Session 2: loT/Smart Device Security

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

Dynamic Groups and Attribute-Based Access Control
for Next-Generation Smart Cars

Maanak Gupta, James Benson, Farhan Patwa and Ravi Sandhu
Institute for Cyber Security (ICS),
Center for Security and Privacy Enhanced Cloud Computing (C-SPECC),
Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas, USA
Email: gmaanakg@yahoo.com, {james.benson, farhan.patwa, ravi.sandhu}@utsa.edu

ABSTRACT

Smart cars are among the essential components and major drivers of
future cities and connected world. The interaction among connected
entities in this vehicular internet of things (IoT) domain, which also
involves smart traffic infrastructure, restaurant beacons, emergency
vehicles, etc., offer several real-time applications and provide safer
and pleasant driving experience to consumers. With more than
100 million lines of code and hundreds of sensors, these connected
vehicles (CVs) expose a large attack surface, which can be remotely
compromised and exploited by malicious attackers. Security and
privacy are big concerns that deter the adoption of smart cars, which
if not properly addressed will have grave implications with risk to
human life and limb. In this paper, we present a formalized dynamic
groups and attribute-based access control (ABAC) model (referred
as CV-ABACg) for smart cars ecosystem, where the model not
only considers system wide attributes-based security policies but
also takes into account the individual user privacy preferences for
allowing or denying service notifications, alerts and operations to
on-board resources. Further, we introduce a novel notion of groups
in vehicular IoT, which are dynamically assigned to moving entities
like connected cars, based on their current GPS coordinates, speed
or other attributes, to ensure relevance of location and time sensitive
notification services, to provide administrative benefits to manage
large numbers of entities, and to enable attributes inheritance for
fine-grained authorization policies. We present proof of concept
implementation of our model in AWS cloud platform demonstrating
real-world uses cases along with performance metrics.

CCS CONCEPTS

« Security and privacy — Formal security models; Access
control; Authorization; Security requirements; Domain-specific
security and privacy architectures;

KEYWORDS

Access Control, Smart Cars, Connected Vehicles, Internet of Things,
Authorization, Attribute-Based Access Control, Amazon Web Ser-
vices (AWS), Autonomous Cars, Security, Privacy, Cloud Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6099-9/19/03...$15.00
https://doi.org/10.1145/3292006.3300048

61

ACM Reference Format:

Maanak Gupta, James Benson, Farhan Patwa and Ravi Sandhu. 2019. Dy-
namic Groups and Attribute-Based Access Control for Next-Generation
Smart Cars. In Ninth ACM Conference on Data and Application Security and
Privacy (CODASPY ’19), March 25-27, 2019, Richardson, TX, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3292006.3300048

1 INTRODUCTION

Internet of Things (IoT) has become a dominant technology which
has proliferated to different application domains including health-
care, homes, industry, power-grid, to make lives smarter. It is pre-
dicted [2] that the global IoT market will grow to $457 Billion
by year 2020, attaining a compound annual growth rate of 28.5%.
Automation is leading the world today, and with ‘things’ around
sensing and acting on their own or with a remote user command,
has given humans to have anything accessible with a finger touch.
Data generated by these smart devices unleash countless business
opportunities and offer customer targeted services. IoT along with
‘infinite’ capabilities of cloud computing are ideally matched with
desirable synergy in current technology-oriented world, which has
been often termed as cloud-enabled, cloud-centric or cloud-assisted
10T in literature [12, 17, 18, 38].

IoT is embraced by every industry with automobile manufactur-
ers and transportation among the most aggressive. Vehicular IoT
inherits intrinsic IoT characteristics but dynamic pairing, mobility
of vehicles, real-time, location sensitivity are some features which
separates it from common IoT applications. The vision of smart city
incorporates intelligent transportation where connected vehicles
can ‘talk’ to each other (V2V) and exchange information to ensure
driver safety and offer location-based services. These intelligent
vehicles can also interact with smart roadside infrastructure (V2I),
with pedestrian on road (V2H) or send data to the cloud for process-
ing. Basic safety messages (BSMs) are exchanged among entities
using commonly used WiFi like secure and reliable Dedicated Short
Range Communication (DSRC) protocol. Vehicles can receive speed
limit notification and flash flood alerts on car dashboard or via
seat vibration. A car will receive information about nearby parking
garages, restaurant offers or remote engine monitoring by autho-
rized mechanic with nearby repair facility and discounts updating
automatically. These services will provide pleasant travel experi-
ence to drivers and unleash business potential in this intelligent
transportation domain. Smart internet connected vehicles embed
softwares having more than 100 million lines of code to control
critical systems and functionality, with plethora of sensors and
electronic control units (ECUs) on board generating huge amounts
of data so these vehicles are often termed as ‘datacenter on wheels’.

https://doi.org/10.1145/3292006.3300048
https://doi.org/10.1145/3292006.3300048

Session 2: loT/Smart Device Security

As vehicles get exposed to external environment and internet,
they become vulnerable to cyber attacks. Common security vulner-
abilities including buffer overflow, malware, privilege escalation,
and trojans etc. can be exploited in connected vehicles. Other po-
tential threats include untrustworthy or fake messages from smart
objects, malicious software injection, data privacy, ECU hacking
and control, and spoofing connected vehicle sensor. With broad at-
tack surface exposed via air-bag ECU, On-Board Diagnostics (OBD)
port, USB, Bluetooth, remote key, and tire-pressure monitoring
system etc. these attacks have become much easier to orchestrate.
In-vehicle Controller Area Network (CAN) bus also needs security
to protect message exchange among ECUs. Further, communication
with external networks including cellular, WiFi and insecure public
networks of gas stations, toll roads, service garages, or after-market
dongles are a big threat to connected vehicles security. Cyber in-
cidents including Jeep [54] and Tesla Model X [51] hacks where
engine was stopped and steering remotely controlled demonstrate
security vulnerabilities. Smart car incidents have serious implica-
tions as they can even result in loss of human life.

Access control [22, 46, 47] mechanisms are widely used to restrict
unauthorized access to resources and secure communication among
entities. Attribute-based access control (ABAC) [35, 37] provides
finer granularity and offers flexibility in distributed multi-entity
communication scenarios, which considers characteristics of partic-
ipating entities along with system and environment properties to
determine access decision. Smart cars ecosystem involves dynamic
interaction and message exchange among connected objects, which
must be authorized. It is necessary that only legitimate entities
are allowed to control on-board sensors, data messages and send
notifications. Further, user-centric privacy requires that users can
control what alerts they want to receive, what advertisements they
are interested or who can access their car’s sensors, etc. This paper
focuses on the access control needs in connected smart cars and
proposes an attribute-based access control model for connected ve-
hicles! ecosystem, referred as CV-ABACg. Our solution considers
the attributes of moving entities like current location, speed etc. to
dynamically assign them to various groups (predefined by smart
city administration), for implementing attributes-based security
policies, and also incorporate user-specific privacy preferences for
ensuring relevance of notifications service in constantly changing
and mobile smart cars ecosystem. We implemented a prototype
of our model as an external authorization engine hooked into the
widely used AWS (Amazon Web Services) cloud platform [3].

Rest of the paper is organized as follows. Section 2 discusses
related work and reviews the extended access control architecture
(E-ACO) recently proposed for vehicular IoT environment. Section
3 highlights authorization requirements and emphasize the need of
dynamic groups in smart cars applications. Section 4 presents and
formalizes our proposed groups and attribute-based access control
model (CV-ABACg) for connected vehicles ecosystem. Section 5
provides AWS implementation of dynamic groups assignment of
entities based on attributes and discusses our external policy de-
cision and enforcement engine along with performance metrics.
Section 6 summarizes our work.

!In this paper, we use the terms smart cars and connected vehicles interchangeably
which also subsumes autonomous vehicles.

62

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

USER AND ADMINISTRATOR

Application Layer

< J
Cloud Services Layer

Virtual Object
Layer
1
1
5 i
! 1
i
]
i‘""ﬂ
I 1
[1
= 1
1
:
e

Clustered Objects } j

ESjEs

)

USER

Object Layer

Figure 1: E-ACO Architecture [31]

2 RELATED WORK

Vehicular IoT and smart cars involve dynamic communications and
data exchange which requires access controls to restrict within au-
thorized entities. In this section, we first discuss a recently proposed
extended access control architecture (E-ACO) which focuses on ac-
cess control requirements in connected vehicles. We also highlight
some important work done by government and private agencies to
gauge cyber risks and security measures in smart vehicles.

2.1 Extended ACO Architecture

Several IoT architectures with multi-layer stack have been discussed
in literature [13-15, 19, 25]. Alsehri and Sandhu [14] recently pre-
sented a general IoT architecture which includes virtual objects
[42] and cloud as two middleware layers. Virtual objects resolve
IoT issues of heterogeneity and connectivity whereas on-demand
capabilities of cloud are in cloud service layer. Gupta and Sandhu
[31, 32] extended this IoT architecture for specific vehicular IoT and
connected vehicles domain. This extended access control architec-
ture (E-ACO), shown in Figure 1, introduced clustered objects (like
smart cars and traffic lights) which are objects with multiple indi-
vidual sensors. Also, these clustered objects have applications (for
example, lane departure or safety warning system in cars) installed
on board, which is usually not the case in general IoT realm.

As shown in Figure 1, four layered E-ACO has Object Layer at
the bottom which represents physical clustered objects and sensors
along with applications installed on them. In-vehicle communica-
tion at this layer is mainly supported by Ethernet and CAN tech-
nologies, whereas communication across clustered objects is done
using DSRC (used for BSM exchange in V2V communication), WiFi,

Session 2: loT/Smart Device Security

or LTE etc. It should be noted that each layer in E-ACO architecture
interacts within itself and with entities in adjacent layers. Therefore,
object layer will interact with users at the bottom and virtual object
layer above it. The Virtual Object Layer acts as an intermediate
between cloud services and physical layer, which offers the neces-
sary abstraction by creating cyber entities for physical objects in
object layer. In particular in connected vehicles domain, where cars
are moving across different terrains where internet connectivity can
be an issue, it is important to have cyber entities which maintain
the state of the corresponding physical object as best known and
to be updated when connectivity is restored. When two sensors s1
and sy across different vehicles interact with each other, the order
of communication using virtual objects will follow s1 to vs; (virtual
entity of s1), vs; to vsy and vsy to physical sensor sz. Cloud Ser-
vices and Application Layer: As applications use cloud services,
therefore these two layers are discussed together. On-board sen-
sors generate data which is stored and processed by cloud services,
which is used by applications to offer services to end-users. Cyber
entities of physical objects can be created in cloud layer which
provides a persistent state information of objects. It is important to
mention that central cloud may incur latency and bandwidth issues
in time-sensitive applications which can be resolved by introducing
edge or fog computing infrastructure.

2.2 Relevant Background

Smart cars and associated applications are still in early stages but
involve some established technologies. Vehicular Ad-hoc Networks
(VANETS) [11] have been discussed which support vehicle to vehicle
and infrastructure communication for user services. In VANETS,
moving cars and infrastructure act as network nodes to provide
storage, computation and other services. This concept is further
extended with the inclusion of cloud computing. Vehicular Clouds
(VC) [20, 24, 43] were proposed to integrate VANETs and cloud,
to offer on-the fly edge/cloud platform to cars and applications
by utilizing on-board resources. VCs are relevant in smart cars
real-time and location-centric applications and services, which
are otherwise impractical due to latency and bandwidth issues
of central cloud. Several VC architectures have been discussed
including stationary, fixed infrastructure or dynamic [36, 53].
Cyber threats to connected vehicles are very serious concerns.
Government agencies and private sectors are well aware of the
risks involved and want to ensure that no open doors are left to
orchestrate attacks before wide adoption. The US Department of
Transportation (USDOT) has invested in Intelligent Transportation
System (ITS) [16] which has connected vehicles as an important
component with aim to reduce accidental fatalities. Cyber secu-
rity is a key area and along with National Highway Traffic Safety
Administration (NHTSA), it has released cyber-security guidelines
[40, 41]. Security Credential Management System (SCMS) [52] is
proposed as DSRC message security solution in vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) communication. It uses
Public Key Infrastructure (PKI)-based approach to enable trusted in-
teraction where a certificate authority issued certificate is attached
to each BSM [1] to ensure vehicle trustworthiness. US Government
Accountability Office (GAO) [23] have widely discussed vulnera-
bilities and attack surfaces in smart vehicles, and also proposed

63

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

\

-~

'B.)))_ = B})

Figure 2: Smart City with Location Groups

solutions to prevent such threats. European Union Agency for Net-
work and Information Security (ENISA) also studied critical assets
and threats in smart cars together with security mechanisms to mit-
igate them [21]. Cooperative Intelligent Transport Systems (C-ITS)
for European Union [49, 50] has defined a PKI-based trust model
to ensure authenticity and integrity of vehicle messages.

Homomorphic encryption based security solutions and protocols
have been extensively discussed to provide location proximity [33,
39, 55] which can help to provide location based services without
sharing the exact coordinates of drivers. These approaches can be
used and complement our proposed CV-ABACg model to resolve
the privacy concerns of end users.

Access controls are widely used in computer systems to restrict
unauthorized access to resources. Park et al [44, 45] proposed an
activity centric access control model for social networks which
considers user privacy policies in access decision. CV-ABACg model
is inspired from this work besides being a pure ABAC model with
dynamic groups which are pertinent in smart cars ecosystem.

3 AUTHORIZATION REQUIREMENTS IN
SMART CARS

Smart cars expose the conventionally isolated car systems to ex-
ternal environment via internet. The dynamic and short-lived real
time V2V and V2l interaction with entities in and around connected
vehicle needs to ensure message confidentiality and integrity, as
also protection of on-board resources from adversaries. This section
provides an overview of access control requirements and underlines
the need for dynamic groups in smart vehicles IoT domain.

3.1 Multi-Layer and User Privacy Preferences

Broad attack surface of connected vehicles is the first entry point to
in-vehicle critical systems. We believe that two level access control

Session 2: loT/Smart Device Security

policies are the minimum essential to protect the external inter-
face and internal ECU communication. Access control for exter-
nal environment will protect on-board sensors, applications and
user personal data from unauthorized access by entities including
vehicles, applications, masquerading remote mechanics or other
adversaries. Over-the air firmware update needs to be checked and
must be allowed only from authorized sources. An attacker even
if successful in passing through the first check point, must be re-
stricted at the in-vehicle level, which secures overwrite and control
of critical units (engine, brakes, telematics etc.) from adversaries.
Vehicles exchange BSMs which raises an important question about
trust. It must be ensured that information received is correct and
from a trusted party, before being used by on-vehicle applications.
Applications access sensors within and outside the car, which must
be authorized, for example, a lane departure warning system access-
ing tire sensors must be checked to prevent a spoofed application
reading vehicle movements. A passenger accessing infotainment
(information and entertainment) systems of the car via Bluetooth
or using smartphone inside car must also be authorized.

Smart cars location-based services enable notifications and alerts
to vehicles. A user must be allowed to set his personal preferences
whether he wants to receive advertisements or filter out which ones
are acceptable. For instance, a user may not want to receive restau-
rant notifications but is interested in flash-flood warnings. System
wide policy, like a speed warning to all over-speeding vehicles or a
policy of who can control speed of autonomous car are needed.

Data protection in cloud is critical due to frequent occurrence
of data breaches. Big Data access control [26-29] is essential when
user privacy has to be ensured and unauthorized disclosure is not
allowed. Cross cloud trust models are needed to allow data ac-
cess when mechanic application in private cloud reads data in
car-manufacturer cloud. Physical tampering of vehicle OBD and
sensors also require protection but is out of scope for this paper.

3.2 Relevance of Groups

Most smart cars applications and service requests from drivers are
location specific and time sensitive. For example, a driver might
want to get warning signals when traveling near a blind spot, in
school zone or pedestrians crossing road. Further, notifications sent
to drivers are short-lived and mostly pertinent around current GPS
coordinates. A gas discount notification from a nearby station, an
accident warning two blocks away or ice on the bridge, are some
example where alerts are sent to all vehicles in the area. There-
fore, we believe that dynamically categorizing connected vehicles
into location groups will be helpful for scoping the vehicles to be
notified instead of a general broadcast and reduce administrative
overheads, since single notification for the group will trigger alerts
for all its members. Also, entities present at a location have cer-
tain characteristics (like stop sign warning, speed limit, deer-threat
etc.) in common, which can be inherited by being a group member.
Figure 2 represents how various smart entities can be separated
into different location groups defined by appropriate authorities
in a smart city system. These groups are dynamically assigned to
connected vehicles based on their attributes, personal preferences,
interests or current GPS coordinates as further elaborated in the
model and implementation section discussed later.

64

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

3 T 3
| Gy S 4 -\\ . |
| T School | |
I i \\)

1 e f ; Buses |
i | cars | \ / I
[| N Y, ‘
: / ~ !
| N - }
1 . . |
‘ o § j
; L —] (Police | !
i p \ RN y, !
{1§/ Infra (Buses | TS d
ol sensors |\) &
R & Location |
. N = |
g S P | il Group C 1
| 2 Location — ‘
! Group A Cars 3 |
3 > %,
s = R \ CP) #
= S~ o 4 |
I - § : 4
| k 7N %
i o s ’/7-‘\\ Ambulance] %j” }
S =1 —
 County Group Xvz2™'" [Fedex | . i 9
| o \ / i / 1
} aden Lt ™, —y * o‘ﬁ oq }
| & % location o &]
\ seuoe |8 role B & s)
9 % Geany S roup B,)
-~ B =411\ S A\ SIS T A X S S Y I

Figure 3: Representative Groups Hierarchy

Groups hierarchy can also exist, as shown in Figure 3, with sub-
groups within a larger parent group so as to reduce the number
of vehicles to be notified. For instance, under location group, sub-
groups can be created for cars, buses, police vehicles or ambulances,
to enable targeted alerts to ambulances or police vehicle sub-groups
defined within the location group. Groups can be defined based on
services, for example, a group of cars within the car parent group
which take part in car-pooling (CP) service or those which want
to receive gas station offers. Group hierarchy [30, 48] also enables
attributes inheritance from parent to child groups.

4 ACCESS CONTROL MODEL FOR
CONNECTED VEHICLES ECOSYSTEM

Dynamic communication and data exchange among entities in
connected vehicles ecosystem require multi-layer access control
policies, which are managed centrally and also driven by individual
user preferences. Therefore, an access control model must incorpo-
rate all such user and system requirements and offer fine-grained
authorization solutions. In this section, we will discuss and for-
mally define our proposed connected vehicle attribute-based access
control model with dynamic groups, which we refer as CV-ABACg.

4.1 CV-ABAC; Model Overview

The conceptual CV-ABACg model is shown in Figure 4 with formal
definitions summarized in Table 1. The basic model has follow-
ing components: Sources (S), Clustered Objects (CO), Objects in
clustered objects (O), Groups (G), Operations (OP), Activities (A),
Authorization Policies (POL), and Attributes (ATT).

Sources (S): These entities initiate activities (explained below) on
various smart objects, groups and applications in the ecosystem. A
source can be a user, an application, administrator, sensor, hand-
held device, clustered object (such as a connected car), or a group
defined in the system. For instance, in case of flash flood or deer
threat warning, activity source is police or city department trigger-
ing an alert to all vehicles in the area. Similarly, car mechanic is a

Session 2: loT/Smart Device Security

Activity : Activities N R
Decision

o) (=

I
i

i

I

I

i

i

i

i

5 i
performs r:

. i
i

i

i

i

H

i

I

I

1

-
POL

—— One to Many - e Attribute / Policy Association

+— Many to Many <—> Many to Many Dynamic Group Association

—® Zero or More —> One to Many Association

Figure 4: A Conceptual CV-ABACg Model

source, when he tries to access data from on-board engine sensor
in the car using his remote cloud based application. A restaurant
or gas-station issuing coupons are also considered as source.
Clustered Objects (CO): Clustered objects are particularly rele-
vant in case of connected vehicles, traffic lights or smart devices
held by humans as they have multiple sensors and actuators. A
smart car with on-board sensors, ECUs (like tire pressure, lane
departure, or engine control) and applications is a clustered object.
These smart entities interact and exchange data among themselves
and with others such as requestor source, applications or cloud.
An important reason to incorporate clustered objects is to reflect
cross-vehicle and intra-vehicle communication. The fact that two
smart vehicles can exchange basic safety messages (BSM) with each
other shows clustered object communication.

Objects in clustered objects (O): These are individual sensors,
ECUs and applications installed in clustered objects. Objects in
smart cars include sensors for internal state of the vehicle, e.g., en-
gine diagnostics, emission control, cabin monitoring system, as well
as sensors for external environment such as cameras, temperature,
rain, etc. Control commands can directly be issued to these objects,
and data can be read remotely. Applications (like lane departure
warning system) on board can also access data from these objects
to provide alerts to driver or to a remote service provider.
Groups (G): A group is a logical collection of clustered objects with
similar characteristics or requirements. With these groups, subset
of COs can be sent relevant notification and also attributes can be
assigned to group members. Some groups which can be defined
smart vehicles ecosystem include location specific groups, service
specific groups (like car-pooling, gas station promotions etc.) or
vehicle type (a group of cars, buses etc.). Group hierarchy (GH) also
exists which enables attributes and policies inheritance from parent
to children groups. For simplicity, we require that a vehicle or CO
can be direct member of only one group at same hierarchy level.
For example, a car can be in either location A or B group and but
not both. Such restriction helps in managing attributes inheritance
and enhances the usability of our model.

65

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

Operations (OP): These are actions which can be performed against
clustered objects, individual objects or groups. Examples include: a
mechanic performing read, write or control operations on engine
ECU, a restaurant triggering notifications to vehicles in location
A group. Operations also include administrative actions like creat-
ing or updating attributes or policies for COs, objects and groups,
which are usually performed by system/security administrators.
Activities (A): Activities encompass both operational and admin-
istrative activities which are performed by various sources in the
system. An activity can have one or many atomic operations (OP)
involved and will need authorization policies, which can be user
privacy preferences, system defined or both, to allow or deny an
activity. For example, a car pooling notification activity generated
by a requestor (source) will be broadcast to all relevant vehicles
in the locations nearby using location groups, however individual
drivers must also receive or respond to that request based on indi-
vidual preferences. A driver may not want to car-pool the requestor
because of poor rating or because he is not going to the destination
the requestor asked for. Therefore, an activity can involve multiple
set of policies defined at different levels which must be evaluated,
in car-pooling case a policy is set to determine cars to be notified
and then driver personal preferences. We have primarily divided
these smart car activities into following categories.

e Service Requests: These are activities initiated by entities or users
(via applications). For instance, a vehicle break-down initiates
a service request to other vehicles around, or a user using a
smartphone initiates a car-pooling requests for a destination to
cars which are available for the service.

e Administration: These activities perform administrative opera-
tions in system which include changing policies and attributes
of entities or determining the group hierarchy. It also defines the
scope of groups, how user privacy preferences are used, or how
vehicles are determined to be a member of a group etc.

o Notifications: These are group centric activities where all mem-
bers are notified for any updates about the group (like speed limit
or deer threat notifications in location A) or for locations-based
marketing promotions by parking lots or restaurants.

e Control and Usage: These activities include simple read, write
or control operations performed remotely or within a vehicle.
Over the air updates issued by manufacturer or turning on car
climate control using a smart key are remote activities whereas
a passenger accessing infotainment system using smartphone
and on-board car applications reading car camera are local.

Authorization Policies and Attributes: CV-ABACg model in-
corporates individual user privacy controls for different entities by
managing authorization policies and entity attributes. A shown in
Figure 4 policy of sources include personal preferences, whereas
attributes reflect characteristics like name, age or gender. Policies
can be defined for clustered objects, for instance, a USB can be
plugged only by car owner, or which mechanic can access an on-
board sensor. Attributes of a car include GPS coordinates, speed,
heading direction, and vehicle size. Groups also set policies and
attributes for themselves, for example, car pooling group policy
of who can be its member. Similarly, system wide policies are also
considered, for instance, policy to determine which groups will be
sent information when a request comes from a source, or policy to

Session 2: [oT/Smart Device Security CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

Table 1: Formal CV-ABAC Model Definitions for Connected Vehicles Ecosystem

Basic Sets and Functions

- S, CO, O, G, OP are finite sets of sources, clustered objects, objects, groups and operations respectively [blue circles in Figure 4].
— A is a finite set of activities which can be performed in system.

— ATT is a finite set of attributes associated with S, CO, O, G and system-wide.

- For each attribute att in ATT, Range(att) is a finite set of atomic values.

- attType: ATT = {set, atomic}, defines attributes to be set or atomic valued.

- Each attribute att in ATT maps entities in S, CO, O, G to attribute values. Formally,

Range(att) U {L} if attType(att) = atomic

gRange(att) if attType(att) = set

- POL is a finite set of authorization policies associated with individual S, CO, O, G.

- directG : CO — G, mapping each clustered object to a system group, equivalently CGA € CO X G.

- parentCO : O — CO, mapping each object to a clustered object, equivalently OCA € O x CO.

- GH C G X G, a partial order relation >g on G. Equivalently, parentG : G — 26, mapping group to a set of parent groups in hierarchy.

att: SUCO U O U G U {system-wide} —

Effective Attributes of Groups, Clustered Objects and Objects (Derived Functions)
— For each attribute att in ATT such that attType(att) = set:
o effGyy : G — 2Range(@tt) defined as effGart(gj) = att(gi) U (U effGait(g)).
g < {glg zg g}
o effCOu : CO — 2Range(@) defined as effCOy(co) = att(co) U effGay(directG(co)).
o effOyy : O — 2Range@) defined as effO(0) = att(o) U effCOqtt(parentCO(0)).
- For each attribute att in ATT such that attType(att) = atomic:
att(g;) if Vg’ € parentG(g;). effGa(g’) = L
o cffGart : G — Range(att) U {1}, defined as effGart(g;) = | effGart(g’) if 3 parentG(g;). effG,it(parentG(g;)) # L then select
parent g’ with effGart(g’) # L updated most recently.
att(co) if effGagt(directG(co)) = L
eff Gyt (directG(co)) otherwise
att(o) if effCOqtt(parentCO(0)) = L
effCO,tt(parentCO(0)) otherwise

o effCOyt : CO — Range(att) U {1}, defined as effCOqtt(co) = {

o effO, : O — Range(att) U { L}, defined as effOq4t(0) = {

Authorization Functions (Policies)
- Authorization Function: For each op € OP, Authgp(s : S, 0b : CO U O U G) is a propositional logic formula returning true or false,
which is defined using the following policy language:
eai=alAalaVa|(a)|~a|dxeseta|V x € set.a | set A set | atomic € set | atomic ¢ set

epA=C|C|¢Z|N]|U
o set u= eff (i) | att(i) for att € ATT, i€ SUCO U O U G U {system-wide}, attType(att) = set
e atomic = effa(i) | att(i) | value for att € ATT, i€ SUCO U O U G U {system-wide}, attType(att) = atomic

Authorization Decision

- A source s € S is allowed to perform an activity a € A, stated as Authorization(a : A, s : S), if the required policies needed to allow
the activity are included and evaluated to make final decision. These multi-layer policies must be evaluated for individual
operations (op; € OP) to be performed by source s € S on relevant objects (x; € CO U O U G).

Formally, Authorization(a : A, s : S) = Authop, (s : S,x1), Authop,(s : S,x2),, Authgp (s: S,x3)

change group hierarchy. Policies also include attributes of entities and only the attributes which comprise the policy change the out-
involved in an activity. A CO can inherit attributes from dynami- come of a policy but the policy definition remains relatively fixed.
cally assigned groups which will change as the CO leaves old group For instance, a user policy could state that ‘Send restaurant notifi-
and adds to new group. cations only from Cheesecake factory’. In such case, only attribute

It should be noted that attributes of entities change more often name of the restaurant sending the notification will be checked and
than system wide or individual policies. Attributes are more dy- if it is equal to Cheesecake factory will be able to advertise to that
namic in nature which are added or removed with the movement of user. Dynamic policies are also possible, for instance, a policy may
vehicles or change in surroundings, like GPS coordinates or temper- state that police vans in locations groups A and B are notified in
ature. Policies once set by administrators or users are more static case of emergency, but, in case of a bigger threat this policy can

be changed or overwritten with police vans in groups A, B C and

66

Session 2: loT/Smart Device Security

D. Our model assumes that no policies or attributes are changed
during an activity evaluation.

Some activities will need multi-level policy evaluation and may
include user privacy preferences. For instance, a user must be
allowed to decide if he wants to share data from car sensors or
whether wants to get marketing advertisements. Each activity will
evaluate required system and user policies to make final decision.

4.2 Formal Definitions

As shown in Table 1, sources, clustered objects, objects and groups
can be directly assigned values from the set of atomic values (de-
noted by Range(att)) for attribute att in set ATT. Each attribute
can be a set or atomic valued, determined by attType function and
based on its type, entities can be assigned a single value including
null (L) for an atomic attribute, or multiple values for set-valued
attribute from the attribute range. POL is the set of authorization
policies defined in the system which will be defined below.

Clustered objects can be members of different groups, based
on preferences and requirements. For example, a car is assigned
to a location group based on its GPS coordinates. In our model,
we assume that a clustered object can be directly assigned to only
one group at same hierarchy level (specified by directG function).
As we will discuss later that since groups inherit attributes from
parent groups, assigning a clustered object to one parent group is
sufficient to realize attributes inheritance. Smart cars have sensors
and applications installed in them, which can also be accessed by
different sources. Therefore, parentCO function determines the
clustered object to which an object belongs, which is a one to many
mapping i.e an object can only belong to one CO while a CO can
have multiple objects. Further, group hierarchy GH (shown as self
loop on G), is defined using a partial order relation on G and denoted
by >g, where g1 >4 g2 signifies g; is child group of g, and g; inherits
all the attributes of g;. Function parentG computes the set of parent
groups in hierarchy for a child group.

The benefit to introduce groups is ease of administration where
multiple attributes can be assigned or removed from member clus-
tered objects with single administrative operation. Group hierarchy
enables attributes inheritance from parent to child groups. There-
fore, in case of set valued attributes, the effective attribute att of a
group g (denoted by effGat(gj)) is the union of directly assigned
values for attribute att and the effective values for att for all its
parent groups in group hierarchy. This definition is well formed
since >g is a partial order. For a maximal group g; in this ordering,
we have effGait(gj) = att(g;j), giving base cases for this recursive
definition. The effective attribute values of clustered object for at-
tribute att (stated as effCOgtt) will then be the directly assigned
values for att and the effective attribute values of att for the group
to which CO is directly assigned (by directG). Similarly, in addition
to direct attributes, sensors in car can inherit attributes from the
car itself (eg. make, model, location), effO,tt calculates these effec-
tive attributes of objects. For set valued attributes, union operation
will be sufficient which is not true for atomic attributes. In case
of groups, the most recently updated non-null attribute values in
parent groups will overwrite the values of child group as defined
in Table 1. For example, if the most recent value updated in one of
the parent groups for Deer_Threat attribute is ‘ON’, this value will

67

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

County Group
(Xvz)

NN N

, Locatlon- Locatlon B Locatlon C chatmn D
1 1
1]
1 [}
I
Bus-B ‘ I
Bus—-A Bus—C Car-D
Car-B Car-C Bus—D

Figure 5: Groups Hierarchy in AWS

trickle to the child group. It should be noted that overwriting with
the most recently updated value in groups is one of the many ap-
proaches to inherit atomic attributes, but for the dynamic nature of
smart cars ecosystem, we believe this is most appropriate. Clustered
object inherits non-null atomic value from its direct parent group
as stated by effCO,tt(co) = effGyi(directG(co)). In case of objects,
parent clustered object will overwrite non-null atomic attributes.
For atomic attributes, if the parent(s) has null value for an attribute,
the entity (group, clustered object or object) will retain its directly
assigned value without any overwrite.

Authorization functions are defined for each operation op € OP,
which are policies defined in the system. POL is the set of all autho-
rization functions, Authep(s : S,0b : COU O U G), which specify
the conditions under which source s € S can execute operation op
€ OP on object ob € CO U O U G. Such policies include privacy
preferences set by users for individual clustered object, objects and
groups or can be system wide by security administrators. The con-
ditions can be specified as propositional logic formula using policy
language defined in Table 1. Multiple policies must be satisfied
before an activity is allowed to perform. Authorization function,
Authorization(a : A, s : S), where an activity a € A is allowed by
source s € S, specifies the system level, user privacy policies or
other relevant policies returning true for an activity to succeed.

CV-ABACg is an attribute-based access control model which
satisfies fine-grained authorization needs of dynamic, location ori-
ented and time sensitive services and applications in cloud assisted
smart cars ecosystem. The model supports personalized privacy
controls by utilizing individual user policies and attributes, along
with dynamic groups assignment. Our model assumes that the in-
formation and attributes shared by source and object entities are
trusted, for instance, location coordinates sent by a car are correct,
and uses this shared information to make access and notification
decisions. How to ensure that the information is from a trusted
source or is correct is out of the scope of this work.

Session 2: loT/Smart Device Security

29479°N x = T '3
W 1larmada § WiknaraD Wherriuna T 3 H
§ SO
B e Cumg il ¥ H d
masn !
Location GroupB ses—somq, Location Group A
H I
29.476'N
s
e
20.4745°N
. a [
0 b
- Mz, e
29473°N
|
294T1S°N
Logation Group C Location Group D o
2047°N L]
ol
o
29.4685°N
20467N [| & 3 =
9B.5105°W 8 509°W 96.5075°W 96 506°W 9B.5045°W 98503°W 98.5015°W 3B.5°W

Figure 6: Vehicle GPS Coordinates and Groups Demarcation

5 CV-ABAC; ENFORCEMENT IN AWS

In this section, we present a proof of concept demonstration of
CV-ABACG model by enforcing a use case of smart cars using AWS
IoT service [5]. The implementation will demonstrate how dynamic
groups assignment and multi-layer authorization policies required
in connected vehicle ecosystem can be realized in AWS. We have
used simulations to reflect real connected smart vehicles, however,
it does not undermine the plausibility, use and advantage of our
proposed model as further elaborated in following discussion. It
should be noted that no long term vehicle data including real-time
GPS coordinates are collected in central cloud, which mitigates user
privacy concerns and encourages wide adoption of the model.

5.1 Description of Use Cases

Location based alerts and notifications are important in smart cars
applications and motivate our use cases. We will build upon our
defined group hierarchy in AWS shown in Figure 5. Our implemen-
tation will enforce access controls and service notification relevance
in following use cases:

Deer Threat Notification - Smart infrastructure in the city can
sense the surrounding environment and notify group(s) regarding
the change. In this use case, a motion sensor senses deers in the
area and changes Deer_Threat attribute of location group to ON
which in-turn sends alerts to all member vehicles in that location.
Similar, implementation can be done in case of accident notification,
speed limit warning or location based marketing.

Car-Pooling - A traveller needs a ride to Location-A. Using a
mobile application, he sends car-pooling requests to vehicles in his
vicinity which are heading to the destination location asked by the
traveller. The request is received by AWS cloud, which computes
location and appropriate groups based on the coordinates of the

68

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

('Received new coordinates from:', 'Vehicle-1')
Sun May 27 02:56:30 2018
Location A
Car-A : [u'Vehicle-1', u'vehicle-2']
Bus-& : []
Location B
Ccar-B : []

Bus-B : [u'Vehicle-€']
Location C
Car-C : [u'Vehicle-3', u'vehicle-4']
Bus-C : []
Location D
Car-D : []
Bus-D : [u'Vehicle-5']

Figure 7: Dynamic Groups and Vehicles in AWS

"Deer_Threat": { <—— PolicyOperation
"Source": {
’Illl:

"Location": { &~

Source Attributes

"Location-A": {"Group": ["Location-a"]},
"Location-B": {"Group": ["Location-B"]}
} -,
be ~.
} O
be Object Attributes
"car_pool notification": { +—— Policy Operation -
"Source": { Rd
"Location-A": { & - - SourceAttributes ,'I
"destination": { L
"Location-A": {"Notification": ["Car-A"]},
"Location-B": {"Notification": ["Car-A", "Car-B", "Car-C"l},
"Location-C": {"Notification": (["Car-C", "Car-D"1},
"Location-D": {"Notification": ["Car-A", "Car-C", "Car-D"1}

Figure 8: Attribute Based Policies in AWS

requester, to publish notifications to nearby cars. All the members
of group Car-A, B, C or D can get the request, but some cars may
not want to be part of car-pooling, or do not want some requestors
to join them because of ratings. User policies will be also checked
before a driver is notified of likely car-pool customer.

5.2 Prototype Implementation

AWS implementation of our model in these use-cases involves two
phases: administrative phase and operational phase. Administrative
part involves creation of groups hierarchy, dynamic assignment
of moving vehicles to different location and sub-groups, attributes
inheritance from parent to child groups and to group members,
and attributes modification of entities. Operational part covers
how groups are used to scope down the number of vehicles who
receive messages or notifications from different sources. Both these
phases involve multi-layer access control polices. We created an
ABAC policy decision (PDP) and enforcement point (PEP) [34],
and implemented our external policy evaluation engine which is
hooked with AWS to enable attribute-based authorization.

Administrative Phase: We created a group hierarchy in AWS as
shown in Figure 5. In this hierarchy, County-XYZ is divided into
four disjoint Location-A, B, C and D groups, with each having
Car and Bus subgroups for vehicle type car or bus. We created 10

Session 2: loT/Smart Device Security

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

update things with

attribute values

group attributes
|

| {if accepted) K
publish new

ttribute values

Authorization

new effective attributes

MQTT desired state and
new effective attributes

|
\
\
\
\
\
z
g
3
2
w
E

Moving AWS Cloud Proposed S Proposed Road Side
Vehicle Shadow Service External Service External Service Sensor
[[[| [[
1 | | | | |

MQTT message - update 1 | | I
with location coordinates | I I |

|vehicle location coordinates | I I

I and relevant attributes | |
group attributes |
| e« ! |
| (if group assigned) |52 “ l I
update thing with E ,E | I |
group information and |£| 2 | | |
effective attributes é | | |

add new moving
MQTT desired state vehicle to group | | |
information and | | |
effective attributes | = | | |
. . .

Y Dynamic Assignment of Moving Vehicles te Groups 1 : :
I) |
| publish new |

|
|
|
|
|
|
|
|
I

| Updating Grou

I
|
|
|
|
|
\
\
|
+ Attributes

Figure 9: Sequence Diagram for Dynamic Groups and Attributes Assignment in AWS

vehicles and simulated their movement using a python script which
publishes MQTT message to shadows of these vehicles with current
GPS coordinates (generated using Google API [10]) iterated over
green dots shown in Figure 6. The area was demarcated into four
locations and a moving vehicle belongs to a subgroup in one of
these groups. Assuming current location of Vehicle-1 as Location-D,
and it publishes MQTT message with payload:

{"state": {"reported": {"Latitude": "29.4769353",
"Longitude":"-98.5018237"}}}

to AWS topic: $aws/things/Vehicle-1/shadow/update, its new
location changes to Location-A and since we defined the vehicle
type as car, it is assigned to Car-A group under Location-A as shown
by snippet in Figure 7. Both attributes, vehicle type and current
coordinates of vehicle, are used to dynamically assign groups, which
is important in moving smart vehicles. These functionalities are
implemented as a stand alone service (can be enforced as a Lambda
service [6] function) using Boto [7] which is the AWS SDK for
Python. Further, in case of deer threat notification use-case, we
simulated a location-sensor which senses deers in the area and
updates the attribute ‘Deer_Threat’ of location group to ‘ON’ or
‘OFF’, which is then notified to all members of location and its
subgroups. We defined an attribute-based policy to control which
sensors can change the ‘Deer_Threat’ attribute of location groups.
As shown in Figure 8, our policy for Deer_Threat operation checks
that a motion sensor with ID = ‘1” and current groups of Location-A
can update the attribute Deer_Threat for group Location-A, and if
sensor is relocated to Location-B it can update attribute for Location-
B group only. This policy ensures that the sensor must be in that
location group for which it is updating Deer_Threat attribute.

69

The complete sequence of events performed in AWS along with
our stand-alone service for the administrative phase is shown in
Figure 9. A moving vehicle updates its coordinates to AWS shadow
service, which along with attributes of vehicles and location groups
determines if the vehicle can be member of the group using our
external enforcement service. If authorization policy allows vehicle
to be a member of group, the vehicle and group is notified and
vehicle inherits all attributes of its newly assigned group. Simi-
larly, if attribute ‘Deer_Threat’ of group is allowed (by authoriza-
tion policy) to be changed by the location sensor, the new values
are propagated to all its members. We implemented attribute in-
heritance from parent to child groups through our service using
update_thing_group and update_thing methods. In our use-case
attributes inheritance exist from Location-A to all both subgroups
Car-A and Bus-A, and to vehicles in Car-A and Bus-A. Therefore,
when attribute ‘Deer_Threat’ is set to ON in group Location-A, its
new attributes using Boto describe_thing_group command are:

{‘Center-Latitude’: 29.4745’,
¢-98.503’, ‘Deer_Threat’ :

‘Center-Longitude’:
‘ON’}

This inherits the attributes to Car-A child group whose effective
attributes will now be:

{‘Center-Latitude’:
€-98.503’, ‘Deer_Threat’:

€29.4745’,
‘ON’ ,

‘Center-Longitude’:
‘Location’: ‘A’}

As shown in Figure 7, both Vehicle-1 and Vehicle-2 as member of
Car-A, the effective attributes of Vehicle-2 are:

{‘Center-Latitude’: ‘29.4745’, ‘Center-Longitude’:
¢-98.503’, ‘Deer_Threat’: ‘ON’, ‘Location’: ‘A’,
‘Type’: ‘Car’, ‘VIN’: ‘9246572903752’, ‘thingName’:
‘Vehicle-2’}

Session 2: loT/Smart Device Security

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

Source AWS Cloud Proposed Moving User Privacy Policies
Requestor Shadow Service External Service Groups Vehicles [AWS GreenGrass)
I | I | [
1 | |
MQTT Publish |
(location coordinates I
+ attributes n

+ service request)
source location

+ attributes

z
T
B
&
w
E
E

Authorization
Folicy Engine

notification to

.

Notification
Accept/ Reject

relevant groups
attributes of
members attributes of requestor
+ c
=
attributes of receiver =
5
5
S
3
YES/NO 2
Accept/ Reject
L

|
|
|
|
|
|
|
|
requestor to |
|
|
|
|
|
|
|
|
|

Figure 10: Sequence Diagram for Attributes Based Authorization in AWS

Operational Phase: In this phase, attribute-based policies are used
to restrict service and notification activities which may require
single or multi-level policies along with user preferences. In car-
pooling use case, we defined policies to restrict notifications to
only a subset of relevant vehicles in specific locations. We sim-
ulated requestor in AWS needing car-pool. It has attribute ‘des-
tination’ with value in Location-A, B, C or D. Requestor sends
current and destination location as MQTT message to AWS topic
$aws/things/Requestor/shadow/update which based on these
attributes determine subgroups to which service requests is sent.

{"state": {"reported": {"policy":
"car_pool_notification", "source": "Location-A",
"destination": "Location-B"}}}

The policy for car_pool_notification operation (shown in Fig-
ure 8) suggests that if current location of source requestor is
‘Location-A’ and destination location is somewhere in ‘Location-A’
then all members of sub-group Car-A should be notified. Similarly,
if the destination attribute is Location-B, then all members of Car-A,
Car-B and Car-C needs notification. In our use-case, all members
of these sub-groups are notified. The policy restricts the number of
vehicles which will be requested as compared to all vehicles getting
irrelevant notification (as they are far from the requestor or are not
vehicle type car) and illustrates the importance of location-centric
smart car ecosystem. Similarly, location-based marketing can be
restricted and policies can be defined to control such notifications.

User privacy policies take into effect once the subset of vehi-
cles is calculated. These policies encapsulate user preferences, for
instance, in car pooling a particular driver is not going to the des-
tination requested by the requestor in his request or a driver do
not want restaurant advertisements, therefore such notifications
will not be displayed on his car dashboard. These local policies are
implemented using AWS Greengrass [4] which allows to run local
lambda functions on the device (in our case a connected vehicle)
to enable edge computing facility, an important requirement in
real-time smart car applications and enforce privacy policies. Once

70

Policy Enforcer Cars Notified
Number of Execution Time nth R ot With ABAC Without
Requests (in ms) faque Policy Policy
10 0.0501 A1t 2 5
20 0.1011 42nd 3 5
43rd 5 5
30 0.1264 44th 3 5
40 0.1630 a5th 3 .
50 0.1999 46th 3 5

Figure 11: Policy Enforcement Time and Scoping

accepted by drivers, a SNS (AWS Simple Notification Service) [8]
message can be triggered for requestor from accepting vehicles
along with name and vehicle number. The sequence of events for
car-pooling activity and multi-layer authorization policies together
with user personal preferences is shown in Figure 10.

Our proposed external service to implement ABAC policy deci-
sion and evaluation helps achieve fine grained authorization needed
in smart cars ecosystem. The implementation also demonstrates dy-
namic groups assignment based on mobile vehicle GPS coordinates
and attributes along with groups based attributes inheritance which
offer administrative benefits in enforcing an ABAC model. In this
entire implementation, no persistent data from moving vehicles
is collected or stored by the central authority hosted cloud which
reaffirms its privacy preserving benefits. Note that the use-cases
discussed to enforce CV-ABACg are not real-time and can bear
some latency due to the use of cloud infrastructure. Although our
CV-ABACg enforcement in AWS reflects its use for cloud based
applications, we believe similar model can also be implemented in
edge (or fog) systems as well to cater more real-time use-cases.

5.3 Performance Evaluation

We evaluated the performance of our proposed CV-ABACg model
in AWS and provide different metrics when no policies were used

Session 2: loT/Smart Device Security

—+—WithABAC Policy —m—Without Policy
5600

4800
4000
3200
2400

1600

TIRE (1M MILLISECOMDS)

BOO

0 10 20 30 40 50 60
NUMBER OF ACTION REQUESTS

Figure 12: Performance Evaluation

against our implemented ABAC policies for the car-pooling notifica-
tion use-case. As shown in Figure 11, our external policy evaluation
engine has average time (in milliseconds) to decide on car-pooling
service requests and provide the subset of cars which are notified.
This scoping ensures the service relevance as without a policy all 5
vehicles were sent car-pool request (even when one was 20 miles
away from the requestor), whereas with attribute based policies
only nearby cars are notified. The performance graph shown in
Figure 12 compares no policy execution time (red line) against im-
plemented ABAC policy (blue line). Since, in our experiments the
policy (shown in Figure 8) evaluated for each access requests is
the same, we get a linear graph as the number of access requests
increase the number of times the policy is evaluated and so its total
evaluation time. Some variation in red line is because of the network
latency time to access AWS cloud, although this can change based
on the communication technologies used by vehicles including 3G,
LTE, cellular or DSRC [9]. Clearly, this external policy engine does
have some impact on the performance against no policy when used
with number of vehicles. However, we believe when used in city
wide scenario this time will be overshadowed by the notification
time to all vehicles against a subset of vehicles provided by the
policy evaluation engine. Our model and the use-case is focused to
ensure service relevance to moving drivers on road which is well
achieved even with a little tradeoff.

We understand that practical smart city transportation scenar-
ios will have hundreds and thousands of moving cars (and other
connected entities) associated to cloud (or fog infrastructures) and
interacting. Although a detailed performance evaluation is eventu-
ally necessary by simulating large set of vehicles, we believe that
our proof of concept in AWS is to showcase the practical viability
and use of fine grained attribute based security policies in context
of smart cars ecosystem, without the need to capture large set of
data points from real world traffic scenarios spread across wide
geographic area and sizable on-road moving vehicles. Such scaled
setting will only stress the entire system without reflecting any
change in security policy evaluation. We consider more detailed
performance analysis as an extension to this work.

71

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

6 SUMMARY

This research work presents a fine-grained attribute-based access
control model for time-sensitive and location-centric smart cars
ecosystem. Our model introduces the novel notion of dynamic
groups in relation to connected vehicles and emphasizes its rele-
vance in this context. Besides considering system wide authoriza-
tion policies, this model also supports personal preference poli-
cies for different users, which is required in today’s privacy con-
scious world. Several real world use-cases are discussed and a proof
of concept implementation of our CV-ABACg model is shown in
Amazon Web Services (AWS) cloud platform. This implementation
demonstrates how moving vehicles can be dynamically assigned
to location and sub-groups defined in the system based on the cur-
rent GPS coordinates, vehicle-type and other attributes, besides
the use of attribute based security policies in distributed and mo-
bile connected cars ecosystem. Performance has been evaluated
against time taken to determine activity access control decision
when groups and ABAC policies are used against when no security
policies are available. We envision to extend our model to intro-
duce in-vehicle security and built risk aware trust-based models
for smart vehicles environment. Also a more detailed evaluation
and performance analysis of this model is needed to cover large
set of moving vehicles, which is an enhancement to this work.
Further, location privacy preserving approaches such as homomor-
phic encryption and other anonymity techniques can be used to
complement and extend our model which can mitigate location
sharing concerns without effecting its advantages and application.
V2X trusted DSRC communication and privacy concerns also need
further investigation, which we plan to explore as part of our future
work in intelligent transportation.

ACKNOWLEDGEMENTS

This work is partially supported by NSF CREST Grant HRD-1736209,
NSF grant CNS-1423481, and DoD ARL Grant W911NF-15-1-0518.

REFERENCES

[1] 2014. Connected Vehicles and Your Privacy. https://www.its.dot.gov/factsheets/
pdf/Privacy_factsheet.pdf

[2] 2017. 2017 Roundup Of Internet Of Things Forecasts. https://www.forbes.com/
sites/louiscolumbus/2017/12/10/2017- roundup- of-internet- of- things-forecasts/
#67005b6a1480 [Online; Accessed: 2018-05-03].

[3] 2018. AWS. https://aws.amazon.com/ [Online; Accessed: 2018-05-09].

[4] 2018. AWS Greengrass. https://aws.amazon.com/greengrass/ [Online; Accessed:
2018-05-27].

[5] 2018. AWS-IoT. https://aws.amazon.com/iot/ [Online; Accessed: 2018-05-09].

[6] 2018. AWS Lambda. https://aws.amazon.com/lambda/ [Online; Accessed: 2018-
05-20].

[7] 2018. AWS SDK for Python (Boto3). https://aws.amazon.com/sdk-for-python/
[Online; Accessed: 2018-05-23].

[8] 2018. AWS Simple Notification Service. https://aws.amazon.com/sns/ [Online;
Accessed: 2018-05-20].

[9] 2018. DSRC. https://en.wikipedia.org/wiki/Dedicated_short-range_

communications [Online; Accessed: 2018-08-07].

2018. Google Maps Platform. https://cloud.google.com/maps-platform/ [Online;

Accessed: 2018-05-09].

2018. Vehicular ad hoc networks. https://en.wikipedia.org/wiki/Vehicular_ad_

hoc_network [Online; Accessed: 2018-05-30].

M. Aazam and et al. 2014. Cloud of Things: Integrating Internet of Things and

cloud computing and the issues involved. In Proc. of IBCAST. 414-419.

A. Al-Fugaha and et al. 2015. Internet of things: A survey on enabling technologies,

protocols, and applications. [EEE Comm. Surveys & Tutorials (2015), 2347-2376.

[14] Asma Alshehri and Ravi Sandhu. 2016. Access control models for cloud-enabled

internet of things: A proposed architecture and research agenda. In Proc. of IEEE
CIC. 530-538.

https://www.its.dot.gov/factsheets/pdf/Privacy_factsheet.pdf
https://www.its.dot.gov/factsheets/pdf/Privacy_factsheet.pdf
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#67005b6a1480
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#67005b6a1480
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#67005b6a1480
https://aws.amazon.com/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/iot/
https://aws.amazon.com/lambda/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sns/
https://en.wikipedia.org/wiki/Dedicated_short-range_communications
https://en.wikipedia.org/wiki/Dedicated_short-range_communications
https://cloud.google.com/maps-platform/
https://en.wikipedia.org/wiki/Vehicular_ad_hoc_network
https://en.wikipedia.org/wiki/Vehicular_ad_hoc_network

Session 2: loT/Smart Device Security

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]

[25]

[26]

[27

[28]

[29

[30

[31

[32]

[33]

[34

Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The internet of things:
A survey. Computer networks 54, 15 (2010), 2787-2805.

Jim Barbaresso and et al. 2014. USDOT’s Intelligent Transportation Systems ITS
Strategic Plan 2015- 2019. (2014).

S. Bhatt, F. Patwa, and R. Sandhu. 2017. An Access Control Framework for
Cloud-Enabled Wearable Internet of Things. In Proc. of IEEE CIC. 328-338.
Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. 2017. Access Control Model for
AWS Internet of Things. In Proc. of NSS. Springer, 721-736.

A. Botta, W. de Donato, V. Persico, and A. PescapAl. 2014. On the Integration of
Cloud Computing and Internet of Things. In Proc. of IEEE FiCLOUD. 23-30.
Mohamed Eltoweissy and et al. 2010. Towards Autonomous Vehicular Clouds. In
Ad Hoc Networks. Springer, 1-16.

ENISA. 2017. Cyber Security and Resilience of smart cars: Good prac-
tices and recommendations. https://www.enisa.europa.eu/publications/
cyber-security-and-resilience- of-smart-cars [Online; Accessed: 2018-01-27].
David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy
Chandramouli. 2001. Proposed NIST standard for role-based access control. ACM
Transactions on Information and System Security (TISSEC) 4, 3 (2001), 224-274.
US GAO. 2016, March. Vehicle Cybersecurity . GAO-16-350 (2016, March).
https://www.gao.gov/assets/680/676064.pdf

M. Gerla, E. Lee, G. Pau, and U. Lee. 2014. Internet of vehicles: From intelligent
grid to autonomous cars and vehicular clouds. In Proc. of IEEE WF-IoT. 241-246.
J. Gubbi and et al. 2013. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future generation computer systems 29, 7 (2013), 1645-1660.
M. Gupta and et al. 2017. Multi-Layer Authorization Framework for a Represen-
tative Hadoop Ecosystem Deployment. In Proc. of ACM SACMAT. 183-190.
Maanak Gupta, Farhan Patwa, and Ravi Sandhu. 2017. Object-Tagged RBAC
Model for the Hadoop Ecosystem. In Proc. of DBSec. Springer, 63-81.

Maanak Gupta, Farhan Patwa, and Ravi Sandhu. 2017. POSTER: Access control
model for the Hadoop Ecosystem. In Proceedings of the 22nd ACM on Symposium
on Access Control Models and Technologies. ACM, 125-127.

Maanak Gupta, Farhan Patwa, and Ravi Sandhu. 2018. An Attribute-Based Access
Control Model for Secure Big Data Processing in Hadoop Ecosystem. In Proc. of
the Third ACM Workshop on Attribute-Based Access Control. 13-24.

Maanak Gupta and Ravi Sandhu. 2016. The GURAG Administrative Model for
User and Group Attribute Assignment. In Proc. of NSS. Springer, 318-332.
Maanak Gupta and Ravi Sandhu. 2018. Authorization Framework for Secure
Cloud Assisted Connected Cars and Vehicular Internet of Things. In Proc. of ACM
SACMAT. 193-204.

Maanak Gupta and Ravi Sandhu. 2018. POSTER: Access Control Needs
in Smart Cars. https://www.ieee-security.org/TC/SP2018/poster-abstracts/
oakland2018-paper26-poster-abstract.pdf. [Online; Accessed: 2018-10-04].

Per Hallgren, Martin Ochoa, and Andrei Sabelfeld. 2015. Innercircle: A paralleliz-
able decentralized privacy-preserving location proximity protocol. In Privacy,
Security and Trust (PST), 2015 13th Annual Conference on. IEEE, 1-6.

Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang,
Margaret M Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, and Karen

72

@
2

'S
o

'S
&

~
&

™~
)

CODASPY ’19, March 25-27, 2019, Richardson, TX, USA

Scarfone. 2014. Guide to attribute based access control (ABAC) definition and
considerations. NIST Special Publication 800-162 (2014).

Vincent C Hu, D Richard Kuhn, and David F Ferraiolo. 2015. Attribute-based
access control. IEEE Computer 2 (2015), 85-88.

Rasheed Hussain and et al. 2012. Rethinking vehicular communications: Merging
VANET with cloud computing. In Proc. of IEEE CloudCom. 606-609.

Xin Jin, Ram Krishnan, and Ravi Sandhu. 2012. A unified attribute-based access
control model covering DAC, MAC and RBAC. In DBSec. Springer, 41-55.

R. Lea and M. Blackstock. 2014. City Hub: A Cloud-Based IoT Platform for Smart
Cities. In Proc. of IEEE CloudCom. 799-804.

Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg,
Dan Boneh, et al. 2011. Location Privacy via Private Proximity Testing.. In NDSS,
Vol. 11.

NHTSA. 2016. NHTSA and Vehicle CyberSecurity. NHTSA Report (2016).
NHTSA. 2016, October. Cybersecurity Best Practices for Modern Vehicles. NHTSA
Report No. DOT HS 812 333 (2016, October).

M. Nitti and et al. 2016. The virtual object as a major element of the internet of
things: a survey. IEEE Comm. Surveys & Tutorials (2016), 1228-1240.

Stephan Olariu and et al. 2011. Taking VANET to the clouds. International Journal
of Pervasive Computing and Communications 7, 1 (2011), 7-21.

Jaehong Park, Ravi Sandhu, and Yuan Cheng. 2011. Acon: Activity-centric access
control for social computing. In Proc. of IEEE ARES. 242-247.

Jaehong Park, Ravi Sandhu, and Yuan Cheng. 2011. A user-activity-centric
framework for access control in online social networks. IEEE Internet Computing
15, 5 (2011), 62-65.

Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. 1996.
Role-based access control models. Computer 29, 2 (1996), 38-47.

Ravi S Sandhu and Pierangela Samarati. 1994. Access control: principle and

%ractice. IEEE communications magazine 32, 9 (1994), 40-48.
aniel Servos and Sylvia L Osborn. 2014. HGABAC: Towards a Formal Model

of Hierarchical Attribute-Based Access Control. In International Symposium on
Foundations and Practice of Security. Springer, 187-204.

European Union. 2017. Certificate Policy for Deployment and Operation of European
Cooperative Intelligent Transport Systems (C-ITS). https://ec.europa.eu/transport/
sites/transport/files/c-its_certificate_policy_release_1.pdf

European Union. 2017. Security Policy & Governance Framework for Deploy-
ment and Operation of European Cooperative Intelligent Transport Systems (C-
ITS). https://ec.europa.eu/transport/sites/transport/files/c-its_security_policy_
release_1.pdf

USAToday. 2017. Chinese group hacks a Tesla for the second year in a row.
USDOT. 2016. Securty Credential Management System. https://www.its.dot.gov/
resources/scms.htm [Online; Accessed: 2018-01-13].

Md Whaiduzzaman and et al. 2014. A survey on vehicular cloud computing.
Journal of Network and Computer Applications 40 (2014), 325-344.

Wired. 2015. Hackers Remotely Kill a Jeep on the Highway-With Me in It.

Ge Zhong, Ian Goldberg, and Urs Hengartner. 2007. Louis, lester and pierre: Three
protocols for location privacy. In International Workshop on Privacy Enhancing
Technologies. Springer, 62-76.

https://www.enisa.europa.eu/publications/cyber-security-and-resilience-of-smart-cars
https://www.enisa.europa.eu/publications/cyber-security-and-resilience-of-smart-cars
https://www.gao.gov/assets/680/676064.pdf
https://www.ieee-security.org/TC/SP2018/poster-abstracts/oakland2018-paper26-poster-abstract.pdf
https://www.ieee-security.org/TC/SP2018/poster-abstracts/oakland2018-paper26-poster-abstract.pdf
https://ec.europa.eu/transport/sites/transport/files/c-its_certificate_policy_release_1.pdf
https://ec.europa.eu/transport/sites/transport/files/c-its_certificate_policy_release_1.pdf
https://ec.europa.eu/transport/sites/transport/files/c-its_security_policy_release_1.pdf
https://ec.europa.eu/transport/sites/transport/files/c-its_security_policy_release_1.pdf
https://www.its.dot.gov/resources/scms.htm
https://www.its.dot.gov/resources/scms.htm

	Abstract
	1 Introduction
	2 Related Work
	2.1 Extended ACO Architecture
	2.2 Relevant Background

	3 Authorization Requirements in Smart Cars
	3.1 Multi-Layer and User Privacy Preferences
	3.2 Relevance of Groups

	4 Access Control Model for Connected Vehicles Ecosystem
	4.1 CV-ABACG Model Overview
	4.2 Formal Definitions

	5 CV-ABACG Enforcement in AWS
	5.1 Description of Use Cases
	5.2 Prototype Implementation
	5.3 Performance Evaluation

	6 Summary
	References

