
Bridging Concepts and Practice in eScience

via Simulation-driven Engineering

Rafael Ferreira da Silva∗, Henri Casanova†, Ryan Tanaka†, Frédéric Suter‡

∗Information Sciences Institute, University of Southern California, Marina Del Rey, CA, USA
†Information and Computer Sciences, University of Hawaii, Honolulu, HI, USA

‡IN2P3 Computing Center, CNRS, Villeurbanne, France

rafsilva@isi.edu, {henric,ryanyt}@hawaii.edu, frederic.suter@cc.in2p3.fr

Abstract—The CyberInfrastructure (CI) has been the object
of intensive research and development in the last decade, re-
sulting in a rich set of abstractions and interoperable software
implementations that are used in production today for supporting
ongoing and breakthrough scientific discoveries. A key challenge
is the development of tools and application execution frameworks
that are robust in current and emerging CI configurations, and
that can anticipate the needs of upcoming CI applications. This
paper presents WRENCH, a framework that enables simulation-
driven engineering for evaluating and developing CI applica-
tion execution frameworks. WRENCH provides a set of high-
level simulation abstractions that serve as building blocks for
developing custom simulators. These abstractions rely on the
scalable and accurate simulation models that are provided by the
SimGrid simulation framework. Consequently, WRENCH makes
it possible to build, with minimum software development effort,
simulators that that can accurately and scalably simulate a wide
spectrum of large and complex CI scenarios. These simulators
can then be used to evaluate and/or compare alternate platform,
system, and algorithm designs, so as to drive the development of
CI solutions for current and emerging applications.

Index Terms—CyberInfrastrucutre Development, Simulation
Accuracy, Reproducible Research, Distributed Computing

I. INTRODUCTION

An impediment to the advancement of CyberInfrastratruc-

ture (CI), and of distributed computing in general, is the

disconnect between theoretical and practical works [1]. There

are occasional success stories in which solid theoretical results

provide the foundations for improved, or even near-optimal,

practice. However, in the vast majority of the cases, theoreti-

cians produce results that are never used by practitioners, and

conversely practitioners use approaches that may be vastly sub-

optimal because they are not informed by any theory. One of

the reasons for this disconnect is that theoretical work must be

done using formally defined models of computation. Ideally,

these models are complete enough to be relevant to practice,

but simple enough that obtaining theoretical results (e.g.,

optimality results, complexity bounds) is tractable. As target

hardware/software infrastructures and application workloads

become more complex, the assumptions embedded in theo-

retical models often break down in practical settings. These

assumptions pertain to the nature of the infrastructure and

the application workload, but also to the knowledge available

thereof. For instance, a theoretical framework could assume a

fully-connected network with no contention and complete and

accurate knowledge about the size of intermediate data files

produced by an application, while in practice the network has a

topology that is subject to contention and only coarse statistical

characterizations of data file sizes are known. Accounting for

network contention and/or stochastic data file sizes could,

however, make the development of theoretical results that

would be useful in practice much more challenging, if not

intractable.

The above leads to a situation in which theoreticians may

say “accounting for these details makes our work impossible”

and practitioners may say “if your work does not account

for these details then we cannot use it.” It is not realistic to

expect that theoreticians will somehow become able to obtain

solid results when working with drastically more complex

models in which all assumptions are realistic. Conversely, it

is not realistic to expect that practitioners will use theoretical

results hoping that these results might prove useful in spite

of unrealistic assumptions. The latter is because incorporating

theoretical results in software infrastructures often requires

large software design/development efforts. Yet, it is not the

case that theoretical work is useful only if all the underlying

assumptions about the hardware/software infrastructure and

application workloads are completely realistic. Unrealistic

assumptions will likely cause the effectiveness of theoreti-

cal results to degrade when used in practice. However, the

magnitude of these degradations may be small enough to still

warrant the use of theoretical results. Or, their magnitude may

be so large that new theoretical approaches are needed if

practice is to be impacted. We claim that in order to bridge

the theory/practice disconnect these degradations must be

quantified systematically while developing theoretical results.

In this paper, we discuss our experience using simulation-

driven engineering (see Figure 1) for bridging theoretical and

practical aspects of CyberInfrastratructure (CI) development.

To this end, we introduce the WRENCH project [2], [3], a

CI simulation framework that provides high-level simulation

abstractions for building accurate and scalable full-fledged

simulators of CI scenarios with minimal software development

efforts. We then briefly describe two use cases in which

WRENCH was used for implementing simulators of pro-

duction application execution frameworks. These uses cases







little bias as possible) and scalability (the ability to simulate

large systems with as few CPU cycles and bytes of RAM

as possible). By leveraging SimGrid’s accurate models [6]

and their scalable implementations, WRENCH simulators can

yield nearly identical behaviors when compared to actual CI

systems, provided that one instantiates correctly the config-

urable parameters of the simulation models, a process typically

referred to as “simulation calibration.” The current practice of

simulation calibration in our field, based on what is reported

in the literature, is ad-hoc, labor-intensive, and thus often

poorly realized and documented (e.g., networking research [6],

[11]). Automating such process is challenging and still an

open question. As part of the WRENCH project, we are

studying mechanisms to develop a solid automated calibration

approach.

We have recently implemented realistic simulators of

two state-of-the-art application execution frameworks, Pega-

sus [12] and WorkQueue [13]. We have calibrated simulation

parameters manually by analyzing and comparing simulated

and real-world execution event traces. In addition to regular

computing tasks, the WRENCH-enabled Pegasus simulator

also accounts for “auxiliary” tasks added by the workflow sys-

tem, i.e. data stage in/out, cleanup tasks, and data registration.

Figure 3 shows real-world and simulated ECDFs for sam-

ple runs of two real-world scientific applications with task

completion date ECDFs. We observe that the simulated

ECDFs (“wrench”) track the real-world ECDFs (“pegasus”

and “workqueue”) closely. Therefore, we argue that research

products prototyped in the simulators (e.g., envisioned en-

hancements to a target CI systems) that lead to good results

in simulation will also, when implemented back into actual

software (e.g., the actual target CI systems), lead to good

results in practice. Although our simulation results yield good

accuracy, we underline that such accuracy may decrease when

simulating a different platforms, unless a recalibration of the

simulator is performed. However, we would expect that many

components of the simulation would not need recalibration

(e.g., those simulation parameters that correspond to the

behavior/implementation of the CI software being simulated,

such as message sizes, timeout threshold, various delay val-

ues).

Detailed evaluation of WRENCH-enabled simulator’s accu-

racy can be found in [2]. In that study, we have also evaluated

simulation scalability. For this purpose, we have conducted

simulation runs with workloads comprising 10K+ jobs running

in a simulated cloud platform. Experimental results show that

such large-scale, complex simulations ran under 13 minutes

on a standard laptop computer. As a result, large numbers

of large-scale simulations can be executed so as to identify

performance, scalability, and correctness issues in the research

products before production-level efforts and resources are

committed to the implementation of the research product in

actual production software.

All these simulators were implemented using often less

700 lines of code (including code for parsing simulator-

specific configuration files), whereas if using SimGrid directly

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Workflow Makespan (s)

F
(C

o
m

p
le

te
d

 T
a

s
k
s
)

pegasus wrench

0.00

0.25

0.50

0.75

1.00

0 2000 4000

Workflow Makespan (s)

F
(C

o
m

p
le

te
d

 T
a

s
k
s
)

workqueue wrench

Fig. 3. Empirical cumulative distribution function of task completion times
for sample real-world (“pegasus” and “workqueue”) and simulated (“wrench”)
executions.

it would require thousands of lines of code. For example,

in [14] a specific simulator of a simple fork-join workflow

was implemented directly on top of SimGrid for studying

the impact of file transfers on performance. This simulator

consists of more than a thousand lines of code and only offers

a minuscule fraction of the simulation capabilities provided

by WRENCH. Most of the simulator’s code pertains to the

implementation of control message exchanges between the

different processes involved in the simulated system and to the

different interaction loops of these processes. Implementing

these message exchanges and interactions is a tedious and

error-prone process when using the low-level SimGrid API

(and very few users would commit to the required effort).

By contrast, WRENCH completely hides the implementation

of these necessary aspects of a distributed system simulator,

which are implemented inside the WRENCH core. Instead, it

exposes to users a higher level and user-friendly interface.

B. Energy-aware Computing

In a recent work [10], we have leveraged the WRENCH-

enabled Pegasus simulator to investigate the impact of resource

utilization and I/O operations on the energy usage, as well as

the impact of executing multiple tasks concurrently on multi-

socket, multi-core compute nodes. Our simulator allowed us

to draw direct comparisons between real-world and modeled

power and energy consumption. Figure 4 shows the simulated

power and energy consumption measurements as well as with

the traditional model (from the literature). We find that our

model has high accuracy when compared to real-world execu-

tions. Furthermore, our model improves accuracy by about two

orders of magnitude when compared to the traditional models

used in the energy-efficient scheduling literature.

C. Pedagogic Modules

To support simulation-driven computing education, we have

implemented a few simulation-driven pedagogic modules sup-

ported by WRENCH-based simulators. All these simulators

were implemented using often less than one hundred lines of

code. Modules are packaged as Docker containers that expose





[9] “The WRENCH WorkQueue Simulator,” https : / / github . com /
wrench-project/workqueue, 2019.

[10] R. Ferreira da Silva, A.-C. Orgerie, H. Casanova, R. Tanaka, E. Deelman,
and F. Suter, “Accurately Simulating Energy Consumption of I/O-
intensive Scientific Workflows,” in 2019 International Conference on

Computational Science (ICCS), 2019.
[11] T. R. Andel and A. Yasinac, “On the credibility of manet simulations,”

Computer, no. 7, pp. 48–54, 2006.
[12] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,

R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus, a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[13] L. Yu, C. Moretti, A. Thrasher, S. Emrich, K. Judd, and D. Thain, “Har-
nessing parallelism in multicore clusters with the all-pairs, wavefront,
and makeflow abstractions,” Cluster Computing, vol. 13, no. 3, pp. 243–
256, 2010.

[14] A. Chai, M.-M. Bazm, S. Camarasu-Pop, T. Glatard, H. Benoit-
Cattin, and F. Sutern, “Modeling distributed platforms from application
traces for realistic file transfer simulation,” in Proceedings of the

17th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing. IEEE Press, 2017, pp. 54–63.
[15] R. Tanaka, R. Ferreira da Silva, and H. Casanova, “Teaching Parallel

and Distributed Computing Concepts in Simulation with WRENCH,”
https://arxiv.org/submit/2766761/view, 2019, submitted for publication.


