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Abstract—This paper investigates a novel regularized system 
identification approach to physiological modeling using limited 
data.  The proposed approach operates in two steps: 1) limited 
data from individual subjects are consolidated and leveraged to 
determine a population-average physiological model; then, 2) a 
subject-specific model for an individual subject is derived from 
a regularized system identification procedure whose objective is 
to reconcile the model’s capability to predict individual-specific 
behavior and to retain typical population-representative trends.  
This is achieved by embedding a regularizing condition into the 
cost function for system identification that enforces parsimony 
in parametric deviation from the population-average model.  A 
few unique advantages of the proposed approach are that 1) it 
offers superior predictive accuracy in both measured as well as 
unmeasured physiological system responses when compared to 
a standard system identification approach; and 2) it provides 
high-sensitivity parameters in the model associated with each 
individual subject, thus potentially eliminating the necessity for 
post-hoc parametric sensitivity analysis.  Merits and limitations 
of the proposed regularized approach are illustrated with a real 
world case study on physiological modeling of hemodynamics 
in response to burn injury and resuscitation. 

I. INTRODUCTION 

Development of a parsimonious and transparent model of 
a physiological system is an important pre-requisite toward 
disciplined closed-loop automation of therapy in critically ill 
patients. To be useful, such a physiological model must show 
the relevant macroscopic behavior of a patient’s response to 
therapy using meaningful components and interactions. A 
grey-box modeling approach is often desirable in this regard 
as it provides opportunity for both robust estimation of model 
parameters from experimental data as well as transparency of 
model structure. 

A unique, important challenge in modeling physiological 
systems lies in the variability of behavior between individual 
subjects. While an individualized model is desirable in order 
to capture subject-specific behavior, available data from real 
clinical scenarios are often sparse, limited and non-
standardized. Using such data for system identification often 
results in an over-fitted model in which internal component 
interactions are not predicted accurately. Having limited data 
also directly affects the sensitivity of model output error to 
changes in model parameters. This results in the presence of 
insensitive parameters that do not affect the output prediction 
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error significantly, or redundant subsets of parameters that 
exhibit the same effect on the measured output. 

A prevalent class of approaches to partially address this 
problem are based on the concept of parametric sensitivity 
analysis: variance-based approaches such as Sobol [1] and 
Monte-Carlo [2] techniques give useful information about the 
effect of each parameter and also parametric combinations on 
the model output, while profile likelihood [3] approaches 
give valuable insight into redundancies among parameters 
and opportunities for potentially useful extra measurements. 
Conducting sensitivity analysis, however, does not always 
give a clear pathway toward preventing the negative effects 
of limited data on the model’s predictive capability. One 
effective solution to this problem would be to fix insensitive 
parameters to nominal values [4], [5]. Another interesting 
solution is to simplify the model toward a more lumped 
macroscopic structure [6], [7]. Alternatively, one can prevent 
overfitting to limited data by adding acceleration terms to the 
error minimization algorithm [8]. Parameter regularization 
[9], [10] and assumption of Bayesian priors [11] are also 
effective tools widely used in data-based black-box modeling 
and machine learning applications to prevent an extremely 
complex or unidentifiable model structure. 

The challenge in using most of the reviewed methods for 
therapy-oriented modeling of physiological systems is that 
both the quality (e.g., sampling frequency and measurement 
noise) and quantity (e.g., number of measured signals) of data 
drastically vary across subjects. In addition, each subject is an 
inherently unique entity with subject-specific characteristics. 
Because of this, identifiability of the model varies on a case 
by case basis, thus preventing a unified approach to tackle the 
system identification problem across all subjects. Therefore, 
an individualized system identification approach that takes 
into consideration the variability in both data and subjects is 
desirable. 

In our initial attempt to address this issue, we investigate 
a regularized system identification approach to physiological 
modeling with limited data.  The proposed approach operates 
in two steps: by first deriving a population-average model 
from data consolidated across all subjects, then by deriving a 
subject-specific model associated with an individual from the 
limited subject-specific data. This is achieved by proposing a 
regularized system identification procedure, the goal of 
which is to reconcile the model’s ability to predict subject-
specific behavior and to retain typical population-based 
trends.  This goal is achieved by embedding a regularizing 
condition into the cost function used in system identification 
that enforces parsimony in parametric deviation from the 
population-average model.  Key unique advantages of the 
proposed approach are 1) its superior predictive accuracy 
relative to standard error-minimizing system identification by 
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Figure 1. Schematic illustration of the penalized optimization problem 

for individual-specific systems identification 
 

avoiding subject-specific overfitting and 2) its ability to 
determine high-sensitivity model parameters as part of the 
system identification procedure, thereby eliminating the need 
for separate post-hoc parametric sensitivity analysis.  Merits 
and limitations of the proposed approach are illustrated with 
a clinically important case study on physiological modeling 
of hemodynamic responses to burn injury and resuscitation. 

II. A REGULARIZED SYSTEM IDENTIFICATION APPROACH TO 

SUBJECT-SPECIFIC PHYSIOLOGICAL MODELING 

A. Rationale 

In contrast to conventional engineering and statistical 
applications, modeling of physiological systems based on an 
entire population sample does not always give sufficiently 
predictive models due to large inter-individual variability. 
However, there are general trends of behavior in measured 
data that hold in most subjects. On the other hand, subject-
specific modeling using a parameterized grey-box model can 
be susceptible to overfitting due to the lack of sufficient 
information content in the data.  Yet, it is still likely to better 
predict an individual subject’s behavior if the identification 
problem is properly formulated. An ideal approach to follow 
in this situation would leverage both population-average and 
subject-specific trends to obtain a model for each individual. 

B. Formulation of Regularized System Identification 

The structure of the dynamic physiological model is 
defined for each individual i  as follows: 
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where the grey-box model structure f is assumed to be the 

same for all individuals, while each individual is 
characterized by an unknown vector of parameters ( )ip . Each 

of the outputs jy  correspond to a signal of interest measured 

at least in some subjects.  

To consolidate a population-average model of the 
common behavior across all subjects, we define the 
following error measure: 
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where N  is the number of subjects, iM  is the number of 

measured signals for subject i , ijD  shows the number of 

measurements for signal j  taken from subject i , ( )d
j ky t  

denotes  the value of measured signal j at time kt , and jy  is 

the normalization factor for signal j . 

The population-average model can be obtained from the 
following optimization problem: 

 arg mi ( )n
p

p f p   (3) 

where the resulting minimizer p  can be used with (1) to 

obtain a dynamic model that represents the common trends 
of  average behavior across all subjects. 

A standard least-squares error-minimization approach to 
deriving a subject-specific model for a new individual uses 
the following cost formulation: 
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from which a parameter vector ( )ˆ ip  can be obtained for each 

new subject from the following minimization problem: 

 ( ) arg m nˆ ( )i
p

i
ip f p   (5) 

This optimization problem, however, can be ill-posed as 
an inverse problem due to both the grey-box structure of the 
model and the limited nature of individual-specific data. 
When solving (5), there can be many vector parameters ( )ˆ ip  

that result in equivalently low values for the error measure 
(4), which often results in blow-ups in parameter values after 
optimization and deteriorated predictive value in the 
resulting model. 

To counteract the effects of limited data, we propose to 
incorporate a regularizing term in the cost function (5) to 
substitute the measurements that are not available for new 
subjects: 

 ( ) arg minˆ ( ) ( )i

p ip f p p    (6) 

where ( )p  incorporates information related to whether a 

parameter vector is a good choice for an individual. For the 
purpose of individual identification, we define the following 
candidate function: 

 
1

( )p p p     (7) 

where the norm 1|| . ||  denotes the absolute sum of vector 

elements. Fig. 1 visualizes the role of this penalty in a simple 
2-parameter model identification scenario. It is visible from 
the error contours that the data do not contain discriminating 
information in the horizontal direction. As a result, the 
optimization in (5) can result in many equivalent answers 
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Figure 2. Schematic illustration of the multi-compartment fluid and 

protein kinetics model used for data-driven modeling of hemodynamic 
response to burn injury and resuscitation 

across the dashed line. The added penalty term (7) has sharp 
contour edges in the direction of each parameter, favoring 
solutions that only deviate in parameters having significant 
impact on the reduction of the output prediction error (which 
is the vertical direction in the case of Fig. 1). In the 
insensitive horizontal direction, the algorithm tends to fall 
back to the population-average value. In general, the penalty 
(7) tends to constrain deviations from the population-average 
model both in terms of distance and number of deviated 
parameters, unless such a deviation is absolutely needed to 
capture the unique behavior of the individual subject. 

The potential advantages of this approach are two-fold: 
First, constraining parametric deviations reduces the risk of 
overfitting by minimizing the effective number of model 
parameters (i.e., model parameters that are individualized) 
for each individual. Second, analyzing the resulting model 
parameter deviations from population-average values can 
give insight into the important parameters in the model, thus 
potentially eliminating the need for post-hoc sensitivity 
analysis. In fact, parameters deviated from the population-
average values tend to be the ones that 1) largely affect the 
system output, 2) represent useful information contained in 
the subject-specific data, and 3) tend to vary in different 
subjects. All three of these characteristics are indicative of 
parameters that are important to identify in a subject-specific 
setting. 

III. PHYSIOLOGICAL MODELING OF HEMODYNAMICS IN 

RESPONSE TO BURN INJURY AND RESUSCITATION 

A. Motivation 

Fluid resuscitation is an integral part of critical care for 
burn injury patients, in which fluid infusion is administered 
to maintain a safe blood volume level within the patient’s 
circulation [4], [12]. Reliable and transparent mathematical 
modeling of a patient’s physiological responses to burn injury 
and fluid resuscitation is an important pre-requisite toward 
understanding and testing of resuscitation protocols as well as 
realizing closed-loop automation of burn resuscitation. 

This application is a particularly interesting case study for 
the presented regularized identification method due to the 
limited and variable nature of its data as well as the existence 
of explicit inherent differences in individual subjects (e.g. 
different bodily characteristics for each individual as well as 
different impact of injury). 

B. Mathematical Model of Hemodynamics in Response to 
Burn Injury and Resuscitation 

In this section, we present a dynamic model structure to 
represent macroscopic components and interactions relevant 
to a patient’s response to burn injury and resuscitation, which 
is an updated version of the models presented in the literature 
[4]. The model (shown in Fig. 2) consists of three main 
compartments in interaction, governed at the high level by 
the following differential equations:  

 , , ,ti f ti l ti e tiJV J J    (8) 

 , ,ti f ti l tiQ QM     (9) 

 , , ,f bt l bt e btt eb xJ JV JJ      (10) 

 , ,f bt l bb dt ext Q QM Q Q      (11) 

 , , , ,inf f ti l ti f bp l ul bt btV J J J JJJ J        (12) 

 , , , ,f ti l tipl f bt t bl bQ Q Q Q QM         (13) 

where the states denoted by V and M  respectively represent 
fluid volume and protein mass inside each compartment, and 
subscripts “bt”, “ti”, and “pl” respectively denote burn-tissue 
interstitium, intact-tissue interstitium, and intra-vascular 
plasma compartments. The terms shown by J  and Q  
respectively denote the rate of fluid flow and protein mass 
transfer between compartments as shown in Fig. 2. 

The effective concentration of protein in each 
compartment is given by the following relations: 

 x x xC M V   (14) 

 , , 0 = ( )x av x x x exC M V V   (15) 

where { , , }x ti bt pl  denotes the compartment, xC  shows 

protein concentration, and ,x avC  shows protein concentration 

where some of the fluid volume , 0x exV  is not participating in 

the calculation. 

The presence of fluid and protein causes hydrostatic and 
oncotic pressures in each compartment: 

 0 0( )pl ppl pl pl plP K V V P     (16) 

 ( )x P xP f V   (17) 

 ppl lK C    (18) 

 ,x x avK C    (19) 

where the vascular compartment pressure plP  has a linear 

relationship with volume changes from the baseline 0plV  

through pplK , and 0plP  denotes pressure at baseline volume. 

xP shows pressure in either of the interstitial compartments 
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denoted by { , }x ti bt  calculated from an empirically-

derived relationship ( )xPf V  with compartmental fluid 

volume. The oncotic pressures ,pl x   in each compartment 

have a linear relationship with the effective protein 
concentration in that compartment, the slope of which is 
determined by constant K . 

Capillary filtration is one of the main ways of fluid and 
protein exchange between the vascular and tissue 
compartments. The rate of fluid exchange is given by the 
Starling equation as follows: 

  , , ( )f x f x x x pl xplJ K P P       (20) 

where ,f xK and x  are filtration and reflection coefficients 

respectively and { , }x ti bt  denotes the compartments. This 

equation determines the rate of fluid shift to tissue based on 
hydrostatic and oncotic pressure differences. 

The rate of protein exchange is given by the coupled 
convective and diffusive transport relations of protein and 
fluid across the micro-vascular exchange system, which can 
be written as follows: 
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where xA  denotes the permeability-surface-area product for 

each of the compartments in exchange with the intra-vascular 
compartment. 

Both ,f xK  and xA  in (20) and (21) are quantities that are 

affected by the amount of volume present in the intra-
vascular compartment, as a higher volume tends to increase 
the effective surface area at the barrier between vascular and 
tissue spaces. The dependence on volume is formulated as 
follows: 

 0( )

1
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Vpl
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V V V
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V


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
  (22) 

 , ,f x f nl VplK K R   (23) 

 nl V lx pA A R   (24) 

where VplR  is a ratio that models dependence of filtration 

surface area on plasma volume, baseV  is the plasma volume at 

which there is zero fluid transport into the tissues, and ,f nlK , 

nlA  are filtration and permeability coefficients at normal 

plasma volume ,0plV . 

Lymphatic flow is another important mechanism of fluid 
and protein transport from both tissue compartments back 
into the intra-vascular space. The changes in the flow of 
lymph is mainly dependent on pressures inside the tissue. The 
equations for lymphatic flow are the following: 
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  (25) 

where the pressure , ,( )x nl P x nlP f V  is associated with normal 

tissue pressure at a normal volume ,x nlV , and , ,( )x ex P x exP f V  

is the pressure at which lymphatic flow vanishes, evaluated at 
the minimum tissue volume ,x exV . The subscript { , }x ti bt  

denotes values for burn and intact tissue compartments. The 
term , ,l nl xJ  represents the normal lymphatic flow rate for 

each compartment, and the constant xS  denotes the 

sensitivity of lymphatic flow to tissue pressure. 

The transported protein along with the lymphatic flow 
from each of the tissue compartments can be calculated as: 

 , ,l x x l xQ C J   (26) 

where { , }x ti bt  represents each compartment. 

The effects of burn injury are modeled as perturbations to 
pressure, content and filtration characteristics of the burn 
tissue, which can be summarized as follows: 

  *
, , ,1  rt

f bt f nl Vpl Kf btK K R G e    (27) 

  *
,1 rt

bt nl Vpl A btA A R G e    (28) 

  *
,1 rt

bt nl btG e      (29) 

 *
,( ) ht

bt P bt p btP f V G e    (30) 

 ht
d denQ G e   (31) 

where burn injury effects consist of time-variant 
perturbations to normal parameters with magnitudes denoted 
by ,Kf btG , ,A btG , and ,btG . The constant r  represents the 

rate of recovery post-burn, which causes the perturbed 
parameters to gradually return to their original value. In 
addition, *

btP  is a perturbed version of tissue pressure that 

causes a suction effect into the burn tissue immediately after 
injury, with magnitude ,p btG . Furthermore, dQ  represents the 

collagen denaturation phenomenon as a consequence of burn, 
which affects the effective protein content of the burn tissue. 
The exponent h  is chosen as a relatively large number to 
achieve an impulse-like effect immediately after injury. 

C. Experimental Burn Injury and Resuscitation Data 

The experimental data used for this study come from 
eight sheep subjects exposed to burn injury and subsequent 
resuscitation with the Lactated Ringer’s infusion. The study 
procedure was approved by the Institutional Animal Care 
and Use Committee (IACUC). Readers can refer to [12] for 
details about the study protocol. A summary of available 
measurements for the eight subjects is shown in Table I. The 
measurements have a variable time-resolution with at least 
hourly measurements in the first 12 hours post-burn and less 
frequent data points up to 72 hours post-burn. 
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Figure 4. Comparison of MSE, OMSE and their sum for different  

penalty weights, averaged over all subjects 

 
Figure 3. Comparison of regularized and un-regularized subject-specific 

identification based on limited plasma volume data (Subject 7). 

TABLE I.  SUMMARY OF AVAILABLE SUBJECT DATA 

S. 
Measurement 

iJ  uJ  plV   plC   ,l btJ  ,l tiJ  btC   tiC  

1 X X X X  X  X 

2 X X X X  X  X 

3 X X X X  X  X 

4 X X X  X X   

5 X X X  X X   

6 X X X  X X   

7 X X X X X X X X 

8 X X X X X X X X 

 

D. Subject-Specific Burn Injury and Resuscitation 
Modeling via Regularized System Identification 

To examine the merits and limitations of the proposed 
regularized identification method, we consider the scenario 
where only limited plasma volume data ( plV ) is available for 

each new subject, and the goal is to extract useful subject-
specific information from this limited signal without 
deteriorating the integrity of the model. 

For the purpose of evaluation, first, we exclude a subject 

is from the data shown in Table I. Then, a population-

average model p  is formed from incorporating the 

remaining data into the optimization procedure (3). Then, an 
individualized model is found for the excluded subject is   

by presenting its limited plV  data along with p  to the 

procedure in (6). The identified parameters are the following 
13 parameters in the model: 

 
, , 0

, , , ,

[          ...
              ]
      

nl f nl l nl nl nl pl

ppl den p bt A bt Kf bt bt

p K J S A P
r K G G G G G


 (32) 

We define the following error measures for each studied 
subject: 

 ( )plMSE E V   (33) 

                      , ,( , , , , )pl l bt l ti ti btOMSE E C J J C C   (34) 

where MSE represents the mean-squared error related to the 
limited signals presented to the individualized identification 
algorithm, while OMSE represents error for the other signals 
not presented to the algorithm. The operator (.)E  

normalizes and calculates the error for the given signals. A 
subject-specific identification procedure that is immune to 
limited data would identify a model for a subject, which can 
provide reasonable predictions of signals not presented in 
the modeling stage (i.e., yield lower values for OMSE). 

IV. RESULTS AND DISCUSSION 

Fig. 3 presents a comparison of model predictions for 
regularized versus un-regularized (error-minimizing) system 
identification methods based on limited plasma volume data.  
System identification without regularization results in the 
best fit for plasma volume (MSE) but it severely deteriorates 
predictions for internal signals (OMSE) such as lymphatic 

flow, which indicates severe overfitting to limited data. The 
proposed regularized identification method still moves 
toward improved MSE with the advantage of maintaining 
sensible predictions for internal signals. 

Fig. 4 shows MSE and OMSE with respect to penalty 
weights, averaged over all subjects. The errors at 0   
correspond to un-regularized identification, while the errors 
at 2   correspond to the population-average model. For a 
  between these two extremes (e.g., 0.6  ) the value of 
MSE is close to the un-regularized case while OMSE is 
significantly reduced. These results indicate that the 
proposed identification procedure can make use of limited 
data without compromised predictions for internal signals. 

Table II compares MSE and OMSE values in each 
subject for regularized versus un-regularized identification 
methods. As expected, MSE values are smallest in standard 
systems identification. However, this can be attributed to 
overfitting, as suggested by large OMSE values. The 
regularized approach results in higher levels of MSE than its 
un-regularized counterpart. However, most OMSE values 
are significantly improved, which indicates the robustness of 
the model against limited data. 

     Fig. 5 shows parametric deviations from the population-
average model for all individual models obtained from the 
regularized approach. In all subjects, most parameters tended 
to adhere to their population-average values. As expected, 
only a few parameters of significance deviated from the 
population average values in each subject, which happens 
according to their sensitivity and the information present in 
the given data. 
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Figure 6. Sorted parameters in terms of the number of subjects for 

which they deviated from the population-average value 
 

 

Figure 5. Parametric deviation ( ( )ip p ) results for the regularized 
identification approach (Horizontal axis: normalized deviation 

amount, colored dots: subject-specific deviations). 

TABLE II.  COMPARISON OF MSE AND OMSE FOR FREE VS 
REGULARIZED SUBJECT-SPECIFIC SYSTEM IDENTIFICATION 

Subj. 
Un-regularized ( 0  ) Regularized ( 0.6  ) 

MSE OMSE MSE OMSE 

1 1.12 0.53 1.14 0.47 

2 0.90 0.48 0.90 0.47 

3 1.58 1.88 1.64 2.30 

4 1.78 1.17 1.88 1.00 

5 1.72 5.63 2.52 1.87 

6 1.25 0.85 1.31 0.77 

7 0.55 3.46 0.97 0.87 

8 0.81 5.90 0.92 0.79 

mean 1.21 2.48 1.41 1.06 

 

     Fig. 6 shows the percentage of subjects for which each 
parameter deviated from its population-average value. For 
limited plasma volume data, the reflection coefficient nl  

was the parameter that deviated the most across subjects. 
Due to the sparsity-promoting nature of the identification 
method, a deviation happens when a parameter is sensitive 
with respect to the studied output and the information in 
measurements warrants such a deviation. Physiologically, 
the importance of the reflection coefficient is well-known in 
determining the amount of fluid and protein shift out of 
plasma volume. For the studied case, the deviation-based 
analysis shown in Fig. 5 and Fig. 6 gives insight into both 
the sensitivity of each parameter and the parameter-relevant 
information present in output measurements. 

V. CONCLUSION 

In this paper, we proposed and investigated a regularized 
system identification approach to the physiological modeling 
problem with limited data.  A generalizable framework was 
presented, and an embodiment of the approach was assessed 
using a clinically significant case study on the physiological 
modeling of hemodynamics in response to burn injury and 
resuscitation.  The results strongly suggested the validity and 
potential of the regularized system identification approach: it 
may outperform both population-average and un-regularized 
error-minimization-based modeling approaches in terms of 
predictive accuracy, and it may also provide high-sensitivity 
model parameters as part of the system identification 
procedure. Future effort should be invested to more in-depth 
development of the proposed approach, investigation of a 
wide range of embodiment alternatives, and application of 
the approach to wide-ranging case studies to confirm the 
generalizability of the findings derived from this pilot work. 
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