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Abstract—The CyberInfrastructure (CI) has been the object
of intensive research and development in the last decade, re-
sulting in a rich set of abstractions and interoperable software
implementations that are used in production today for supporting
ongoing and breakthrough scientific discoveries. A key challenge
is the development of tools and application execution frameworks
that are robust in current and emerging CI configurations, and
that can anticipate the needs of upcoming CI applications. This
paper presents WRENCH, a framework that enables simulation-
driven engineering for evaluating and developing CI applica-
tion execution frameworks. WRENCH provides a set of high-
level simulation abstractions that serve as building blocks for
developing custom simulators. These abstractions rely on the
scalable and accurate simulation models that are provided by the
SimGrid simulation framework. Consequently, WRENCH makes
it possible to build, with minimum software development effort,
simulators that that can accurately and scalably simulate a wide
spectrum of large and complex CI scenarios. These simulators
can then be used to evaluate and/or compare alternate platform,
system, and algorithm designs, so as to drive the development of
CI solutions for current and emerging applications.

Index Terms—CyberlInfrastrucutre Development, Simulation
Accuracy, Reproducible Research, Distributed Computing

I. INTRODUCTION

An impediment to the advancement of CyberInfrastratruc-
ture (CI), and of distributed computing in general, is the
disconnect between theoretical and practical works [1]. There
are occasional success stories in which solid theoretical results
provide the foundations for improved, or even near-optimal,
practice. However, in the vast majority of the cases, theoreti-
cians produce results that are never used by practitioners, and
conversely practitioners use approaches that may be vastly sub-
optimal because they are not informed by any theory. One of
the reasons for this disconnect is that theoretical work must be
done using formally defined models of computation. Ideally,
these models are complete enough to be relevant to practice,
but simple enough that obtaining theoretical results (e.g.,
optimality results, complexity bounds) is tractable. As target
hardware/software infrastructures and application workloads
become more complex, the assumptions embedded in theo-
retical models often break down in practical settings. These
assumptions pertain to the nature of the infrastructure and
the application workload, but also to the knowledge available
thereof. For instance, a theoretical framework could assume a

fully-connected network with no contention and complete and
accurate knowledge about the size of intermediate data files
produced by an application, while in practice the network has a
topology that is subject to contention and only coarse statistical
characterizations of data file sizes are known. Accounting for
network contention and/or stochastic data file sizes could,
however, make the development of theoretical results that
would be useful in practice much more challenging, if not
intractable.

The above leads to a situation in which theoreticians may
say “accounting for these details makes our work impossible”
and practitioners may say “if your work does not account
for these details then we cannot use it.” It is not realistic to
expect that theoreticians will somehow become able to obtain
solid results when working with drastically more complex
models in which all assumptions are realistic. Conversely, it
is not realistic to expect that practitioners will use theoretical
results hoping that these results might prove useful in spite
of unrealistic assumptions. The latter is because incorporating
theoretical results in software infrastructures often requires
large software design/development efforts. Yet, it is not the
case that theoretical work is useful only if all the underlying
assumptions about the hardware/software infrastructure and
application workloads are completely realistic. Unrealistic
assumptions will likely cause the effectiveness of theoreti-
cal results to degrade when used in practice. However, the
magnitude of these degradations may be small enough to still
warrant the use of theoretical results. Or, their magnitude may
be so large that new theoretical approaches are needed if
practice is to be impacted. We claim that in order to bridge
the theory/practice disconnect these degradations must be
quantified systematically while developing theoretical results.

In this paper, we discuss our experience using simulation-
driven engineering (see Figure 1) for bridging theoretical and
practical aspects of CyberInfrastratructure (CI) development.
To this end, we introduce the WRENCH project [2], [3], a
CI simulation framework that provides high-level simulation
abstractions for building accurate and scalable full-fledged
simulators of CI scenarios with minimal software development
efforts. We then briefly describe two use cases in which
WRENCH was used for implementing simulators of pro-
duction application execution frameworks. These uses cases
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demonstrate the ease-of-development, accuracy, and scalability
of simulators developed with WRENCH. They also demon-
strate how simulation makes it possible to explore emerging CI
capabilities. Finally, we also explain how WRENCH supports
innovative avenues for CI education.

II. MOTIVATION AND BACKGROUND

Simulation-driven CI engineering is preconditioned on the
ability to simulate CI execution scenarios scalably (i.e., run-
ning quickly on a standard laptop computer or small server)
and accurately (i.e., representative of real-world workload ex-
ecutions on real-world deployments). To this end, we build on
the existing SimGrid simulation framework [4], [5]. SimGrid is
open source, freely available, has been stable for many years,
is actively developed, has a large user community, and has
been used successfully in many distributed computing domains
(cluster, peer-to-peer, grid, cloud, volunteer computing, etc.).
Importantly, SimGrid has also been the object of thorough in-
validation and validation studies [6], and its simulation models
have been shown to provide large accuracy and/or scalability
advantages over competing simulation frameworks [4]. As a
result, accurate SimGrid simulations execute in seconds or
minutes on a standard laptop computer.

One significant drawback of SimGrid, especially for full-
fledged CI simulations, is that its simulation abstractions are
too low-level. This drawback was discussed in [7], in which
the authors conduct a critical analysis of the state-of-the-art
distributed computing simulation frameworks. They observe
that many popular simulation frameworks employ inaccurate
simulation models, which had already been reported in [4], and
acknowledge that SimGrid does provide accurate and scalable
simulation capabilities. However, they also observe that using
it to implement a simulator of a complex system, such as CI
workloads executed on CI deployments, would be extremely
labor-intensive.

Given the above, we need a CI simulation framework built
on top of SimGrid, so that simulations can be accurate and
scalable, but that exposes convenient, reusable, and high-level
simulation abstractions, so that implementing simulators of
CI scenarios can be done with minimal software engineering

efforts. To fill this gap, the WRENCH project [3] emerged as
a framework that provides accurate, scalable, and easy-to-use
high-level CI abstractions for building simulators of workload
executions on production CI deployments. For instance, in
order to simulate the example system depicted in Figure 2, one
would have to implement all communication and computing
behavior of each process instantiated by the components.
In SimGrid, simulating such system is labor-intensive and
error-prone, requiring the development of thousands of lines
of code. By contrast, WRENCH’s philosophy is to expose
high-level simulation abstractions to provide reusable building
blocks for developing custom simulators with minimum effort.
Such abstractions represent implementations of simulated CI
services that assemble all software pieces (e.g., processes,
communication, etc.) necessary for mimicking services be-
haviors. It is thus straightforward for CI developers to build
WRENCH simulators for driving the development of more
efficient system designs for CI software, and for CI researchers
to build WRENCH simulators for driving the development of
efficient algorithms that are at the core of such CI software.

III. THE WRENCH SIMULATION FRAMEWORK

WRENCH is an open-source C++ library for developing
CyberInfrastructure simulators. Its set of core services are
composed of two layers as follows:

o Simulation Core: All necessary simulation models and
base abstractions (computing, communicating, storing),
provided by SimGrid.

o Simulated Core CI Services: Abstractions for simulated
CI components that can be used by an application ex-
ecution framework to execute computational workloads
(compute services, storage services, network proximity
services, data location services, etc.).

The Simulated Core CI services layer provides high-
level simulation abstractions of commonplace CI services.
WRENCH currently provides the following set of simulated
CI services (Version 1.4 was released in April 2019):

o Compute Services: These services provide mechanisms
for executing application tasks, which entail I/O and com-
putation. These include bare-metal servers, cloud plat-
forms, virtualized cluster platforms, and batch-scheduled
clusters.

o Storage Services: These services provide mechanisms to
store application files, which can then be accessed in
reading/writing by the compute services when executing
tasks that read/write files.

o File Registry Services: These services, often known as
replica catalogs, are simply databases of key-value pairs
of the storage services on which replicas of files are
available. They are used during application execution to
decide where input files for tasks can be acquired.

o Network Proximity Services: These services monitor the
network and maintain a database of host-to-host network
distances. This database can be queried by the CI system
to make informed decisions, e.g., to pick from which
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Fig. 2. Example of a CI system that can be simulated using WRENCH. High-level simulation abstractions provided as WRENCH simulated core CI services

can be customized and combined to build complex, heterogeneous CI systems.

storage service a file should be retrieved so as to reduce
communication time. Typically, network distances are
estimated based on round-trip-times between hosts.

o Workflow Management Systems (WMSs): A workflow
management system provides the mechanisms for execut-
ing workflow applications, including decision-making for
optimizing various objectives (the most common one is
to minimize workflow execution time). WRENCH does
not provide a WMS implementation as part of its core
components. Instead it provides abstractions for building
custom WMS components.

WRENCH service implementations are all parameteriz-
able (e.g., underlying algorithms, various overheads, mes-
sage payloads, etc.), which allows developers to calibrate the
instantiation of the simulated services so that they behave
similarly to actual CI services of interest. The ability to define
such parameterizable services is key for developing accurate
CI simulators, from which research products evaluated via
experimental simulation could be seamlessly integrated into
actual CI platforms (see Figure 1). All aforementioned services
and capabilities are made available through the WRENCH
Developer APL. This API is designed to ease the development
of complex (simulated) systems comprised of distributed com-
ponents that interact both synchronously and asynchronously,
such as current and emerging CI systems.

In addition to the Developer’s API, WRENCH also provides
a User API, which makes it possible to build a full-fledged
simulator with only a few lines of code. This API provides the
mechanisms to control simulation execution (platform config-
uration, services instantiations, simulation launching, etc.) and
analyze simulation outcomes. For an exhaustive description of
the WRENCH architecture, its functionalities, and APIs, we
refer the reader to the latest WRENCH research article [2] and
the project’s online documentation [3].

IV. WRENCH’s IMPACT ON CI RESEARCH,
DEVELOPMENT, AND EDUCATION

Although WRENCH is a young project and its first stable
release was made available just over one year ago, the frame-
work has already impacted CI research, development, and
education. In the last year, we have delivered four WRENCH’s
stable releases, which were downloaded over 300 times, either
directly from our GitHub repository! or via our Docker Hub
repository?.

WRENCH has already enabled the development of two
simulators of two production application execution frame-
works [8], [9] for supporting the study of energy-efficiency
for I/O-intensive workflow applications [10], and the study of
simulation accuracy and scalability [2]. WRENCH has also
gained overseas attention, and received contributions from
users in France and Ivory Coast, who are conducting research
on workflow scheduling. In the context of CI development,
a WRENCH-enabled Pegasus simulator is being used to
evaluate novel algorithms for energy-efficiency, workflow data
footprint constraints, and cost estimation for running large-
scale workflows on heterogeneous computing platforms. In
the context of education, we have implemented a small set
of simulation-driven pedagogic modules. The modules are
available on-line® and provide students with simulation-driven
interactive learning opportunities. They target essential parallel
and distributed computing learning objectives in the specific
context of scientific workflow applications running on bare-
metal hardware resources.

A. Simulation Accuracy and Scalability
Two major concerns regarding simulation are accuracy (the

ability to capture the behavior of a real-world system with as

Uhttps://github.com/wrench-project/wrench
Zhttps://hub.docker.com/r/wrenchproject/wrench
3http://wrench-project.org/wrench-pedagogic-modules



little bias as possible) and scalability (the ability to simulate
large systems with as few CPU cycles and bytes of RAM
as possible). By leveraging SimGrid’s accurate models [6]
and their scalable implementations, WRENCH simulators can
yield nearly identical behaviors when compared to actual CI
systems, provided that one instantiates correctly the config-
urable parameters of the simulation models, a process typically
referred to as “simulation calibration.” The current practice of
simulation calibration in our field, based on what is reported
in the literature, is ad-hoc, labor-intensive, and thus often
poorly realized and documented (e.g., networking research [6],
[11]). Automating such process is challenging and still an
open question. As part of the WRENCH project, we are
studying mechanisms to develop a solid automated calibration
approach.

We have recently implemented realistic simulators of
two state-of-the-art application execution frameworks, Pega-
sus [12] and WorkQueue [13]. We have calibrated simulation
parameters manually by analyzing and comparing simulated
and real-world execution event traces. In addition to regular
computing tasks, the WRENCH-enabled Pegasus simulator
also accounts for “auxiliary” tasks added by the workflow sys-
tem, i.e. data stage in/out, cleanup tasks, and data registration.

Figure 3 shows real-world and simulated ECDFs for sam-
ple runs of two real-world scientific applications with task
completion date ECDFs. We observe that the simulated
ECDFs (“wrench”) track the real-world ECDFs (“pegasus”
and “workqueue”) closely. Therefore, we argue that research
products prototyped in the simulators (e.g., envisioned en-
hancements to a target CI systems) that lead to good results
in simulation will also, when implemented back into actual
software (e.g., the actual target CI systems), lead to good
results in practice. Although our simulation results yield good
accuracy, we underline that such accuracy may decrease when
simulating a different platforms, unless a recalibration of the
simulator is performed. However, we would expect that many
components of the simulation would not need recalibration
(e.g., those simulation parameters that correspond to the
behavior/implementation of the CI software being simulated,
such as message sizes, timeout threshold, various delay val-
ues).

Detailed evaluation of WRENCH-enabled simulator’s accu-
racy can be found in [2]. In that study, we have also evaluated
simulation scalability. For this purpose, we have conducted
simulation runs with workloads comprising 10K+ jobs running
in a simulated cloud platform. Experimental results show that
such large-scale, complex simulations ran under 13 minutes
on a standard laptop computer. As a result, large numbers
of large-scale simulations can be executed so as to identify
performance, scalability, and correctness issues in the research
products before production-level efforts and resources are
committed to the implementation of the research product in
actual production software.

All these simulators were implemented using often less
700 lines of code (including code for parsing simulator-
specific configuration files), whereas if using SimGrid directly
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Fig. 3. Empirical cumulative distribution function of task completion times
for sample real-world (“pegasus” and “workqueue”) and simulated (“wrench”)
executions.

it would require thousands of lines of code. For example,
in [14] a specific simulator of a simple fork-join workflow
was implemented directly on top of SimGrid for studying
the impact of file transfers on performance. This simulator
consists of more than a thousand lines of code and only offers
a minuscule fraction of the simulation capabilities provided
by WRENCH. Most of the simulator’s code pertains to the
implementation of control message exchanges between the
different processes involved in the simulated system and to the
different interaction loops of these processes. Implementing
these message exchanges and interactions is a tedious and
error-prone process when using the low-level SimGrid API
(and very few users would commit to the required effort).
By contrast, WRENCH completely hides the implementation
of these necessary aspects of a distributed system simulator,
which are implemented inside the WRENCH core. Instead, it
exposes to users a higher level and user-friendly interface.

B. Energy-aware Computing

In a recent work [10], we have leveraged the WRENCH-
enabled Pegasus simulator to investigate the impact of resource
utilization and I/O operations on the energy usage, as well as
the impact of executing multiple tasks concurrently on multi-
socket, multi-core compute nodes. Our simulator allowed us
to draw direct comparisons between real-world and modeled
power and energy consumption. Figure 4 shows the simulated
power and energy consumption measurements as well as with
the traditional model (from the literature). We find that our
model has high accuracy when compared to real-world execu-
tions. Furthermore, our model improves accuracy by about two
orders of magnitude when compared to the traditional models
used in the energy-efficient scheduling literature.

C. Pedagogic Modules

To support simulation-driven computing education, we have
implemented a few simulation-driven pedagogic modules sup-
ported by WRENCH-based simulators. All these simulators
were implemented using often less than one hundred lines of
code. Modules are packaged as Docker containers that expose
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Fig. 5. Gantt chart of simulated workload task executions for a scientific
workflow running on a distributed platform.

an interactive Web application through which students can
perform various hands-on activities. Each activity entails run-
ning, through the Web application, a simulator with different
input parameters. Students run these simulations to explore
different execution options for different application and/or
platform configuration scenarios. Students are presented with
simulation output that includes visualizations of the simulated
execution, such as resource utilization metrics, event timelines,
and interactive Gantt charts (see Figure 5). Students must
analyze this output and draw a range of conclusions that
lead them to achieve a well-defined set of learning objectives.
These modules have already been used in the classroom, in an
undergraduate course at the University of Hawai‘i in Spring
2019 [15].

V. CONCLUSION

In this paper, we have introduced WRENCH, a framework
for enabling simulation-driven engineering for evaluating and
developing CI application execution frameworks. We have
reported on how WRENCH has aided to bridge concepts
and practice in eScience via simulation. We have described

the overall framework capabilities and available services, and
briefly exposed WRENCH’s impact on (i) research and de-
velopment, through the implementation of two state-of-the-art
application execution frameworks and a case study on energy-
efficiency; and (if) education, via the development of online
self-contained pedagogic modules.

Although relying on simulation is key for advancing state-
of-the-art CI software, attempting to do so from scratch,
i.e., implementing a full-fledged simulation based on base
models of the infrastructure and application workloads is not
worthwhile. It is too labor-intensive and in practice results
in the implementer opting for simplifications that translate
in loss of simulation accuracy. Instead, relying on simulation
frameworks, such as SimGrid and WRENCH, allows users
to focus on their own research, development, and/or teaching
interests while keeping the gap between concepts and practice
as narrow as possible.

An interesting future direction is that of automated sim-
ulation calibration. The ‘“‘simulation calibration” question is
crucial to establishing a solid simulation-driven experimental
science approach for CI research, development, and education.
Yet this question is poorly understood and current calibration
practices are both inadequate and labor-intensive. This issue
is not confined to WRENCH, but is faced by all distributed
system simulators. An additional challenge is that of the data
necessary for performing calibration is often not available to
the community—e.g., execution and performance traces are
scarce and fragmented.
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