeling
and machine learning applications to prevent an extremely
complex or unidentifiable model structure.

The challenge in using most of the reviewed methods for
therapy-oriented modeling of physiological systems is that
both the quality (e.g., sampling frequency and measurement
noise) and quantity (e.g., number of measured signals) of data
drastically vary across subjects. In addition, each subject is an
inherently unique entity with subject-specific characteristics.
Because of this, identifiability of the model varies on a case
by case basis, thus preventing a unified approach to tackle the
system identification problem across all subjects. Therefore,
an individualized system identification approach that takes
into consideration the variability in both data and subjects is
desirable.

In our initial attempt to address this issue, we investigate
a regularized system identification approach to physiological
modeling with limited data. The proposed approach operates
in two steps: by first deriving a population-average model
from data consolidated across all subjects, then by deriving a
subject-specific model associated with an individual from the
limited subject-specific data. This is achieved by proposing a
regularized system identification procedure, the goal of
which is to reconcile the model’s ability to predict subject-
specific behavior and to retain typical population-based
trends. This goal is achieved by embedding a regularizing
condition into the cost function used in system identification
that enforces parsimony in parametric deviation from the
population-average model. Key unique advantages of the
proposed approach are 1) its superior predictive accuracy
relative to standard error-minimizing system identification by
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avoiding subject-specific overfitting and 2) its ability to
determine high-sensitivity model parameters as part of the
system identification procedure, thereby eliminating the need
for separate post-hoc parametric sensitivity analysis. Merits
and limitations of the proposed approach are illustrated with
a clinically important case study on physiological modeling
of hemodynamic responses to burn injury and resuscitation.

II. A REGULARIZED SYSTEM IDENTIFICATION APPROACH TO
SUBIJECT-SPECIFIC PHYSIOLOGICAL MODELING

A. Rationale

In contrast to conventional engineering and statistical
applications, modeling of physiological systems based on an
entire population sample does not always give sufficiently
predictive models due to large inter-individual variability.
However, there are general trends of behavior in measured
data that hold in most subjects. On the other hand, subject-
specific modeling using a parameterized grey-box model can
be susceptible to overfitting due to the lack of sufficient
information content in the data. Yet, it is still likely to better
predict an individual subject’s behavior if the identification
problem is properly formulated. An ideal approach to follow
in this situation would leverage both population-average and
subject-specific trends to obtain a model for each individual.

B. Formulation of Regularized System Identification

The structure of the dynamic physiological model is
defined for each individual i as follows:

i=f(xu,p”,0)

. 1
yj:gj(xap(l)) M

where the grey-box model structure f is assumed to be the
same for all individuals, while each individual is
characterized by an unknown vector of parameters p . Each
of the outputs y, correspond to a signal of interest measured
at least in some subjects.

To consolidate a population-average model of the
common behavior across all subjects, we define the

following error measure:

Fn=33%3 [—y’ et J @)
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where N is the number of subjects, M, is the number of

measured signals for subject i, D, shows the number of

i

. . . . d
measurements for signal j taken from subject i, y%(¢,)
denotes the value of measured signal j at time 7, , and y, is
the normalization factor for signal ;.

The population-average model can be obtained from the
following optimization problem:

p =argmin f(p) 3)

sensitive

Error contours
£(p)

insensitive

L1 penalty

Parameter space schematic

Figure 1. Schematic illustration of the penalized optimization problem
for individual-specific systems identification

where the resulting minimizer p can be used with (1) to

obtain a dynamic model that represents the common trends
of average behavior across all subjects.

A standard least-squares error-minimization approach to
deriving a subject-specific model for a new individual uses
the following cost formulation:

M Dyt )~y (pot, ?
L=, [%] )

from which a parameter vector p” can be obtained for each
new subject from the following minimization problem:

p" = argmin £,(p) )

This optimization problem, however, can be ill-posed as
an inverse problem due to both the grey-box structure of the
model and the limited nature of individual-specific data.

When solving (5), there can be many vector parameters p'’

that result in equivalently low values for the error measure
(4), which often results in blow-ups in parameter values after
optimization and deteriorated predictive value in the
resulting model.

To counteract the effects of limited data, we propose to
incorporate a regularizing term in the cost function (5) to
substitute the measurements that are not available for new
subjects:

P =arg min f,(p) +€(p) (6)

where Q(p) incorporates information related to whether a

parameter vector is a good choice for an individual. For the
purpose of individual identification, we define the following
candidate function:

(p)=2|p-7l, (7)

where the norm ||.||, denotes the absolute sum of vector

elements. Fig. 1 visualizes the role of this penalty in a simple
2-parameter model identification scenario. It is visible from
the error contours that the data do not contain discriminating
information in the horizontal direction. As a result, the
optimization in (5) can result in many equivalent answers

3469



across the dashed line. The added penalty term (7) has sharp
contour edges in the direction of each parameter, favoring
solutions that only deviate in parameters having significant
impact on the reduction of the output prediction error (which
is the vertical direction in the case of Fig. 1). In the
insensitive horizontal direction, the algorithm tends to fall
back to the population-average value. In general, the penalty
(7) tends to constrain deviations from the population-average
model both in terms of distance and number of deviated
parameters, unless such a deviation is absolutely needed to
capture the unique behavior of the individual subject.

The potential advantages of this approach are two-fold:
First, constraining parametric deviations reduces the risk of
overfitting by minimizing the effective number of model
parameters (i.e., model parameters that are individualized)
for each individual. Second, analyzing the resulting model
parameter deviations from population-average values can
give insight into the important parameters in the model, thus
potentially eliminating the need for post-hoc sensitivity
analysis. In fact, parameters deviated from the population-
average values tend to be the ones that 1) largely affect the
system output, 2) represent useful information contained in
the subject-specific data, and 3) tend to vary in different
subjects. All three of these characteristics are indicative of
parameters that are important to identify in a subject-specific
setting.

III. PHYSIOLOGICAL MODELING OF HEMODYNAMICS IN
RESPONSE TO BURN INJURY AND RESUSCITATION

A. Motivation

Fluid resuscitation is an integral part of critical care for
burn injury patients, in which fluid infusion is administered
to maintain a safe blood volume level within the patient’s
circulation [4], [12]. Reliable and transparent mathematical
modeling of a patient’s physiological responses to burn injury
and fluid resuscitation is an important pre-requisite toward
understanding and testing of resuscitation protocols as well as
realizing closed-loop automation of burn resuscitation.

This application is a particularly interesting case study for
the presented regularized identification method due to the
limited and variable nature of its data as well as the existence
of explicit inherent differences in individual subjects (e.g.
different bodily characteristics for each individual as well as
different impact of injury).

B. Mathematical Model of Hemodynamics in Response to
Burn Injury and Resuscitation

In this section, we present a dynamic model structure to
represent macroscopic components and interactions relevant
to a patient’s response to burn injury and resuscitation, which
is an updated version of the models presented in the literature
[4]. The model (shown in Fig. 2) consists of three main
compartments in interaction, governed at the high level by
the following differential equations:

V.”. = J_/,zi _J/,z[ _‘]e,z[ (8)

Mti = Qf,ti - Ql,ti (9)
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Figure 2. Schematic illustration of the multi-compartment fluid and
protein kinetics model used for data-driven modeling of hemodynamic
response to burn injury and resuscitation

Vi =Jf,hl_J[,[Jl_Je,bI_Jex (10)

My =0, =0, = 0. +0, (11)
Vy=du =i+ dig=d s+ =Jy=J,  (12)
M, ==0,,+0,~0,+0u -0, (13)

where the states denoted by V" and M respectively represent
fluid volume and protein mass inside each compartment, and
subscripts “bt”, “ti”, and “pl” respectively denote burn-tissue
interstitium, intact-tissue interstitium, and intra-vascular
plasma compartments. The terms shown by J and QO
respectively denote the rate of fluid flow and protein mass
transfer between compartments as shown in Fig. 2.

The effective concentration of protein in each
compartment is given by the following relations:

C.=M.[V, (14)

Cx,av = Mt/(V\' _V\',&\'O) (15)

where x e {ti,bt, p/} denotes the compartment, C, shows

protein concentration, and C,,, shows protein concentration

v

where some of the fluid volume V__, is not participating in

X

the calculation.

The presence of fluid and protein causes hydrostatic and
oncotic pressures in each compartment:

sz :Kppl (sz _Vp10)+1)[110 (16)
=1 (17
I, =K,C, (18)
0, =K,C,,, 19)

where the vascular compartment pressure P, has a linear
relationship with volume changes from the baseline V,,
through K, , and P, denotes pressure at baseline volume.

P shows pressure in either of the interstitial compartments
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denoted by xe{#,bt} calculated from an empirically-
derived relationship f, (V)
volume. The oncotic pressures IT ,I1  in each compartment

with compartmental fluid

have a linear relationship with the effective protein
concentration in that compartment, the slope of which is
determined by constant K ; .

Capillary filtration is one of the main ways of fluid and
protein exchange between the vascular and tissue
compartments. The rate of fluid exchange is given by the
Starling equation as follows:

J,. =K, (P,-P-0c,1,-T11)) (20)

where K, and o, are filtration and reflection coefficients

respectively and x € {ti,b¢t} denotes the compartments. This

equation determines the rate of fluid shift to tissue based on
hydrostatic and oncotic pressure differences.

The rate of protein exchange is given by the coupled
convective and diffusive transport relations of protein and
fluid across the micro-vascular exchange system, which can
be written as follows:

(d-oc)J,,
Cp/ - Cx,av exp (_ e

0,.,=J,,(1-0) 2n

A

x

where A_ denotes the permeability-surface-area product for

each of the compartments in exchange with the intra-vascular
compartment.

Both K, and A4, in (20) and (21) are quantities that are

affected by the amount of volume present in the intra-
vascular compartment, as a higher volume tends to increase
the effective surface area at the barrier between vascular and
tissue spaces. The dependence on volume is formulated as
follows:

(Vp/ /VpIO ) - mee

" B 1- Vbase (22)
K/’,x = Kf,ansz (23)
A = AmRsz (24)

where R, is a ratio that models dependence of filtration

surface area on plasma volume, V, , is the plasma volume at

ase

which there is zero fluid transport into the tissues, and K, ,

A, are filtration and permeability coefficients at normal

plasma volume V.

Lymphatic flow is another important mechanism of fluid
and protein transport from both tissue compartments back
into the intra-vascular space. The changes in the flow of
lymph is mainly dependent on pressures inside the tissue. The
equations for lymphatic flow are the following:

Jl,nl,x + Sx (})x - })x,nl) Rr,nl S Pc

B-Pu
J/,X = ‘]/,n/,x - 5 Px,ex < Px < P (25)

P P x,nl

x,nl x,ex

0 P.<P

Xx,ex

where the pressure P,,, = f,(V,,,) is associated with normal

tissue pressure at a normal volume V, ,,and P, = f,(V...)

nl

is the pressure at which lymphatic flow vanishes, evaluated at
the minimum tissue volume V___ . The subscript x e {ti,bt}

denotes values for burn and intact tissue compartments. The
term J,,, = represents the normal lymphatic flow rate for

S denotes the
sensitivity of lymphatic flow to tissue pressure.

each compartment, and the constant

The transported protein along with the lymphatic flow
from each of the tissue compartments can be calculated as:

Ql,x = Cle,x (26)
where x e {ti,bt} represents each compartment.
The effects of burn injury are modeled as perturbations to

pressure, content and filtration characteristics of the burn
tissue, which can be summarized as follows:

K}, =K, Ry (1+Gy e™) (27)
A, = AR, (1+G,,e) (28)
o, =0,(1-G,,e") (29)

By =foV,)=G, e (30)
0,=Ge” 31)

where burn injury effects consist of time-variant
perturbations to normal parameters with magnitudes denoted
by Gy, G,,, and G, . The constant r represents the

o,bt *
rate of recovery post-burn, which causes the perturbed
parameters to gradually return to their original value. In
addition, P, is a perturbed version of tissue pressure that

causes a suction effect into the burn tissue immediately after
injury, with magnitude G, ,, . Furthermore, O, represents the

collagen denaturation phenomenon as a consequence of burn,
which affects the effective protein content of the burn tissue.
The exponent % is chosen as a relatively large number to
achieve an impulse-like effect immediately after injury.

C. Experimental Burn Injury and Resuscitation Data

The experimental data used for this study come from
eight sheep subjects exposed to burn injury and subsequent
resuscitation with the Lactated Ringer’s infusion. The study
procedure was approved by the Institutional Animal Care
and Use Committee (IACUC). Readers can refer to [12] for
details about the study protocol. A summary of available
measurements for the eight subjects is shown in Table I. The
measurements have a variable time-resolution with at least
hourly measurements in the first 12 hours post-burn and less
frequent data points up to 72 hours post-burn.
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TABLE 1. SUMMARY OF AVAILABLE SUBJECT DATA
S Measurement

J: ']u Vpl Cpl JI ,bt Jl N Cbz Czi
1 X X X X X X
2 X X X X X X
3 X X X X X X
4 X X X X X
5 X X X X X
6 X X X X X
7 X X X X X X X X
8 X X X X X X X X

D. Subject-Specific Burn Injury and Resuscitation
Modeling via Regularized System Identification
To examine the merits and limitations of the proposed
regularized identification method, we consider the scenario
where only limited plasma volume data (V) is available for

each new subject, and the goal is to extract useful subject-
specific information from this limited signal without
deteriorating the integrity of the model.

For the purpose of evaluation, first, we exclude a subject
s, from the data shown in Table I. Then, a population-

average model p is formed from incorporating the

remaining data into the optimization procedure (3). Then, an
individualized model is found for the excluded subject s,

by presenting its limited V, data along with p to the

procedure in (6). The identified parameters are the following
13 parameters in the model:

Jl,nl S

nl

A P

nl plo

GA,bt

p:[ o-nl Kf,nl
r K

ppl den Gp ,bt

Gyw Gow 1(32)
We define the following error measures for each studied
subject:

MSE = E(V,)

(33)
OMSE = E(C,,J,,5J,,4:-C,i»Cy) (34)
where MSE represents the mean-squared error related to the
limited signals presented to the individualized identification
algorithm, while OMSE represents error for the other signals

not presented to the algorithm. The operator FE(.)

normalizes and calculates the error for the given signals. A
subject-specific identification procedure that is immune to
limited data would identify a model for a subject, which can
provide reasonable predictions of signals not presented in
the modeling stage (i.e., yield lower values for OMSE).

IV. RESULTS AND DISCUSSION

Fig. 3 presents a comparison of model predictions for
regularized versus un-regularized (error-minimizing) system
identification methods based on limited plasma volume data.
System identification without regularization results in the
best fit for plasma volume (MSE) but it severely deteriorates
predictions for internal signals (OMSE) such as lymphatic
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Figure 3. Comparison of regularized and un-regularized subject-specific
identification based on limited plasma volume data (Subject 7).

4

MSE+OMSE
[

Figure 4. Comparison of MSE, OMSE and their sum for different
penalty weights, averaged over all subjects

flow, which indicates severe overfitting to limited data. The
proposed regularized identification method still moves
toward improved MSE with the advantage of maintaining
sensible predictions for internal signals.

Fig. 4 shows MSE and OMSE with respect to penalty
weights, averaged over all subjects. The errors at 1 =0
correspond to un-regularized identification, while the errors
at A =2 correspond to the population-average model. For a
A between these two extremes (e.g., A =0.6) the value of
MSE is close to the un-regularized case while OMSE is
significantly reduced. These results indicate that the
proposed identification procedure can make use of limited
data without compromised predictions for internal signals.

Table II compares MSE and OMSE values in each
subject for regularized versus un-regularized identification
methods. As expected, MSE values are smallest in standard
systems identification. However, this can be attributed to
overfitting, as suggested by large OMSE values. The
regularized approach results in higher levels of MSE than its
un-regularized counterpart. However, most OMSE values
are significantly improved, which indicates the robustness of
the model against limited data.

Fig. 5 shows parametric deviations from the population-
average model for all individual models obtained from the
regularized approach. In all subjects, most parameters tended
to adhere to their population-average values. As expected,
only a few parameters of significance deviated from the
population average values in each subject, which happens
according to their sensitivity and the information present in
the given data.
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TABLE II. COMPARISON OF MSE AND OMSE FOR FREE VS
REGULARIZED SUBJECT-SPECIFIC SYSTEM IDENTIFICATION

Un-regularized (A =0) Regularized (A =0.6)

Subk MSE OMSE MSE OMSE
1 1.12 0.53 1.14 0.47
2 0.90 0.48 0.90 0.47
3 1.58 1.88 1.64 2.30
4 1.78 1.17 1.88 1.00
5 1.72 5.63 2.52 1.87
6 1.25 0.85 131 0.77
7 0.55 3.46 0.97 0.87
8 0.81 5.90 0.92 0.79
mean 1.21 2.48 1.41 1.06

Fig. 6 shows the percentage of subjects for which each
parameter deviated from its population-average value. For
limited plasma volume data, the reflection coefficient o,

was the parameter that deviated the most across subjects.
Due to the sparsity-promoting nature of the identification
method, a deviation happens when a parameter is sensitive
with respect to the studied output and the information in
measurements warrants such a deviation. Physiologically,
the importance of the reflection coefficient is well-known in
determining the amount of fluid and protein shift out of
plasma volume. For the studied case, the deviation-based
analysis shown in Fig. 5 and Fig. 6 gives insight into both
the sensitivity of each parameter and the parameter-relevant
information present in output measurements.

V. CONCLUSION

In this paper, we proposed and investigated a regularized
system identification approach to the physiological modeling
problem with limited data. A generalizable framework was
presented, and an embodiment of the approach was assessed
using a clinically significant case study on the physiological
modeling of hemodynamics in response to burn injury and
resuscitation. The results strongly suggested the validity and
potential of the regularized system identification approach: it
may outperform both population-average and un-regularized
error-minimization-based modeling approaches in terms of
predictive accuracy, and it may also provide high-sensitivity
model parameters as part of the system identification
procedure. Future effort should be invested to more in-depth
development of the proposed approach, investigation of a
wide range of embodiment alternatives, and application of
the approach to wide-ranging case studies to confirm the
generalizability of the findings derived from this pilot work.
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