
1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2019.2936975, IEEE
Transactions on Information Forensics and Security

MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

An Ontological Graph Identification Method for improving
Localisation of IP Prefix Hijacking in Network Systems
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and Kim-Kwang Raymond Choo, Senior Member, IEEE

IP prefix hijacking continues to be a pervasive cyber security threat to the core internet routing infrastructure. The data security
of multiple cloud-based services is also susceptible to these threats, due to the high dependency on traditional routing protocols.
Although a number of hijacking detection techniques have been recently proposed, no existing system has effectively addressed the
problem of detecting malicious transit Autonomous System (AS) services in any detected hijacking occurrences. The ability to locate
and isolate malicious services is critical for conducting a necessary mitigation strategy at an early stage, to minimise the impact of
the attack, to restore cloud services quickly. In this paper, we propose an effective real-time processing method, so-called Ontological
Graph Identification (OGI), for detecting IP prefix hijacking of nodes and suspicious transit nodes caused by the hijacked nodes
through ASs. The proposed method is evaluated using the two public datasets of RIPE RIS and RouteView. Experimental results
revealed improved performance for the detection of malicious transit nodes compared with peer techniques. It is, therefore, shown
that the proposed method has utility in automating the process of investigating nodes with suspicious activities in real network
systems.

Index Terms—IP prefix hijacking, anomaly detection, BGP hijacking, network systems

I. INTRODUCTION

THE underlying routing infrastructure of the Internet
contains thousands of independent autonomous systems

(AS), all of which rely on the Border Gateway Protocol (BGP)
to exchange routing information. While BGP is designed for
routing network traffic and adequately maintaining network
reachability information between peered autonomous systems,
it lacks any form of trust mechanism, leaving it susceptible to
misconfiguration or malicious prefix hijacking [1], [2]. This
phenomenon occurs when an AS advertises to surrounding
neighbours existing prefixes, i.e., groups of IP addresses,
to falsify ownership and maliciously reroute someone else’s
traffic to other network destinations.

Routing attacks have the potential to cause severe threats
to inter-domain routing infrastructures [3]. For example, ma-
licious users exploited vulnerabilities of BGP and DNS pro-
tocols to intercept and reroute traffic of Amazon’s Route 53
to third-party servers in Russia [4]. A hacker also rerouted
traffic destined to networks of 19 Internet Service Providers
(ISPs), involving data from the networks of Amazon and
other service providers, such as DigitalOcean and OVH, to
steal cryptocurrency of bitcoin users [5]. A hijacking attack
occurred when an ISP in Pakistan forwarded the announcement
of Routing Information Service (RIS) to hijack the YouTube
website for several hours [6]. These examples highlight the
potential scale of hijacking against global infrastructures.

In literature, to defend against IP prefix hijacking attacks,
mechanisms are categorised into reactive and proactive [7]–
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[12]. Reactive mechanisms respond to hijacking attacks as they
occur based on the two stages of detection and mitigation.
Detection is often offered by third-party services to route
information, such as BGP updates and traceroutes, to in-
form networks about malicious events including their prefixes.
Then, the targeted networks mitigate the events using differ-
ent strategies, for example, announcing particular prefixes or
contacting other ASs to clean announcements [7]. Proactive
mechanisms try to prevent hijacking events from occurring or
minimise their effect [13]–[16]. Network systems depend on
practical reactive mechanisms to defend against prefix hijack-
ing since proactive methods are expensive in terms of costs and
deployments [17]. Although there has been rapid adoption of
resource public-key infrastructure (RPKI) framework to BGP
by cryptographically signing IP prefixes using Route Origin
Authorizations (ROAs) [18], [19], particularly by Regional
Internet Registries (RIRs), ISPs and various cloud providers,
it would still require re-implementation of existing systems,
making it pragmatically a long-term strategy, rather than of
immediate use.

The mechanisms previously outlined provide partial solu-
tions to the issue of malicious transit ASs, but are not specif-
ically designed as comprehensive detection systems against
all forms of malicious behaviour. Malicious transit nodes
are ASs that are mostly benign, but behave suspiciously in
forwarding malware from one or more sources to end points
as a transit service. Although upstream transit ASs can be
used to disconnect a maliciously behaving AS, they may also
be controlled by cyber criminals. Such malicious transit ASs
are harder to detect as their malicious behaviour is sporadic,
and they are therefore unlikely to be listed in IP blacklists [20].
There is a need for a robust technique that can locate hijackers’
services and their nodes with transit malicious activity [7].

This paper proposes a new Ontological Graph Identification
(OGI) method that can effectively identify malicious nodes
through ASs and discover suspicious events from transit nodes
caused by malicious nodes in real-time. This method would
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allow countermeasures, such as automatic de-peering, to be
proactively implemented in a timely manner. It also serves
as an intelligent system for assessing and detecting early
malicious activities. The method has a new capability of
being operated by an AS itself without relying on third-
party cloud infrastructure such as edge locations. While speed
may be a limitation for very large network graphs in real
world applications, the proposed OGI malicious transit nodes
detection system could take advantage of existing blacklists
for better node weight re-initialisation. A single iteration of
the proposed OGI method requires ∼1 second, and thus the
node scores recalculation in this case would make it feasible
for supporting online hijacking detection systems in real-time.

The key contributions in this paper can be summarised as
follows:

(a) We propose a path verification approach for identify-
ing possible illegitimate paths (i.e. paths containing one
or more malicious nodes) in the network prior to AS
malicious node localisation. Malicious nodes would be
penalised whenever they appear on an illegitimate path.
All other AS nodes on illegitimate paths besides the ma-
licious ones are labelled as suspicious, and corresponding
penalty values would be passed on to the next stage of
malicious transit node detection. Using this methodology,
an exhaustive search on the whole network graph is
avoided and the speed of malicious activity detection is
significantly improved.

(b) We suggest an Ontological graph-based ranking model
that classifies illegitimate paths. A PageRank algorithm
is utilised to give higher weights to malicious nodes
according to the previous stage. By that, the neighbours
of malicious nodes receive higher weights depending on
how close they are to how many malicious nodes.

(c) We also reduced noise of malicious transit nodes (i.e.
legitimate nodes compromised by adversary malicious
nodes) by normalising the estimated nodes scores ac-
cording to the total average score of all AS with similar
number of adjacent neighbours. Hence a node score
which falls short compared to the adaptively set threshold
would be discarded.

The paper is organised as follows. The background and
state-of-the-art work on IP prefix hijacking are discussed
in Section II. The proposed ontological graph identification
method is described in Section III. Following that, Section
IV describes the experimental results of our framework on
the Reseaux IP Europeens (RIPE) dataset. Lastly, we draw
our conclusions and give some perspectives of future work in
Section V.

II. BACKGROUND AND RELATED WORK

This section discusses most common prefix hijacking mech-
anisms that are considered a major threat for ASs in cloud
services, including different scenarios related to blackholing,
imposture and interception attacks. Where relevant, real world
examples are also given. This section also summarises and
critically analyses major related recent work in the field.

Fig. 1. Blackholing attack scenario showing AS graph structure (a) before
the attack, and during the attack in case of single and multiple malicious
neighbours in (b) and (c), respectively.

A. Malicious Attack Models

IP Prefix hijacking falsely advertises to neighbouring AS
the ownership of IP prefixes or addresses. The malicious
AS reroutes traffic destined for these IPs to itself. Hijackers
use the control plane (i.e., crafted or misconfigured BGP
announcements) to eventually affect the data plane. Thus, IP
Prefix hijacking is typically launched on the control plane
to affect the behavior of the data plane. The outcomes of
a malicious AS successfully hijacking an IP Prefix that can
be categorised into one of the following three scenarios [7],
[10]; blackholing, imposture, and interception. Each of these
is discussed separately.

Blackholing is a type of denial-of-service attack on a net-
work system when an attacker discards incoming or outgoing
network traffic, without informing the source that the data has
not reached its destination [7]. Figure 1 illustrates a scenario
in which a malicious host could make another network un-
available by falsely hijacking the route, and then using its
position as a route for all traffic destined for a legitimate
address and discarding it. From the victim’s perspective, there
is no incoming traffic at all. In Figure 1(a), a normal scenario
is presented before the attack. Figure 1(b) represents an attack
with a single malicious neighbour for node J , while Figure
1(c) illustrates an attack with multiple malicious neighbours
when node I has accepted malicious routing path of node
J while dropping the original packet of node A. In this
occurrence, node I is still considered an legitimate node and
is not aware of malicious activity which is occurring. It is not
yet classified or blacklisted as malicious, but has a potential to
become a malicious node. Thus, we call such nodes as ‘transit
malicious’, as the malicious activities are passed across or
through node I , and orchestrated by the malicious node J . In
this case, the traffic is dropped. The traffic is not dropped on
node I , so it can be exploited for further attacks to conceal
the identity of the malicious node J .

An Imposture scenario is analogous to the man-in-the-
middle attack, where an attacker deliberately intercepts traffic
by altering packet information. However, this traffic will never
reach its destined target, but will instead be acknowledged and
replied by the same malicious host [10]. Figure 2 represents
the imposture attack scenario which shows the graph structure
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Fig. 2. Imposture attack scenario showing AS graph structure (a) before
the attack, and during the attack in case of single and multiple malicious
neighbours in (b) and (c), respectively.

Fig. 3. Interception attack scenario including a transit activity, showing AS
graph structure (a) before the attack, and during the attack in case of single
and multiple malicious neighbours in (b) and (c) respectively.

before the imposture attack and with single and multiple
malicious neighbours. Figure 2(a) illustrates an initial state
of a normal scenario before the start of the attack. Figure
2(b) represents a single malicious neighbour in node J , while
Figure 2(c) is an example of an imposture attack scenario with
many malicious neighbours, that is, when node I has accepted
the malicious AS routing path of node J . Particularly, node J
alters the original packet from node A and imitates the final
destination (i.e., AS targeted node F ).

Interception is the most sophisticated hijacking scenario, as
illustrated in Figure 3, where an attacker eavesdrops and pos-
sibly alters the victims packet information before forwarding it
to the target destination [10]. Figure 3 presents an interception
attack scenario which shows the AS graph structure before
and with single and multiple malicious neighbours. In Figure
3(a), a legitimate scenario is represented before the start of an
attack. Figure 3(b) shows an interception attack with a single
malicious neighbour in node J , where the attacker alters the
original packet from node A, and then forwards the packet to
the final destination F . Figure 3(c) represents an interception
attack with multiple malicious neighbours in the nodes J and
I , respectively, that forwards the original packet from node A
after eavesdropping and altering the packet information.

TABLE I
COMPARING DIFFERENT IP PREFIX HIJACKING DETECTION TECHNIQUES

Method Control
plane

Data
plane

Hybrid
method

Identify
attacker

Malicious
transit

Lad at al. [9]
Chaviaras et al. [24] Yes No No No No
Zhang et al. [12]
Zheng et al. [10]
Tahara et al. [25]
Mickens et al. [26]

No Yes No No No

Kruegel et al. [27] Yes Yes Yes No No
Shi et al. [11]
Hong et al. [28] Yes Yes Yes No No

Qui et al. [29] Yes Yes Yes Yes No
Our method Yes Yes Yes Yes Yes

B. Related Work

Several research studies have proposed detection systems
for identifying BGP hijacking. The systems depend on control
plane and/or data plane techniques [7], [21], [22]. Control
plane techniques monitor BGP updates and routing tables to
identify malicious behaviours of BGP messages such as the
origin of prefixes or unexpected path changes. Data plane
techniques monitor the routes reachability from the victim
to detect suspicious events, where they employ traceroutes
to discover abnormal behaviours in the data routes. The
aforementioned three scenarios of IP prefix hijacking could be
identified and prevented using data-plane approaches because
the approaches can effectively examine routes of malicious
data.

One of the early attempts in providing a detection system of
IP prefix origin changes of ownership is the Prefix Hijacking
Alert System (PHAS) [9]. PHAS is designed to detect multi-
origin AS path conflicts. PHAS runs exclusively on the control
plane as a means of ensuring a low false alarm rate. PHAS
utilises a time-window function to concurrently train and
validate the model as a means of reducing the number of
repeated alerts. However, PHAS is unable to detect complex
IP hijacking scenarios such as the ones described in [21], [22].
In [23], the authors provided alternative heuristic techniques to
multi-origin autonomous system conflicts by modifying rout-
ing policies, which produced promising results to reduce false
negative alarms. The two methods cannot detect sophisticated
malicious events due to their complex design for tracking prior
information about normal or suspicious events.

The method outlined in [30] also seeks to solve the issues
of working with multi- and sub-origin autonomous systems
in real-time. The approach taken is similar to the method
outlined by Tahara et al. [25], utilising active probing tests
to differentiate legitimate ownership from false claims. Also,
a tool for monitoring per-host availability trends in enterprise
settings is proposed in [26]. The method operates by drawing
live measurements to detect network anomalies, like IP hi-
jacking in real-time. However, these approaches of continuous
pinging of the entire Internet would introduce considerable
load and network performance issues. In a similar approach,
the Lightweight Distributed Measurement Scheme (LDMS)
by Zheng et al. [10] proposed using data plane techniques.
LDMS relies on pre-selected external third-party vantage
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points and monitoring services. However, in the previous
scheme, announcing a route to a subnet within a publicly
announced prefix and then using it for spam and phishing can
go undetected - unless an individual sub-prefix is monitored.

There are also hybrid approaches to detecting prefix hijack-
ing events, combining both the data and control planes in an
effort to improve detection rates [11]. These two processes
may be initiated simultaneously, by gathering the control route
status and data reachability of the identified hijacked events.
The authors in [27] utilised the data of Route Views project to
distinguish between legitimate and potential malicious traffic.
The method utilises topology information of the AS connectiv-
ity, and is capable of detecting malicious inter-domain routing
update messages through passive monitoring of BGP traffic.
However, the proposed method does not automatically account
for changes of IP address ownership and removal of connec-
tions between ASs. Other hybrid methods, such as Chaviaras et
al. [24], designed a framework for accelerating the detection of
prefix hijacking incidents from real-time BGP data. Schutrup
et al. [31] proposed an approach for detecting five different
types of hijacks by less specific route announcement. A direct
view was provided from operational BGP routers without
intermediate collectors via Looking Glass servers, and real-
time feeds are made available via BGP collectors with live
data streaming (e.g. RIPE RIS [6] and BGPmon projects
[30]). Also, the work in [29] located the prefix hijacker ASs
based on distributed AS path measurements. Each attacker
AS was located by actively monitoring paths to the victim
prefix from selected monitors distributed on the Internet.
Nevertheless, the problem of highlighting potential attackers
(i.e. normal AS with suspicious behaviour) has not been
dealt with. A summary comparing different recent proposed
IP prefix hijacking detection techniques based on different
assessment metrics is listed in Table I. As shown in Table I, our
method can effectively detect IP prefix hijacking attacks, along
with considering control and data planes. As our method uses
graph models to statistically structure network nodes using an
adaptive PageRank algorithm [16], it is hybrid and scalable,
as it estimates a small number of optimised parameters that
can be easily self-tuned in real-time processing.

III. PROPOSED METHODOLOGY

We propose a novel method, named Ontological Graph-
based Identification (OGI) for identifying IP prefix hijacking
attacks via recognising their illegitimate paths. The novelty
of this method comes from detecting suspicious nodes of
ASs and recognising their malicious events within any transit
node in real-time processing. The OGI method has two new
functions: 1) it does not rely on an external blacklist of hostile
IP addresses; and 2) normal nodes scoring higher ranks are
identified as malicious based on the accumulated weights of
neighbours for every node.

A systematic architecture of the proposed OGI method is
depicted in Figure 4. Assume that we have different Cloud
Providers (CP ) labelled {CPt, CPx, CPz, CPy, CPv}, each
with multiple ASs. The collected BGP update announcements
from these and surrounding AS neighbours are the training and

Fig. 4. System Architecture of identifying normal AS exhibiting malicious
behaviour.

testing data that are used for validating the proposed method.
The method depends on dividing a network into subgraphs for
easily tracking suspicious events, whereby illegitimate paths
containing malicious nodes are flagged. This is discussed
further in Section III.A.

The reliability of the AS route is assessed through the use
of a proposed Transitional Array Penalty (TAP) metric. The
TAP metric penalises each AS in relation to the proportion of
hosted malicious transit AS. If one of the nodes does not have
a physical path to the destination, the TAP will assign a penalty
value of 1 to the node. All penalty values are normalised to
make the computational process much easier before the phase
of the path validity verification outlined in Section III-B.

The output of the TAP is used to generate a graph using the
PageRank algorithm [16]. The method can assign a score to
each AS individually by computing its likelihood probability.
Consequently, this helps in properly specifying prior weights
for each AS before running the method. By assessing the
weights of the highest-scoring node in ASs before and after
running the PageRank algorithm, every node is scored using
the estimated likelihood for computing the weights of transit
nodes and their originally hijacked nodes through ASs, as
explained in Section III-C2.

In order to evaluate the efficiency of the OGI method, the
AS node weights are equally initiated to run the PageRank
algorithm. The algorithm estimates the appearance frequency
of nodes on illegitimate paths as malicious nodes when their
weights are much higher than the weights of normal nodes.
This process is detailed in Sections III-C.

A. Subgraph partitioning

As the scale of the network increASs, the number of AS
hosts to be investigated in real-time also expands. This renders
the process of investigating the integrity of the BGP update
message infeasible within a reasonable convergence time. To
counter this, we propose the use of a subgraph analysis
approach. It is an effective approach which divides the network
structure into multiple subgraphs prior to AS malicious node
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localisation. The use of subgraphs can assist in identifying
illegitimate paths contaminated with malicious nodes.

Through the use of subgraph partitioning, an exhaustive
search on the entire network graph is avoided, improving the
search speed for malicious activity. A K-means algorithm
[32], based on the Euclidean distance function, is used for
clustering the network into multiple network regions using
a predefined k value. Each region/cluster reflects a subgraph
with roughly similar probability densities for their network
nodes, and then each of these subgraphs can be dealt as a
separate graph with the same statistical characteristics. The
generated subgraphs can assist in identifying illegitimate paths
contaminated with malicious nodes based on estimating their
low likelihood probability. The subgraph partitioning phase
helps to significantly improve the computational resources
of the method by avoiding the exhaustive search on the
entire network graph. To identify illegitimate paths including
malicious nodes and their suspicious transit nodes, a path
verification approach is proposed as illustrated below.

B. Path Verification Approach

A Transitional Array Penalty (TAP) metric is proposed for
verifying paths. The TAP metric can be defined as a directed
graph G(V,E) derived from BGP AS-path P , where the
set of nodes or vertices V are the AS, and E denotes the
directed edges between two connected AS. By definition, this
graph could contain directed cycles or loops. Let Pv(i) be
the accumulated penalty value of a node i ∈ V occurring on
a certain AS path of a route R, (j, i) ∈ E which describes
a directed edge from a node j to a node i. Once a BGP
update message reaches node i from a neighbouring node
j, a bottom-up approach is followed by i to verify the
authenticity of the advertised message, where i starts first
with the destination node prefix n of the route R and checks
whether its predecessor node n− 1 is directly connected (i.e.
has a physical path) to n. The same scenario is used to analyse
if node n− 1 is a neighbour of node n− 2, until reaching the
starting node i.

If a disconnected path is discovered between any of the
traced nodes, then a penalty value of 1 is assigned to this
path. The weight is given to the node up the stream (i.e. node
n − 1 if we are checking node n), and the penalised node is
considered malicious. The same approach applies to the rest of
the possible paths from node i to n. Each path containing one
or more malicious nodes is considered an invalid path Mp. For
example, transitional matrices for all possible paths are shown
in Figure 5(b), where Dr is the traced AS path of route R;
Hn is the number of hop counts from node i to node k; Dp is
the predecessor of the destination node k in R to origin; Pv

is the penalty value for a node i.
The TAP metric is used for determining actual paths of

nodes with their neighbours to discriminate between actual
paths of nodes and disconnected nodes. The model assigns a
higher score to the discounted nodes compared with the actual
path. It can, therefore, better localise transit nodes, which are
legitimate (normal) nodes manipulated by malicious nodes. In
more detail, the TAP scores assist in estimating the invalid

Fig. 5. Autonomous System (AS) graph showing starting node A in green
and destination node F in black for (a) normal case and (b) malicious case
showing malicious node J , and (c) malicious case showing J and malicious
transit node I .

Fig. 6. Assessing the reliability of the AS route by the Transitional Array
Penalty metric for AS graphs shown in Fig. 5, where A is the originating
node and F is the target node.

paths in the network, where these paths are highly likely to
have malicious transit nodes. The use of TAP in partitioning of
the network into multiple subgraphs containing invalid paths
improves detection speed.

Each time a malicious node appears in an invalid path,
the corresponding Pv variable is incremented, as shown in
Figure 6. The accuracy of the detected malicious nodes is
benchmarked against the criteria in [33]. Hence, the AS paths
containing any of the penalised nodes (e.g. node J) would
be considered illegitimate and are quarantined for further
investigation. This includes specifying the malicious nodes
along with the invalid path, and furthermore transit nodes
which are normal nodes with suspicious activity, as in node
I in Figure 5(c). The steps of applying the TAP metric are
described in Algorithm 1.

C. Ontological Graph Identification

1) PageRank algorithm
A PageRank algorithm is utilised to give higher weights

to malicious nodes according to the initialised weights, as
discussed in Section III.B. The PageRank algorithm [16] is a
transformational technique developed by Google, and was an
underpinning technology in the development of their search
engine. A weighted ranking function is employed by the
algorithm for estimating the number of hyperlinks pointing
towards a connected nodes and their interrelation with other
neighbour nodes. In order to fairly implement the PageRank
algorithm, the weights for AS nodes are set to equal values
using an uniform probability distribution.

Formally, it can be defined as a directed graph G(V,E)
derived from BGP AS-path , where the number of nodes
or vertices V are the AS and E denotes the directed edges
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Algorithm 1: Transitional Array Penalty
Input: Graph (G), BGP routing tables

1 Initialisation: read routing updated table;
2 if flag = true then /* flag raised for

received updating message */
3 for node i ∈ G do /* verify authenticity

of advertised message */
4 while node j 6= n /* where node n is

destination node; */ do
5 if j is not connected to j − 1 then
6 j − 1 is a malicious node;
7 R is an invalid path;
8 p← p+ 1 /* increase penalty

*/
9 end

10 j = j − 1
11 end
12 end
13 end
14 return p;

Output: Nodes penalty vector values p

between two connected AS [16], [34]. Let Pt(i) be the score
of a node i ∈ V for an iteration t, (j, i) ∈ E which describes
a directed edge from a node j to a node i for a total number
of nodes n. Oj is denoted as the number of outgoing links in
a node j. Ij is denoted as the number of incoming links in a
node j. W (i) is the initial weight of the node i ∈ V .

The weight W (k) for a certain node k is estimated based
on its penalty-ranking score, as outlined in Section III.B.
This relies on known malicious activities from threat sharing
platforms [33]). This is estimated using equation (1).

W (k) =

{
Pv(i), if node i is malicious according to [33]
1, otherwise.

(1)
The damping factor d in the PageRank algorithm simulates a

random visit to a webpage (set as d = 0.85), i.e. the probability
at any i to continue to j. It can be seen as a balancing factor
between the previously estimated score and the weight of
a node, i.e. the penalty-ranking of the AS. Its computation
efficiency [13], [35] is optimised as follows,

Pt(i) = (1− d)
n∑

k=1

W (k) + d
∑

(j,i)∈E

Pt−1(j)

Oj
, (2)

and the iteration stops when |Pt − Pt−1| < 10−12.
2) Malicious transit nodes identification
Evaluating the quality and quantity of links for which a node

is a destination to determine a relative score and importance
would be useful in determining nodes significance in a network
topology. The algorithm ranks the significance of AS nodes,
such that an AS is referred to by other nodes, if other nodes
are connected to it. A frequently-referred AS node can be
considered popular, as would be an AS referred to by a few
popular ASes. An AS linked by only one popular node should

be considered as popular too, but less so. The mechanisms
used allow this.

We further assess the relevance of this scenario in localising
malicious transit AS nodes, as such AS are well connected to
malicious nodes. Based on the assumption that a malicious
node does not have a physical link with its predecessor, while
a transit node always has a direct link with its neighbours.
By dividing the AS nodes into multiple subgraphs and giving
different weights for each individual node, the number of AS
on an illegitimate path is computed and the nodes weighted
rank is estimated recursively until all scores become stable. For
each stage, the observed score of a node is evenly distributed
throughout its outgoing edges. One modification made to the
original PageRank algorithm approach when applied to this
work is that the weights of the nodes are initialised dynami-
cally based on the TAP score. Finally, the new score for each
node is given by summing the scores of all incoming edges.
This approach is termed as neighbourhood-ranking since the
localised malicious transit nodes, unlike the malicious ones,
tend to have a good connectivity with other neighbouring
nodes within a subgraph.

An example of the malicious transit node identification
method is presented in Figure 7. This figure illustrates how
an appropriate initialisation of the algorithm can influence
the node weights from the first iteration. In the original
PageRank approach, each node starts with a unit score as
no prior knowledge is assumed. The initial weight score is
distributed through the outgoing links to the neighbouring
nodes within each iteration step. Some nodes, as C, can have
a relatively higher score than other nodes which are less
connected. However, without a proper weight initialisation,
malware transit nodes, e.g. I and F , can have a roughly similar
score – although less connected – and hence go undetected.
Therefore, the output of the process could be important in
propagating higher values from malicious AS to transit nodes.

After the malicious nodes are localised and given high
scores, the penalty ranking is transmitted to all connected
neighbouring nodes. Other nodes which play a central con-
nectivity role in the network topology are expected to receive
high scores as well, c.f. node J in Figure 7(b). However,
upstream nodes, as J , in the network topology can be excluded
from being malicious transit if they are also well connected
to other nodes. Once the malicious node is disconnected from
the incoming links, node Js score drops to 2.16, which is well
below the score of I . Identifying and disconnecting malicious
nodes is not straightforward and the process requires time.

Therefore, identifying malicious transit nodes early can also
assist in taking countermeasures against malicious activities
originating from normal nodes. A way to differentiate between
a malicious and normal activity performed by a specific AS
node is to recall the connectivity property mentioned earlier.
The score of the nodes can be normalised by the number of
connected neighbours. The higher connectivity is, the lower
node score, and vice versa. Applying this concept to Fig. 7-b,
the normal node J would score 0.72 for its four neighbours,
less than the score of 1.3 for the malicious transit node I with
two neighbours. Algorithm 2, abbreviated as Neighbour-Rank
summarises the steps of the AS OGI technique.
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Fig. 7. Illustration of AS Ontological Graph Identification based on neigh-
bourhood ranking before and after first iteration for (a) initialised with unit
weights and (b) with weighted malicious AS using path verification method
(malicious AS A and H had a higher initialised weighted). The red, pink and
white colours indicate malicious, transit and normal nodes, respectively.

Algorithm 2: AS Neighbour-Ranking based on Ontologi-
cal Graph Identification
Input: G(k.O), G: graph, k: nodes, O: neighbouring

links (outgoing links) from node j to node i
1 while t > 0 do /* t is the number of

iteration per subgraphs g */
2 foreach g ∈ G do
3 forall nodes k in subgraph g do
4 Initialisation based on neighbourhood ranking;
5 P [k]← Pt−1(j)

O /* where Pt−1(j) is
score at previous node j */
sorted neighbourhood;

6 Pt ← (d× P + (1− d)W ) /* where d
and W denote damping factor
and weights from the AS path
verification step (section
3.2) */

7 end
8 Normalise each k in Pt to get P ′t ;
9 P ′t (k) = P (k)− Ptn /* where Ptn is the

average of all nodes k with equal
number of neighbours n */

10 Estimate Neighbour-Rank vector;
11 Nr = P ′t ≥ max{W (k)} /* Highest rank

P ′t are considered to be malicious
transit AS */

12 end
13 t← t− 1
14 end
15 return Nr;

Output: Estimated Neighbour-Rank vector Nr

The output of Algorithm 2 is further refined for filtering
out normal ASes which might be engaged with minor transit
services to malicious ASes [36], relying on the number of
neighbours N for a certain AS. To normalise the algorithm
score, it can be assumed that most AS are normal or not transit.
Hence, the average score of all AS with similar number of
adjacent neighbours (N ) is subtracted from the score of the
current AS. This operation is performed recursively for all AS
in each subgraph.

P
′

t (i) = Pt(i)−
∑

j∈V,N(j)=N(i) Pt(i)

card({j ∈ V,N(j) = N(i)})
(3)

Finally, the AS achieving the condition P
′

t ≥
max{W (k)}∀k ∈ V , would be selected as potential
transit node(s), i.e. having a tendency of becoming malicious.

The OGI algorithm can detect interception attacks that have
a type-0 footprint on BGP [24]. Different attacks of control-
plane incidents can actually trigger the OGI algorithm re-
computation, and thus the malicious transit node characteri-
sation. Such examples include: Distributed Denial of Service
(DDoS), man-in-the-middle, and path manipulation attacks.
This is due to the fact that the model can define malicious
transit nodes based on estimating TAP score and their likeli-
hood probabilities according to AS Neighbour-Ranking.

3) Transit nodes classification
We have set the ground truth of the transit nodes from the

RIPE RIS dataset [6] according to the following criteria; transit
nodes are located down-stream according to the malicious
nodes, data collection is within a few hop counts from a
malicious node (e.g. up to 2 hops were empirically set), and
data collection is well connected (i.e. has at least 3 incoming
neighbour links). The different parameters are empirically
specified as in Section 4.

Evaluating the transit detection results against the specified
ground truth is more reasonable. Formally, given an observa-
tion O with a local bi-hop topology G

(2)
0 , we want to determine

∀i ∈ T0 whether Ij = I0, where T0 ∈ V is the set of test
nodes. T0 = N

(2)
0 indicates that within every second hop, the

algorithm is evaluated; referring to a connectivity with a far-
neighbour transit node with a malicious AS node. Similarly,
only first level nodes are dealt with in the algorithm for
T0 = N

(1)
0 , which fits the process of an immediate neighbour

transit node connectivity. Both choices of T0 will be evaluated
in the Section 4. This decision problem is represented as a
binary-classification problem, i.e. assign a label Ci(the ground-
truth) to each node:

Ci =

{
1 Ii = I0
0 Otherwise

(4)

The algorithm should take 1 and 2-hop topology as input
and output predicted labels Ĉi ∈ 1, 0.

The classification results represented as a confusion matrix
are shown in Table II. Using the notation in Table II, we have
multiple standard ways to evaluate the quality of predicted
labels Ĉi, such as accuracy (Ac), true positive rate (TPR) and
false positive rate (FPR):

Ac = (x1 + x4)/(x1 + x2 + x3 + 4) (5)
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TABLE II
CONFUSION MATRIX

No. of
Samples Ĉ = 1 Ĉ = 0

C = 1 x1 x2

C = 0 x3 x4

TPR = x1/(x1 + x2) (6)

FPR = x3/(x3 + x4) (7)

In Section 4, we will further analyse the shortcomings of
the above evaluation methods and propose to use Receiver
Operating Characteristics (ROC) and Area Under the ROC
Curve (AUC) to evaluate key steps of the algorithm in depth.

IV. RESULTS AND DISCUSSION

A. Dataset and experimental environment

We used the Routing Information Services (RIS) of RIPE
dataset [6] to extract BGP updates messages related to the
destination prefix. The information contains raw data packets
such as origin AS, adjacent AS and prefix length. A total
of 4256k distinct ASes were observed, for which the TAP
function was computed. We also collected data from another
resource for means of robustness assessment. BGP update
data from routing table snapshots were also extracted from
the University of Oregon RouteViews Server [37] that peers
with 57 BGP routers in 46 different ASes to validate the
proposed method. The RouteViews routing tables and updates
were collected for the same duration as the RIPE RIS dataset.

The ground truth of malicious nodes were chosen accord-
ing to the Computer Incident Response Centre Luxembourg
(CIRCL) BGP Ranking software [33]. The software assists in
validating security events by scoring blacklists of malicious
source IP addresses1. The BGP Ranking software has been
reported to show an average false positive rate of 2.5% per
month when tested over a 3 year period [38], and was recently
used in related studies for detecting malicious network blocks
that have been sub-allocated [39], and in identifying malicious
ASs using the routing behavior of ASs exclusively [38].

Although other sources of blacklists exist, such as
CleanMX, SpamHaus (Edrop and ROKSO) and BL-A, the
BGP Ranking used in this study computes the node scores of
ASs based on labelled data captured from a variety of public
IP addresses and domain names, which are based on external
blacklists. This racking mechanism draws upon sources such
as dshield, blocklist.de, spamhaus, bambenek, shadowserver
and arbor atlas. This facilitates BGP Ranking to be used
for a more comprehensive determination of AS node scores.
Additionally, BGP ranking can be used to set a malicious AS
threshold by calculating the average score of the top ASs,
where any AS with a score that is equal to or higher than the
threshold is considered a malicious AS.

1http://bgpranking.circl.lu/

Fig. 8. Comparison between the original PageRank algorithm and the pro-
posed Neighbour-Rank algorithm of the AS Ontological Graph Identification
method for localising malicious transit nodes.

B. Performance assessment

In order to fairly assess our OGI method, the origi-
nal PageRank algorithm is compared with the proposed
Neighbour-Rank algorithm using the RIPE RIS dataset. The
results reveal that the PageRank algorithm has more false
positives compared to the OGI method based on Neighbour-
Rank algorithm; namely, the OGI method has fewer false
negatives and less false positives, as shown in Figure 8. The
malicious transit nodes Im are the maximum scoring normal
nodes (ik) in a certain subgraph g which their associated
scores are greater than the highest-scoring malicious node in
the corresponding g, as previously outlined. This gives an
indication that the proposed algorithm operates as a feature
reduction technique that highlights the most prominent nodes
which exhibited highest scores for further investigation. This
is crucial when the node numbers are large, as there are likely
to be large numbers of detected malicious transit nodes.

Figure 8 is a representation of an average number of 2917
of nodes having a neighbourhood (i.e. number of hops) of
k = 2 in the K-means algorithm. Thus, we would expect the
malicious transit nodes to be much higher when k > 3, as
depicted in Figure 9. Hence, a reduced representation of the
possible nodes exhibiting transit malicious activities assists in
reducing the complexity and investigation time.

Also, as shown in Figure 10, the number of iterations grows
higher for higher damping factor (d) values. However, the
d value is co-related to the size of the subgraph, as low d
values tend to damp the algorithm flow, and the iterations will
quickly converge, and vice versa. Thus, this might not hold for
large AS subgraphs, where little damping (i.e. high d value)
would be required for covering as much nodes as possible
before iterations slowly converging. In this paper, a d value of
0.85 was applied as it is widely used in the literature [34]. It
should be noted that a single iteration of the Neighbour-Rank
algorithm running algorithm running on an Intel Core i7-6700
CPU with 3.4GHz base clocking speed, 8 GB of RAM and
L3 cache size of 8192 MB running Microsoft Windows 10,
64 bit requires 1.145 seconds.

Additionally, experiments were performed using the pro-
posed method via n number of hop-counts (H), for the purpose
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Fig. 9. Average number of nodes in a sub-graph with different neighbours
based on number of hops (k).

Fig. 10. Effect of different damping factor (d) values on the number of
Neighbour-Rank algorithm iterations.

of investigating the effect of the subgraph size on the algo-
rithms performance (see Figure 11). As the number of links
per AS vary from one subgraph to another, the classification
performance was assessed using different incoming links while
fixing the number of hop-counts. For completeness, results
were benchmarked with the original PageRank algorithm.
Table III shows the confusion matrix for the Neighbour-
Rank algorithm with different number of hop-counts while
keeping the number of incoming links fixed. Moreover, the
performance while varying the number of incoming links for
n = 1 and 2 is shown in Table IV and V, respectively. Results
of the other dataset, which uses RouteViews routing tables
and updates of 3 months, also exhibited similar performance
(see Table VI), suggesting that improved performance via our
OGI method is robust and independent of a particular use of
a certain dataset.

The proposed method does not assume a uniform or random
distribution of the AS as with the original PageRank. Instead,
the original PageRank converges to the same values regardless

Fig. 11. Receiver operating characteristic curve (ROC) for proposed Ontolog-
ical Graph Identification technique with varying number of hop-counts using
the Neighbour-Rank algorithm.

of initial probabilities. Therefore, giving the malicious nodes a
higher weighted value via the TAP metric, better reveals sus-
picious activity of normal nodes performing malicious transit
activities, as outlined in section III.C. This assists in starting
with realistic weights by giving a better separation between
normal nodes performing minor malicious transit activities
and the ones with major suspicious activities. Moreover, the
algorithm improves the scalability by working on independent
subsets of the AS data, i.e. subgraphs, facilitating for faster
convergence of iterations.

The proposed method can identify IP hijacking and their
malicious transit nodes better than the PageRank algorithm
and other related methods. As it defines the illegitimate
paths with the malicious nodes before adding the estimated
TAP metric to the initialised weights of the Neighbour-Rank
algorithm. The proposed OGI method could be deployed in a
real-time and online hijack detection system. The method is
designed to estimate the likelihood probabilities of nodes and
their neighbours that depend on graph models of prior (i.e.,
root nodes) and likelihood (i.e., their edges), which can be
estimated in real-time. It can be trained and tested in an offline
mode if the server does not have high computational resources,
and then it will be deployed in real-time to detect IP hijacking
through the examination of nodes and their contiguous ones.
If the method is trained and validated using a server with GPU
can be built in real-time and deployed in production networks.

In comparison with other relevant recent works, our method
was also compared with four control plane and data plane
methods; PHAS [9], a Route Purging and Promotion (RPP)
scheme [12], an Argus Agile System (AAS) [11] and the
LOCK method [29]. Comparison was made in terms of
accuracy and False Alarm Rate (FAR), with respect to the
same settings of the proposed technique. The PHAS and AAS
methods achieved about 80% accuracy and 18.82% FAR,
the RPP accomplished a 57% accuracy and roundly 32%
FAR, and the LOCK method obtained almost 88.4% accuracy
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TABLE III
MALICIOUS TRANSIT AS CLASSIFICATION CONFUSION MATRICES FOR ORIGINAL PAGERANK ALGORITHM (PR) AND CORRESPONDING

NEIGHBOUR-RANK ALGORITHM (NR) WITH NUMBER OF HOP-COUNTS (n = 1 AND 2) AND FIXED INCOMING LINKS (k = 3)

Classification
NR(n = 1) NR(n = 2) PR

True class

No. of
Samples Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0

C = 1 0.8251 0.1749 0.9512 0.0488 0.8200 0.1800
C = 0 0.1489 0.8511 0.0253 0.9747 0.1588 0.8412

TABLE IV
MALICIOUS TRANSIT AS CLASSIFICATION CONFUSION MATRICES FOR ORIGINAL PAGERANK ALGORITHM (PR) AND CORRESPONDING

NEIGHBOUR-RANK ALGORITHM (NR) WITH AS NUMBER OF INCOMING LINKS (INL) HAVING (k = 3, 4 AND 5) WHILE HAVING FIXED NUMBER OF
HOP-COUNT (n = 2)

Classification
INL(k = 3) INL(k = 4) INL(k = 5) PR

True class

No. of
Samples Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0

C = 1 0.9512 0.0488 0.9622 0.0378 0.9501 0.0499 0.8200 0.1800
C = 0 0.0253 0.9747 0.0202 0.9798 0.0391 0.9609 0.1588 0.8412

TABLE V
MALICIOUS TRANSIT AS CLASSIFICATION CONFUSION MATRICES FOR ORIGINAL PAGERANK ALGORITHM (PR) AND CORRESPONDING

NEIGHBOUR-RANK ALGORITHM (NR) WITH AS NUMBER OF INCOMING LINKS (INL) HAVING (k = 3, 4 AND 5) WHILE HAVING FIXED NUMBER OF
HOP-COUNT (n = 1)

Classification
INL(k = 3) INL(k = 4) INL(k = 5) PR

True class

No. of
Samples Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0

C = 1 0.9303 0.0697 0.9415 0.0585 0.9270 0.0730 0.8200 0.1800
C = 0 0.0485 0.9515 0.0422 0.9578 0.0598 0.9402 0.1588 0.8412

TABLE VI
MALICIOUS TRANSIT AS CLASSIFICATION CONFUSION MATRICES ON ROUTEVIEWS DATASET FOR ORIGINAL PAGERANK ALGORITHM (PR) AND

CORRESPONDING NEIGHBOUR-RANK ALGORITHM (NR) WITH NUMBER OF HOP-COUNTS (n = 1 AND 2) AND FIXED INCOMING LINKS (k = 3)

Classification
INL(k = 3) INL(k = 4) INL(k = 5) PR

True class

No. of
Samples Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0 Ĉ = 1 Ĉ = 0

C = 1 0.9498 0.0502 0.9610 0.0390 0.9493 0.0507 0.8200 0.1800
C = 0 0.0267 0.9733 0.0213 0.9787 0.0399 0.9601 0.1588 0.8412

and 10.82% FAR. Finally, our method achieved an average
of 94% accuracy and 4.2% FAR when k = 3. From the
results, it is observed that the proposed method outperforms
the other methods due to its potential design that can efficiently
recognise malicious IP nodes.

The future work of this study will examine different sce-
narios using different damping factor values on the reported
results to adaptively select the optimal values in real net-
work systems. The size of the subgraphs implemented in
the Neighbour-Rank algorithm can assist in improving the
detection performance for very large data. Thus, there is a need
to balance the trade-off between increasing the connectivity of
the subgraphs (i.e. having larger number of hops) and reaching
to AS score stability in feasible processing time. However,
this would come at the expense of increasing computational
processing time, which would call for a parallel or distributed
solution.

V. CONCLUSION

Hijacking attacks can contribute to major network disrup-
tion, and in some cases the entire network inside the victims
domain, may became unreachable. Hence, sophisticated hi-
jacking attacks can be launched against the victims network
such as the previously discussed interception or man in the
middle attacks. Therefore, a novel ontological graph approach
based on initialising the PageRank algorithm with different
weights according to AS nodes malicious connectivity and
activity has been proposed. Firstly, the illegitimate paths
containing malicious and transit nodes are defined by the
TAP metric. Secondly the extracted nodes are divided into
several subgraphs with a certain connectivity neighbourhood
(i.e. number of hops), facilitating for faster iteration conver-
gence. Thirdly, the Neighbour-Rank algorithm is initialised
with weights estimated according to the AS path verification
derived from the TAP metric. Finally, the transit nodes which
exhibit malicious activity are located and refined from each
subgraph, and hence isolated before becoming malicious.
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