Session: Blue Sky/Vision Track

SACMAT ’19, June 3-6, 2019, Toronto, ON, Canada

Toward Detection of Access Control Models from Source Code
via Word Embedding

John Heaps
The University of Texas at San Antonio

john.heaps@utsa.edu

Travis Breaux
Carnegie Mellon University
breaux@cs.cmu.edu

ABSTRACT

Advancement in machine learning techniques in recent years has
led to deep learning applications on source code. While there is
little research available on the subject, the work that has been done
shows great potential. We believe deep learning can be leveraged
to obtain new insight into automated access control policy verifica-
tion. In this paper, we describe our first step in applying learning
techniques to access control, which consists of developing word
embeddings to bootstrap learning tasks. We also discuss the future
work on identifying access control enforcement code and checking
access control policy violations, which can be enabled by word
embeddings.
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1 INTRODUCTION

The ability to verify access control policies and properties of a sys-
tem is invaluable in assuring the security and proper compliance of
sensitive data access and system performance. While manual verifi-
cation is always an option, it is prone to human error and requires
large amounts of time for even average-sized systems, making such
a process infeasible for many systems. Thus, automation of this ver-
ification process has been a topic attracting much research. Many
current techniques rely on static or dynamic analysis of a system
to identify and build access control models that define the system’s
access control behavior. By creating an access control model, verifi-
cation of the access control policy becomes a much simpler task.
However, these analysis techniques suffer from many obstacles in
building such models, such as determining what code elements are
related to roles or permissions and how to link these code elements
to specific policy elements. Further, even if these mappings are
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defined for a system, static analysis techniques will only be able to
detect those links that are very similar in implementation. That is,
static analysis does not have the ability to determine or construct
new mappings, only those that are manually defined.

There have been advancements in machine learning, specifically
deep learning, in recent years. This includes novel applications
in learning classification and prediction tasks dealing with image
processing, text and sentiment identification, network traffic anal-
ysis, and others. While still very new, research in deep learning
on source code is becoming increasingly popular. This includes
preliminary work done on clone detection [15], function naming
and summerization [3], vulnerability detection [13], and more. We
believe that the techniques and algorithms being developed have
potential to assist in automating access control policy verification.
For example, we hope deep learning is not only able to learn the
patterns necessary to determine links between code and policy
elements from annotated training data, but that it can also find new
links between code and policy elements previously unencountered.

Like natural language text, code elements do not contain underly-
ing numerical meaning for the necessary deep learning calculations
to be performed. Therefore, in order to perform deep learning tasks
on access control, the first step is to create word embeddings for
code elements. Word embeddings map code elements into a high
dimensional space to facilitate learning. In this paper, we describe
our initial attempts to construct word embeddings using a modified
version of the popular Word2Vec algorithm. Word2Vec creates an
embedding given a word and its surrounding words, called the word
context. Our modifications primarily focus on how to construct
word context for code elements so that high quality word embed-
dings are produced. We run the modified Word2Vec algorithm on
the Java Development Kit 8 (JDK8)! and the access control library
Apache Shiro?, and evaluate the resulting embeddings by reporting
the perplexity and showing a plot of 99 of the most common code
elements in each library.

We also discuss future work such as how we plan to further im-
prove our word embeddings for code elements which mainly focus
on modifications to the Word2Vec model in addition to changes
to the input. Furthermore, we present our plan to perform eval-
uations on the capabilities of the word embeddings and how the
embeddings can be applied to mapping access control policies to
code implementation and checking for policy violations. Finally, a

!https://www.oracle.com/technetwork/java/javase/overview/index.html
Zhttps://shiro.apache.org/
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Figure 1: Neural Network Example

list of major problems that will be encountered with deep learning
on source code is also identified and discussed.

2 BACKGROUND

In this section, we present background on deep learning, word
embedings, and discuss related work.

2.1 Deep Learning

A neural network is a feed-forward graph consisting of multiple lay-
ers, where each layer is made up of a number of neurons. There are
three main types of layers, each with corresponding neurons: input,
hidden, and output. The input layer is composed of input neurons
that define the shape of the input data to the network. The hidden
layers are composed of neurons that perform a transformation on
the input data that can be used to determine the final output of the
network. Each hidden layer has an activation function associated
with it and each neuron in the layer has a weight and bias asso-
ciated with it. The weight and bias are used to calculate a linear
transformation on the input which is then used as input to the
layer’s activation function, such as the sigmoid or tanh functions.
The output layer is composed of output neurons which interprets
the final results of the hidden layer transformations and produces
the final classification or prediction of the network. Figure 1 shows
an example of a neural network. Each vertical line of nodes is a
layer. The leftmost layer is the input layer, the middle two layers
are hidden layers, and the rightmost layer is the output layer.
After the architecture of the network is determined, a network
is trained by defining the set of inputs and corresponding proper
outputs, called labels. Next, an input is given to the input layer of
the network and the output layer gives a classification or prediction.
The network’s output is then compared to the corresponding input
label. If the answer is incorrect, a loss function determines how far
from the label the network’s output was, and the weights and bias
are modified based on the calculated loss using back prorogation.
This learning happens over multiple iterations of the entire set of
input. Ideally, the weights will be modified so that for each input
the network’s output constantly matches that input’s label.
Neural networks perform well when learning over data that is
easily represented with numerical values, such as: individual pixels
in a picture, network traffic data, metric data, etc. For text, however,
there is no meaningful underlying numerical values to represent
words. To solve this problem, natural language processing utilizes
word embeddings to represent the relative semantic meaning of
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words. A word embedding is an m-dimensional vector of real num-
bers, with each dimension representing some semantic feature of
words which gives a distributed representation of a word [10]. Each
vector specifies a word’s location in the m-dimension space, and
words with similar meanings are close in this space. Since we use
deep learning to determine the values for each word’s vector, we
currently have no way to determine what feature each dimension
represents. What we are able to determine, however, is whether
those word embeddings have been assigned relatively meaning-
ful values based on their location in the space. For example, take
the words king and queen. These should be in similar locations in
the vector space as they both describe a ruler of a monarch, only
separated by the distinction of the king being male and the queen
being female. Similarly, the words man and woman should be in
fairly close proximity to each other as they both describe a human
being, again separated by the man being male and the woman being
female. When looking at meaningful word embeddings, not only
will we find king and queen close together and man and woman
close together, but we should also expect that the distance between
king and queen should be about the same as the distance between
man and woman, since they are separated by the same concept
of gender. That is, if our word embeddings were perfect, then the
statement queen = king—man+woman would hold, using the word
embedding vectors that represent each word. Word embeddings
should describe the relative meaning between the words in the vo-
cabulary. This will allow learning models to find the relations and
patterns in textual data that achieve optimal outputs for assigned
learning tasks. These relative meanings between all the words in
the vocabulary are realizable because there is a naturalness and
structure to language. As described by Hindle et. al. [7], this same
naturalness and structure are mimicked in programming languages
as well, except there is even greater naturalness and stricter struc-
ture in programming languages than in natural languages. This
suggests that word embeddings should also be applicable to source
code as well as normal text.

GloVe (Global Vectors for word representation) [12] and Skip-
gram [9] are two of the most popular word embedding learning
models. Both operate on the same fundamental idea that, given a
corpus of text, the semantic meaning of a word can be determined
by utilizing the surrounding words as semantic context. GloVe
uses a co-occurrence matrix of all the words in a corpus. When
the matrix has been filled with all word co-occurrences, matrix
factorization is performed to produce the vector values of each
word’s embedding. Skip-gram defines a window size that indicates
the number of surrounding words to use as context. A given word’s
vector values are updated by predicting its context using a neural
network. For our purposes, we will use the popular Skip-gram
algorithm Word2Vec, and propose to use a modified version of
Word2Vec to obtain word embeddings for code elements in source
code.

2.2 Related Work

In our related work, we separately discuss the applications of deep
learning on source code by the way word embeddings have been
constructed. We first describe work where word embeddings were
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learned using an unmodified version of the Word2Vec or Skip-
gram algorithms, and then discuss work where the algorithms were
modified to more appropriately handle the structure of source code.

2.2.1 Deep Learning On Source Code. Below, we review work
wherein word embeddings were directly learned from the source
code without using specialized data structures. The embeddings
were learned linearly. That is, each code element used surrounding
code elements from in front and behind it to determine its embed-
ding. This is a very different approach from ours, which learns
embeddings based on a set of rules for each type of code element,
and which has important issues that we discuss in Section 3 and
Section 5.1.

Hellendoorn et al. [6] examined the feasibility of using deep
learning on source code. They compare deep learning models with
statistical models and mixed models (i.e., a combination of statistical
and deep learning models) over performance on source code word
prediction. They show that deep learning has no major advantage
over statistical models, but mixed models improved accuracy to
outperform other model types. They identify a number of issues
that deep learning has with source code and address some of the
limitations. The highest accuracy achieved by the code prediction
experiments was 86.2% by the mixed models. However, the learning
used basic n-gram (i.e., skip-gram) which only uses the nearby,
surrounding code elements to determine the word embeddings
used to perform code prediction. This ignores the structure of code
which could have been utilized by the learning algorithm to yield
better results.

White et al. [16] learns a software language model (i.e., word
embeddings) using a recurrent neural network (RNN) (without
long-short term memory (LSTM)). They discuss motivations for
using deep learning and the construction of their RNN model. The
RNN is compared to a “state-of-practice” n-gram algorithm which
the RNN outperforms as measured by perplexity and in a code
suggestion experiment. The highest accuracy achieved during code
suggestion was 92% for top-10 suggestions and 88.4% for top-5.
While this approach shows potential, it would be interesting to see
it perform on tasks other than code suggestion or prediction. Using
an RNN to learn word embeddings linearly is likely a good option
for code suggestion, but for many other tasks this approach may
not perform as well.

Russell et al. [13] performs a vulnerability detection task on
C/C++ code. They create two datasets using a combination of static
analysis and manual inspection to label code functions as vulnerable
(meaning the funtion contains a bug pattern that could cause secu-
rity risk) or not vulnerable (meaning the function does not contain
any bug pattern that could cause a security risk). One dataset is
constructed using a combination of Debian Linux distribution and
GitHub project source code, and the other dataset is constructed
using the SATE IV Juliet Test Suite®. After building this dataset,
they build word embeddings by parsing C/C++ source code into
a vocabulary of code elements and then reduce that vocabulary
to 156 representative tokens, which then have word embeddings
constructed for them. They then use these word embeddings in a
convolution neural network (CNN) classifier to learn and predict if
a given function is vulnerable or not vulnerable.

Shttps://samate.nist.gov/SATE4 . html
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The major difference between these models and ours is the learn-
ing of word embeddings using context of immediately surrounding
code elements. In our approach we utilize an abstract syntax tree
(AST) which allows us to take advantage of the syntactic structural
information of source code.

2.2.2 Deep Learning Models Utilizing Abstract Syntax Trees For
Code Analysis. Peng et al. [11] describe building vector represen-
tations (i.e., word embeddings) for program code. These vectors
can be used as input to a deep learning model in order to assist the
model in its learning and analysis. They build such vectors using
a “coding criterion” model on nodes in an AST representation of
the program code. The coding criterion dictates that a non-leaf
node in the AST is a function of the sum of all its children nodes,
weighted by the depth of the child from the parent (i.e, the further
away from the parent in the AST, the less weight it receives). The
identifiers are not used (e.g., names, types, etc.), only the AST node
types (e.g., FuncDef, BinaryOP, Decl, etc.). To test their word em-
beddings, they performed a classification task on code using the
vector representations in a CNN. Programs were labeled with an
ID and the CNN was tasked with learning which programs were
assigned to which IDs. The CNN performed at 95.33% accuracy.
While the results show promise, there were only four programs
in this experiment, which did not define the program size. While
our approach utilizes node name and type, this approach only used
the AST node types throughout the learning process. It is unclear
how this might perform in other larger and more complex learning
tasks.

White et al. [15] performs clone detection using deep learning.
They model the lexical code features and structural code features
separately using RNN and recursive neural networks, respectively.
The lexical features of the code are processed in linear order to
define a language model. The structural features of the code are
processed using an AST, which is converted to a binary tree and
then annotated with the learned language model. They performed
the clone detection on eight Github Java projects, six of which
had a precision above 90% and the remaining two had precision
scores just below 60%. While these results show promise, the only
metric described in the paper was precision, leaving out other scores
normally reported, such as accuracy, recall, F1, etc. The learning
of lexical features using n-gram (which only learns linear context)
and then annotating structural features (non-linear context) with
these may also hinder the learning algorithm. In our approach, all
context is learned utilizing an AST as opposed to learning some
context linearly and other context with an AST.

Alon et al. [3] perform function naming using paths of the func-
tion declaration and body. They encode each path as an embedding
which is then learned over all given functions. While this approach
yields good results for most function naming, there were some
names that were as low as 40% probability that the correct name
was chosen. Further, it is not clear how this would scale to lower
level or higher level code elements (i.e., how would it determine
paths for a class or for a single variable that can appear in many
levels of an AST). Our approach learns individual code elements
instead of code paths, which allows better scalability.

Finally, Tai et al. [14] describe a tree LSTM neural network. The
LSTM nodes are able to receive input from multiple child nodes that
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utilize forget gates. The approach is very interesting, but the learned
embeddings are based purely on the child nodes. In Section 3, we
discuss problems with this type of model. However, the techniques
and strategies may help in producing better word embeddings for
particular AST node types.

3 CURRENT APPROACH

In our current work, we created word embeddings for Java code el-
ements using Tensorflow [1]. These word embeddings were created
using a modified version of the Word2Vec skip-gram algorithm. In
original skip-gram, a dictionary is defined which is an indexed list
of all words in a corpus. These indices correspond to a list of vectors
that are the word embeddings. The word embeddings are initial-
ized to random values which will be modified by the Word2Vec
algorithm using a neural network. For each word in the corpus,
context is defined that determines the word’s semantic meaning.
Given a target word in the corpus, the context for that word is
found by a window that looks a number of words before and after
the target word. In original skip-gram, each context word is used as
a label for the target word. The neural network receives the target
word as input and tries to predict each label as output. The word
embeddings are then modified during back prorogation.

Since a dictionary can be quite large, it can take a large amount
of time for each prediction and back propagation task to be per-
formed. This makes learning infeasible for any average-sized corpus.
Word2Vec solves this problem by utilizing negative samples. That
is, Word2Vec pairs each context word with the target word to be
used as related pairs, but it then also chooses random words from
the dictionary that are not present in the context to pair with the
target word to act as unrelated pairs. Instead of providing the target
word as input and predicting the contex as output, Word2Vec pro-
vides the target word and either a context word or random word
as a pair as input and predicts whether the pair is related (the sec-
ond word was a context word) or unrelated (the second word was
a random word). This changes the original prediction task from
distinguishing between every word in the entire dictionary to a
binary determination. This drastically reduces the time to perform
prediction and back propagation and allows the algorithm to learn
embeddings quickly for a large corpus.

For our purposes, the Word2Vec algorithm is used as described
with the exception of how the context for each code element is
chosen. In natural language, using surrounding words as context
for a target word is motivated by the idea that words with similar
semantic meaning will be used in similar ways. This implies that
words with similar semantic meaning will be generally surrounded
by the same or similar words, which will then define the same or
similar context for the prediction task. However, in many cases
this is not true for code. The complex syntactic nature of code
causes code elements that should be used as context for a target
code element to appear in many different places that are not in
the immediate vicinity of the target code element. For example, in
Java if only the surrounding code elements were used as context
for a method name, only the method’s modifiers and parameters
would be captured and used as context; however, the entire method
definition should also be used as context as those code elements
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directly determine the meaning of the method name. Similarly, cer-
tain code elements should not use some surrounding code elements
as context. For example, the statements before and in the body of a
while loop should not be considered as context for the while key-
word since the statements do not affect the behavior of while (with
the exception of the continue and break keywords). Therefore, a
different strategy for choosing the context for each code element
in the network must be utilized.

The syntactic structure of code is quite complex compared to
natural language, and is key in determining how code elements
are related to each other, as shown by Peng et al. [11]. Therefore,
to help capture the inherent structure of code, we determine code
element context using a code’s AST. An AST represents source code
as a parse tree based on the context-free grammar of the language.
We use the JavaParser* tool to obtain the AST of a Java program.

In our first attempt at creating word embeddings for code el-
ements, we assumed that for a given node (or code element) in
the AST, all of its child nodes would provide the context for that
node, similar to the work done by Peng et al. [11] and Tai et al. [14].
However, the word embeddings generated by this approach were of
poor quality. We identified a number of issues with this approach,
and two specific issues stand out. The first issue is that certain code
elements will always be leaf nodes (such as break or labels) and
therefore will never have any context for the neural network to
learn. The second issue is that certain children do not actually affect
the meaning of their parent, such as the example given earlier for
the while loop, wherein statements inside the while loop (which
are children of the while node in the AST) do not determine the
meaning of the while keyword. We also determined that prior work
that attempts to generalize the process of choosing context for all
types of nodes had their own issues. We have observed that a single
strategy for choosing context for all types of nodes in the AST will
ultimately lead to certain node types pairing their associated code
elements with incorrect context or missing important context that
should be paired with those node types. This significantly degrades
the quality of the word embeddings, which will negatively impact
any learning task upon which the embeddings are used.

We propose instead to use sets of rules to determine the context
for code elements based on their node types. For example, Java-
Parser has 83 node types to represent the grammar of Java. Types of
nodes include, but are not limited to, nodes for: comments, literals,
loop statements, decisions statements, class declarations, method
declarations, variable declarations, and equation operators. We con-
structed rules for node types by asking the question, “What other
node types or code elements are needed to determine the meaning
or perform the task of this node type?” For example, a method
declaration node needs its modifiers, parameters, and method body
to determine its meaning; a while statement node needs its condi-
tional expression and any statements that are present that directly
affect its behavior (such as a continue or break statement) to per-
form the loop process properly; and a binary operator, such as plus,
needs the expression of each of its terms. We have included Table 1
that details what code elements were included as context for each
node type. In the table, columns 1-3 present the type of AST node,
identifier of the AST node, and code elements being used as the

“http://javaparser.org/
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context of the AST node. In our current approach we did not include
embeddings for annotations, comments, imports, packages, lambda
expressions, generics, or variable names.

public boolean isAdmin(){
if(role == Role.Admin) {
return true;

h
else{
return false;

}

Figure 2: Example Code Snippet of a Function isAdmin

Figure 2 presents the code snippet for a function called isAdmin.
The AST representing the code snippet is shown in Figure 3. This
function is part of a Subject class that defines a user of a system. The
class has a role field that defines the role of the user. This function
is simply checking whether the user has the role ADMIN. In our
algorithm, we walk the tree, visiting each node. As we visit a node,
we call the current node we are visiting the target code element and
we next extract context code elements that help define the semantic
meaning or behavior of the target code element. In this example,
the current target code element is an If Statement. If we look at
Table 1, the identifier in the dictionary for an If Statement is i f and
the context is the conditional expression and the else identifier if
it is present. The condition expression is a Binary Expression, so
we record as context the operator and the left and right terms. As
stated above, we currently do not include variable names in our
embeddings, instead we record the variable data type. Therefore,
the context that will be recorded for the if node will be EQUALS
(the binary operator), Role (the type of the left and right terms),
and else. This continues for every node throughout the AST. It is
worth noting that some nodes do not have any identifier or context
associated with them. In that case, nothing is recorded for the word
embeddings learning task.

With the rule sets we have created for each node type we have
produced fairly high quality word embeddings using the JDK8 li-
brary and the access control library Apache Shiro that achieved a
state-of-the-practice lowest average loss of 2.69 and 3.17, respec-
tively, which is a perplexity of 14.8 and 23.81, respectively; the
perplexity is calculated using base e instead of 2 as Tensorflow’s
cross-entropy is calculated using natural logarithms. Figure 4 shows
embeddings for the 99 most common code elements in Apache
Shiro. The embedding vectors were reduced from a 300 dimen-
sional space to 2 dimensions so they could be visualized. We can
see a number of good clusterings in the graph. We can see that
checkPermissions is together with checkPermission, checkRoles,
and getCredentials, and in the original vector space the nearest
points also include HashedCredentialsMatcher, assertAuthorized,
AbstractSessionManager, and getObjectPermissions. All of these
classes and methods perform similar functions, or make use of,
the checkPermissions method. We can also see that isPermitted
is clustered with isPermittedAll and hasRole, and in the origi-
nal vector space it is also nearest to DefaultPasswordService,
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setAuthenticated, and getRoles. For JDK8, we also found good clus-
terings. For example, if was nearest to AND (or &&), OR (or [|),
LOGICAL_COMPLEMENT (or !), and ? (or the conditional state-
ment). This clustering makes sense as the behavior of the if state-
ment is heavily reliant on boolean operators and the conditional is
simply a shorthand version of if. The PLUS (or +) operator was
nearest to MINUS (or —), int, long, String, and STRING. This clus-
tering is very good as MINUS is also an algebraic operator and
PLUS performs many of its operations on int, long, and String vari-
able types. While there are a number of good clusterings, some
methods and classes did not seem to cluster well in the vector space.
For example, some getter and setter functions were found quite far
from where a majority of getters and setters were clustered. We
believe this is due to the limitations in our current model, which
we discuss in Section 5.1.

4 FUTURE WORK

We have shown we can obtain adequate, state-of-the-practice word
embeddings for source code. Our next step is to perform learning
tasks with them that will be able to link code elements to access
control policy statements. This will assist us in building an access
control model that can be used to verify the system is consistent
with its policy. Figure 5 shows an outline of our future steps in
this project. The first step in creating these links will be to collect
a dataset to train a deep learning network on. This will probably
be the most significant challenge, as described in Section 5.2. We
have not found a dataset applicable to our research goals, which
means we will have to create our own dataset before any learning
can be performed. Since it is very difficult to find access control
policies for real software systems that are publicly available, we
will explore the idea of using the Health Insurance Portability and
Accountability Act of 1996 (HIPAA), which dictates government
mandated policies and requires general access control policies for
the view, modification, and storage of patient data and documents
in medical systems. Since most policies are described using natural
language, we will not be able to directly link policy elements to
code elements. However, formal software specifications can be
directly linked to code elements, which can be constructed from
the natural language policies. We will couple these HIPAA policy
specifications with open source medical software and manually
map code elements to policy roles, objects, permissions, etc. in the
specifications. We will use these mappings to train a neural network
to identify and construct such mappings. After obtaining a set of
mappings constructed manually and a set of mappings constructed
by the neural network, we will use each set individually to identify
all usages of the linked code elements in software and check if any
usage violates policy specifications, which would imply a violation
of the policy. We will finally compare the performance of the manual
and predicted mappings in detecting policy violations.

We will initially focus on role-based access control (RBAC) as it is
one of the more popular access control methods. Our first goal will
be to perform a classification learning task to identify which code
elements represent the roles and permissions in the RBAC policy.
For example, the statement, “User accounts for the system will only
be created on the correct authority by the system administrator,”
could be mapped to the code elements in the code snippet from
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Node Types Identifier Code Elements Used As Context
Array Creation Expression array data type "new []"
Array Type " array data type
Assignment Expression assign operator target and value expressions
Binary Expression binary operator left and right term expressions
Boolean Literal "true" or "false" "boolean"
Break Statement "break" associated loop or switch statement
Cast Expression cast data type expression being cast
Catch Clause "catch” exception types being caught
Char Literal "CHAR" "char"
Class Or Interface Declaration name j‘class" or "mterfaf:e" and modifiers,
interfaces, extension, and members
Conditional Expression "7 condition expression and "else"
Continue Statement "continue" associated loop statement
Do Statement "do" "while" and condition expression
Double Literal "DOUBLE" "double”
Enum Declaration name "enum" and all modifiers
Explicit Constructor Invocation "this" or "super" associated arguments and expressions
Field Declaration field data type initializations, assignments, and modifiers
For Each Statement "for" "break” a.nd "contir.lue" if present and
variable and iterable types
For Statment "for" "break” ancﬁl j‘continue" i.s present and initializat?on type,
condition expression, and update expression
If Statement "if" condition expression and "else” if present
InstanceOf Expression "instanceof” expression and instance type
Integer Literal "INT" "int"
Long Literal "LONG" "long"
Method Call Expression name arguments
Method Declaration name modifiers, ret'urn type, parameters,
thrown exceptions, and method body
Null Literal "null" "void"
Object Creation Expression object data type "new", arguments, and anonymous class body if present
Primitive Type primitive data type associated expressions or declarations
Return Statement "return” associated expression
String Literal STRING "String"
Super Expression "super” associated expression
Switch Entry Statement "case" or "default” "switch" and associated label expression if present
Switch Statement "switch" selector expression and switch entry statements
Synchronized Statement "synchronized" associated expression
This Expression "this" associated expression
Throw Statement "throw" associated expression
o resource expressions, catch clauses if present,
Try Statement try " "
and "finally" if present
Unary Expression unary operator associated expression
Variable Declaration Expression | variable data type modifiers and initialization expression if present
Void Type "void" associated expressions or declarations
While Statement rwhile" "break" and "continue" if present and

condition expression
Table 1: Node Type Identifiers and their associated Context
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member (MethodDeclaration)

target code element

ignore node

identifier="ADMIN'

name (SimpleName)

body (BlockStmt) type (PrimitiveType) name (SimpleName)

t (B tmt thenStmt (BlockStmt)
statement (ReturnStmt) statement (RetumStmt)
expression (BooleanLiteralExpr) expression (BooleanLiteralExpr)

value="true'

Figure 3: Example AST of a Function isAdmin and the Context Extracted for I fStmt

Apache Shiro in Figure 6, where if, hasRole, and administrator
define the role and what would be the if statement body defines
the account creation call (or data access and modification). Finally,
we will be able to use these mappings to determine if any part of
the RBAC policy is violated.

5 RESEARCH ROADMAP

In access control there are many different learning tasks that can be
utilized in current and future research, especially if those learning
tasks can be applied to source code, such as: generating formal
access control specifications described in natural language policies,
generating targeted testing of access control policies, policy veri-
fication or policy violation detection, access control vulnerability
detection, and more. In this section we describe some of the major
problems of deep learning on source code.

5.1 Word Embeddings

As stated above, we believe our word embeddings can be improved.
The quality of source code word embeddings directly and drasti-
cally affects the performance of neural networks on any learning
task dealing with source code. The primary detriment to the quality
of our embeddings is properly utilizing defined context for method
declarations. For all other node types, the context provided has two
common properties. First, each individual code element being used
as context for a target code element is independent of the other
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code elements in the context. For example, consider a class decla-
ration’s context which includes modifiers, interfaces, extensions,
field names, private class names, and method names. Each of these
code elements give meaning to the class, but that meaning is not
dependent on any other code element in the context. That is, for
example, the meaning that a method name gives to the class has
nothing to do with the meaning that a modifier gives to the class.
This is different for methods in that a method body gives meaning
to the method as a collection of statements that are dependent on
each other and not as individual code elements. That is, changing
even a single code element in the method body (such as changing
an if statement to a while statement) could easily change the entire
purpose and functionality of that method; in the same way, the
relative meaning given to the method’s word embedding should
also reflect this possible drastic change, which would be difficult
by considering this particular context independently. Second, in
being independent, code elements for other node types do not de-
rive any meaning from the order that they are listed in the context.
For example, a class declaration should produce roughly the same
word embedding regardless of the order its methods were defined
in. However, for a method body the order of statements can matter
a great deal. Research is needed to design more effective embedding
methods. Possible methods to consider may be based on recurrent
neural networks [4, 14], other strategies to gather more appropriate
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HIPAA Access context for target code elements, or alternate ways for word em-
Control Policy

Statements onstruct Acces

Control
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Gather Access
Control Data Set
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Medical
Software
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Control
Specifications

Link Software Code
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Construct and
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Network Mapping
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Mapping Mapping Violations
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Specification Elements
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Specification
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Figure 5: Map of access control policy violation detection fu-

ture work

//get the current Subject

Subject currentUser = SecurityUtils.getSubject();

if (currentUser.hasRole("administrator")) {

//show a special button
} else {

//don’t show the button

Figure 6: Code snippet example of checking for administra-

tor role
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beddings to represent collections of code elements at the phrase [4],
statement, or path [2] levels.

5.2 Datasets

One of the most significant challenges with any deep learning task
is acquiring enough data to train a neural network and test its
performance. Datasets have been created for many deep learning
tasks, such as the MNIST database of handwritten digits [8] for
image classification, many corpora for sentiment analysis from
different social media or review websites, and more. Since the idea
of performing deep learning tasks directly on source code is still
very new with limited literature available, we know of no dataset
that exists for any kind of learning task related to deep learning
on source code. In current research, most papers automatically
generate a dataset to evaluate their neural networks, however, there
are problems with creating such datasets.

One of the most popular techniques includes code prediction,
where words are stripped from a code snippet and then predicted by
the neural network. In most cases, though, the code prediction was
performed by removing code elements at the end of statements or
method bodies. This tailors a very general problem of predicting the
next code element at any point in code to a very specific situation,
giving the network an advantage and bias in how well it performs.
Further, the next code element chosen by a programmer is based
on a number of factors that are not directly linked to code elements,
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such as personal coding preferences, learned coding conventions,
the current line of logical reasoning, and more.

Vulnerability detection has also been performed, where a static
analysis tool is used to annotate whether a code snippet is buggy
or clean [5]. In this case, by using a static analyzer to perform the
annotation, the neural network will only learn how to perform
like the analyzer and will misclassify code snippets in the same
way as the analyzer does. It is also important to note here that not
only should the datasets be large, but they should also be robust.
In this example of vulnerability detection, even if the dataset was
labeled manually, there still may be an inherent problem in only
having the two labels of buggy or clean. Consider the vast number
of types of bugs that can appear in source code. Each of these types
of bugs can be very different from each other and can appear in code
many different ways. It will likely be difficult for a single neural
network to encompass all kinds of bugs using a single buggy label.
That is, the disparate differences between types of bugs can make
it difficult for a neural network to find a few patterns, or sets of
weights, that includes all different types of bugs and distinguishes
these bugs from clean bug-free code. Further, the ultimate goal of
vulnerability detection is not only to determine if a bug exists, but
also what type of bug is contained in the code. If a dataset only
contains the labels buggy and clean, then a new dataset would need
to be created (or the old dataset would need to be updated) with
the labels that distinguish those different types of bugs. Therefore,
it would be advantageous for the dataset to be robust. In the case
of vulnerability detection, a possible solution may be to split the
buggy label into a small set of bug categories that will allow a neural
network to more easily find division in the data it is given.

5.3 Neural Network Construction

The final problem we will discuss is a problem that is significant
to all research that utilizes deep learning, which is what kind of
neural networks and neural network configurations work best for
the specific learning tasks being performed? The particular con-
struction of a neural network for different learning tasks on source
code and in access control problems can affect its performance a
great deal, and is an area of great variability and creativity.

There are different types of neural networks, and what kind of
network is being used for a particular learning task can greatly in-
fluence performance. For example, convolutional neural networks
(CNN) are adept at identifing the most important features in data
using filters, and recurrent neural networks (RNN) are able to pro-
cess data series and sequences into a single representation. Both
networks have been shown to perform very well in text learning
tasks, and we believe should be easy to translate to source code
tasks.

The number of hidden layers and weights are an important
balance in constructing neural networks. In general, the more layers
and weights there are in a network, the greater ability a network
has to learn. That is, the more information the network is able to
store and leverage in its learning task. However, the more layers
and weights in the network, the longer it takes for the network to
learn, sometimes taking days, weeks, or even months to complete.
Further, there are many other configurations a network contains, all
of which affect the performance of the neural network in different
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ways, such as different kinds of activation functions, the form of
the input being passed in, the loss function used, the size of the
batches of data being learned over at a time, the number of times to
learn over the entire dataset, and more. Experiments are needed to
study which configurations perform best for source code learning
tasks.

6 CONCLUSION

In this paper, we discussed the feasibility of deep learning on source
code, its potential contributions to research in access control, and
some of the major open problems that will need to be addressed.
We described how we plan to use deep learning to perform access
control policy verification, as well as our first steps toward creating
quality word embeddings for source code elements. We believe deep
learning has much to offer the access control community, especially
when utilized in learning tasks on source code.
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