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Abstract—This paper proposes an intelligent multi-agent ap-
proach in a real-time strategy game, StarCraft, based on the deep
deterministic policy gradients (DDPG) techniques. An actor and
a critic network are established to estimate the optimal control
actions and corresponding value functions, respectively. A special
reward function is designed based on the agents’ own condition
and enemies’ information to help agents make intelligent control
in the game. Furthermore, in order to accelerate the learning
process, the transfer learning techniques are integrated into the
training process. Specifically, the agents are trained initially in
a simple task to learn the basic concept for the combat, such
as detouring moving, avoiding and joining attacking. Then, we
transfer this experience to the target task with a complex and
difficult scenario. From the experiment, it is shown that our
proposed algorithm with transfer learning can achieve better
performance.

Index Terms—multi-agent, deep deterministic policy gradients,
strategy game, intelligent control, transfer learning.

I. INTRODUCTION

Recently, reinforcement learning with deep neural networks
has received increasing attention [1]. Deep reinforcement
learning (DRL) provides an opportunity to train the agent
to solve a series of human-level tasks by an end-to-end
fashion [2]. For instance, deep Q-network (DQN) uses the
experience replay technique and a target network to remove the
correlations between samples and stabilize the training process
[3]. Furthermore, policy gradients (PG) is proposed based on
gradient descent to find the action with its probability [4]. An
extension algorithm combining value and policy ideas is called
actor-critic by applying two different neural networks as the
actor and critic network [5]. The actor is designed to produce
actions, while the critic network is developed to evaluate the
performance of certain actions by generating the correspond-
ing value functions [6]. One of the most successful actor-critic
algorithms is deep deterministic policy gradients (DDPG),
which uses a deep neural network for function approximation
and can solve the problem of continuous motion space [7],
[8]. Recently, DDPG has been introduced into multi-agent
problems. DDPG was used to train intractable cooperative
multi-agent control tasks [9]. A multi-agent deep deterministic
policy gradient (MADDPG) was established to help agents
not only cooperate with each other in communication and
navigation but also build decision thinking including physical
deception and predator-prey [10]. In [11], the authors designed

the novel experimental method with MADDPG for multi-agent
systems, and promising performance was achieved.

Moreover, DRL has been integrated into the game field,
from classic Atari video games to traditional board games, and
made huge progress in the field [12]-[16]. Since the players
are required to take precisely operation for a game character
in a real-time strategy game to accomplish a mission, multi-
agent computer games have received increasing attention and
become an excellent testbed to challenge various algorithms
[17], [18]. Among most of the computer games, StarCraft,
designed by Blizzard Entertainment, has been published more
than 20 years, and it is still one of the most popular real-
time strategy games. Because of the complex environment and
diverse units, StarCraft provides an ideal research platform
for multi-agent study [19]. Recently, due to the development
of Brood War application programming interface (BWAPI)
[20], the study of StarCraft control is making impressive
progress [21], [22]. In recent years, many efficient program-
ming applications including BWMirror and TorchCraft are
developed to promote the development in this field [23].
Actually, many researchers develop new methods on StarCraft
to overcome decision making in an uncertain environment.
A Bayesian model for StarCraft agents was developed to
predict opponent decision making [24]. Through improving
Sarsa and neural networks, parameter sharing multi-agent
gradient-descent Sarsa (PS-MAGDS) algorithm was designed
to keep a high win rate in an uncertain environment with
different units [25]. Furthermore, [26] developed a multi-agent
bidirectionally-coordinated network with modified actor-critic
structure. In [27], a master-slave architecture can help agent
effectively study information from local agents in microman-
agement tasks. Moreover, [28] developed a zero-order (ZO)
backpropagation algorithm to enable the agents to achieve
better performance with non-trivial strategies for scenarios.
Besides, counterfactual multi-agent (COMA) policy gradients,
is proposed with a centralized critic and decentralized actors
to generate agents’ action [29].

Motivated by the above research, in this paper, we de-
signed the deep deterministic policy gradient algorithm for
the StarCraft strategy game to achieve intelligent control. The
major contributions of this paper are as follows. First, the
DDPG algorithm is designed into the StarCraft game to enable
the agents to move in a continuous fashion. This is critical

978-1-7281-0927-5/19/$31.00 ©2019 IEEE



411

in improving the control performance of a highly unstable
environment on the battlefield. Second, the transfer learning
techniques are integrated into the designed method to facilitate
the learning process. This will make the agents obtain effective
information from simple task and present a better outcome
with a more complex environment. Third, a special reward
function is designed for the StarCraft game based on the
agents’ own situation and enemies’ information ensuring the
agents to achieve steady high win rate with limited training
times in complex environments.

The rest of this paper is organized as follows. In Section II,
we formulate the StarCraft problem analyzed in this paper and
provide the background of transfer learning method. Section
IIT provides our designed DDPG approach with transfer learn-
ing method in real-time StarCraft micromanagement scenario.
Furthermore, Section IV shows the experiment design, and
the experiment results demonstrate the effectiveness of our
proposed method. Section V concludes our work.

II. PROBLEM FORMULATION
A. Reinforcement Learning in StarCraft

The StarCraft game can be viewed as a Markov decision
process (MDP) in which the agent interacts with the environ-
ment continuously. Specifically, the agent receives a current
state from the environment, based on it providing the control
signal. Then the environment returns a new state to the agent.
Meanwhile, the environment also provides a reward signal to
determine the goal. Therefore, the agent updates its policy
according to the reward given by the environment. So the main
purpose of reinforcement learning is to get the optimal strategy
for maximum reward. The following are some basic concepts
for reinforcement learning connecting with StarCraft.

a) Policy: m is the behavior function of the agent, a
mapping from state to action, which tells the agent how to
select the next action in StarCraft.

b) Episode: an episode is one round for StarCraft, that
consists of a series of state s;, action a;, reward 7,

(317a177117527a27r2a ey Sp—1,0n—1,Tn—1, 5n7anar’n) (1)

which is from initial step to terminal step. After one episode,
the outcome will be posted, and the setting of scenario will
be initialized.

c) Reward: 1, is a feedback signal and a value indicating
how well the agent did at step ¢ in the game.

d) Return: G is defined as cumulative discount reward.
Return at step t is formulated in equation (2),

Gt = Tiq1 + T4z + 7 °Teg3 + - 2

where 0 <~ <1 is called discount factor.

The goal of reinforcement learning is to maximize the
cumulative rewards it receives in the long run. However, based
on equation (2), the return score and episode are uncertain,
and there are many possible situations, where the return is
a variable. Therefore, the task becomes to maximize the

expectation of cumulative rewards with the following value
function. The value function corresponding to a state s is

Vi(s) = Ex(Gelse = s) 3)

and this value function is also called the state value function.
For a given s, V;(s) indicates the expected value of return
when following the policy 7 starting from state s.

Besides, there is another kind of value function is called
state action-value function,

Qr(s,a) = Ex(Gt|s; = s,a; = a) “4)

which indicates the expected value of return when taking
action a from state s with policy 7. After having the guide of
the value function, agents will accumulate scores purposefully
and make better performance in the game.

B. Transfer Learning

Transfer learning as a powerful tool in the Al field has made
much progress in recent years [30], [31].

The key idea of transfer learning is to find the similar-
ities between the new problem and the original problem,
and make rational use of them. Given a marked source
domain Dy = {z;,y;}", and an unmarked target domain
D, = {x; 7;7_11 the data distribution between marked
source domain P(xs) and unmarked target domain P(z;) are
different, i.e. P(xzs) # P(x). The purpose of transfer learning
is to learn the knowledge of the target domain D; with the
experience of source domain information Dj.

III. LEARNING METHOD FOR STARCRAFT

In this chapter, we develop the DDPG algorithm with
transfer learning and reward design for the StarCraft computer
game. The structure of the algorithm can be described in Fig.
1.The designed DDPG algorithm includes three parts: actor,
critic, and experience replay.
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Fig. 1. The structure of our DDPG approach.
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A. Reward Design

In order to improving the ability of learning strategies, we
develop an unique reward function for StarCraft agents. It
includes three parts: attack reward, position reward and destroy
reward. The reward equation is written below,

r=o-rq+p-rp+y-rg (5)

where 74, 1, and 74 are attacked reward, position reward and
destroy reward respectively. «, 8 and ~ are attacking reward
weight, position reward weight and destroy reward weight
respectively. The attack reward 7, is described as

ra = (ehvy — ehvi_1) — p - (ahvy — ahvi_q) 6)

where ehvy and ehv,_; are the enemy health value at time ¢
and t—1, respectively. Also, ahv; and ahv;_; are agent health
value at time ¢ and ¢ — 1, respectively. Besides, p is the weight
for agent health value ratio.

Moreover, the position reward is defined as equation (7),

0, 0<d<A
rp(d)=4¢-01, A<d<B )
—-0.5, B<d<O

where d is the distance between own agent and closest enemy.
Besides, area A, B, O stand for agent fire range, battle field
and other areas, respectively.

Furthermore, the destroy reward is formulated as the fol-
lowing equation (8),

rq=-eng—en;+T-0 (8)

where eng is the initial number of enemy, en, is the current
number of enemy, o is agent life status means whether agent
is alive or not, and 7 the weight for agent life status.

B. Neural Network Implementation

Our method uses DDPG neural networks to approximate
the function, and the value function network called a critic
network has action and state as the input (s, a), and Q(s,a)
as the output. In addition, another neural network is used to
approximate the policy function which is called actor network
that the input is state s, and output is action a. Moreover, the
target networks are used in the learning method to ensure the
convergence of parameters.

Suppose the critic network is Q(s, a|6?), its corresponding
target critic network is Q' (s, a|#?"). Actor network is zu(s|6"),
its corresponding target actor network is i/ (s|0*). 6% and *
are the weights for critic and actor networks, and 0@ and O+
are target network weights.

1) Critic Network: The critic network is used for approxi-
mation of value functions. Besides, critic network is updated
by the loss function with mean squared error as below,

L= 5 Yo~ QUi aild?)? ©)

where y; is the estimated real value which can be written as,

yi = i +7Q (si41, 1 (5i41]6*)[09) (10)

where @Q(sit1, 1/ (si+1]0#)|09) is the output from critic
target network, and i/(s;1|0") is the actor target network
output. Then the gradient descent method is used for updating.
Besides, both actor and critic use the target network to
calculate the target value.

2) Actor Network: Actor network is used for optimizing
policies. In order to evaluate a strategy, there should have a
goal called policy objective function at first, which is marked
as J(#"). The actor wants .J(6/) to get the maximum value by
finding the appropriate *. Therefore, the derivative of J(6*)
to 6" is the policy gradient.

The policy parameter 6 is updated in the direction of
increasing the value of value function Q(s, a|f?). The strategy
is marked as u(s|60"), and the actor network parameter is
updated by the following equation (11),

1
v@“'J ~ N Z an(Sa a|0Q)|s:si,a:u(si) . v@“’ﬂ(s‘eﬂﬂs:ﬁi
l (11)

where Q(s,a|0%) is from critic network, and s (s|6*) is actor
network result.

Our method is off-policy, and the policy used to generate
behavior value and the policy used to evaluate are not the
same policy. In other words, the action a;4; actually taken
by the agent is not generated by p(s|6*). In order to ensure
exploration, a policy A is to add random noise with Ornstein-
Uhlenbeck process to the j(s|6*) policy in equation (12) [32].

ay = (s:]0") + N (12)

Moreover, by using soft update, the target network is
updated every step with small update amplitude. The following
equations show the target networks updating,

09 « 709 + (1 - 7)69 (13)

0" — 70" 4+ (1 — 7)o" (14)
where 7 is the update parameter [7].

In a nutshell, actor and critic estimate the policy and cor-
responding value function for StarCraft agents. Then, agents
implement this policy with noise to deal with the unstable
StarCraft environment. Furthermore, experience replay collects
each agent’s information, and stores in the memory pool for
the following actor and critic training.

C. Transfer Learning Design in DDPG

In order to increase the learning rate, we integrate transfer
learning into our DDPG method. Transfer learning is an
optimal shortcut to save time and get better performance. A
basic network Nyis trained with the initial data set to achieve
an original task. After that, the network is transferred to a
second target network Ns. Then the transferred network No
is trained with the target data set and the target task.
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Therefore, instead of randomly initializing the neural net-
work weights, our algorithm transfers the well-trained net-
works in the traditional DDPG method. Moreover, the experi-
ence memory pool is imported by well-trained model experi-
ence. The designed DDPG with transfer learning algorithm is
presented below.

Algorithm 1 DDPG Algorithm with transfer learning

1: Initialize critic network Q(s, a|6?) and actor y(s|0*) with
transfer weights 9 and #* from previous actor and critic
networks.

2: Initialize target network @)’ and p' with transfer weights
from previous target networks

3: Initialize replay buffer R with previous model memory
4: for episode=1, M do
5. Initialize a random process A for action exploration
6:  Receive initial observation state sy
7. fort=1,T do
8: Select action a; = pu(s:|0") + N; according to the
current policy and exploration noise
9: Execute action a; at and observe reward r; and
observe new state Syy1
10: Store transition (s¢, at, 7, S¢4+1) in R
11: Sample a random minibatch of N transitions
(si,ai,ri,si+1) from R , ,
12: Set y; =7 + Q' (Si41, 1/ (8i41|0*)[09)
13: Update critic by minimizing the loss:
L= %Yy — Q(si,ai|09))?
14: Update the actor policy using the sampled policy
gradient:
Vond = + 3. VaQ(s,al09) - Voup(s|0H)
15: Update the target networks:

09 709 + (1 — 1)
O 10" + (1 — 7)o"
16: end for
17: end for

IV. EXPERIMENT ANALYSIS

This section provides the experiment settings and exper-
imental analysis of two StarCraft scenarios. This StarCraft
scenario platform is similar to the one used in [26]. The code
has been implemented with TorchCraft [23].

A. Experiment Settings

Our experiment mainly involves four different kinds of
units, Dragoon, Vulture, Zergling and Zealot, in two different
combat scenarios (3 Vultures vs. 20 Zerglings and 2 Dragoons
with 3 Zealots vs. 2 Dragoons with 3 Zealots). TABLE I
gives a detailed description of the parameters of four combat
units. Here, we consider the units in StarCraft as the agents
in reinforcement learning.

The first scenario, we will verify through a comparative
experiment that the transfer could complete the unit training
faster and better. In the second scenario, we will show that our
DDPG with transfer learning method is effective in a more

TABLE I
THE PARAMETERS OF FOUR UNITS.

Attributes Dragoon | Vulture Zergling | Zealot
Hitpoints 100 80 35 100
Range 4 5 1 1
Sight 8 8 5 7
Cooldown 1.26 1.26 0.336 0.924
Ground Damage 20 20 5 8

complex environment. In addition, the combined comprehen-
sive power for the enemy side is equal to or greater than
our controlled units. StarCraft Al takes a heuristic strategy
to control the enemy, and these two scenes are difficult for
ordinary Starcraft players to control and win the game. We
conducted 1000 experiments in two scenarios and counted
the win rates of each experimental groups to determine the
experiment result. We record winning episodes divided by the
total number of episodes trained as win rates that are calculated
in every 100 episodes.

Our method has four main inputs - current state, current
action, current reward, and next state. The dimension of the
unit state is 25, and the detail information is shown as follows.
All states are normalized into [0, 1].

o Health: includes three variables which are the unit’s own
current health value, health value rank, and enemy current
health value.

o Shield: includes two variables which are the unit’s own
current shield value and enemy current shield value.

o Number: includes four variables which are the number
of the existing units, the number of the existing enemies,
and the number of the unit’s teammates and enemies in
its observation.

o Attack: includes five variables which are unit power
cooldown value, unit attacking or moving, enemy attack-
ing or moving, unit under-attacking status, enemy unit
under-attacking status.

o Position: includes nine variables which are unit position
coordinates (x, i), enemy unit position coordinates (z, y),
the closest enemy distance coordinates (dx, dy, d), where
dx, dy and d are horizontal distance, vertical distance
and minimum distance, respectively, and enemy attacking
target position coordinates (z,y).

o Status: there are two variables including own unit and
enemy alive or dead status.

For DDPG networks, there are 150 nodes in the hidden
layer for actor and critic networks, respectively. By using
current state, actor network produces the next action policy.
After determining the new policy with the current state, the
critic network gives a value to assist the actor in updating its
network. Rectified Linear Unit (ReLU) as a type of activation
function is used to process network weights instead of the
sigmoid function. Besides, Adam optimizer is imported to
update network weights.
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The output is an action with three dimensions, which are
move or attack, position (z,y), which determines the direction
for the move. In this way, the movement for each unit becomes
a continuous fashion and increase the opportunity to move to
a better position and form the best strategy compare to the
other reinforcement learning algorithms with limit choices.
We normalize the number in the range of [—1, 1]. Therefore,
for the action first parameter, if it is greater than 0O, the unit
will attack the closest enemy. If not, the unit will move
to somewhere depend on the second and third parameter.
For example, action is [—0.5,0.2,0.4], unit will move with
tan~!(82) = 27° direction.

In each step, the current state, action, reward and next state
are stored as one batch in memory pool for replay training.
Therefore, 160 batch size from memory is randomly selected
for each step to update the neural networks. Besides, based on
the attributes of four types of units, each type of units has its
specific reward function weights.

B. Scenario One

The first combat scenario is shown in Fig. 2(b), we control
3 Vultures to fight against 20 Zerglings. The enemy has higher
attack speed and quantity advantage, while we have a better
attack range and attack capability, and we have only three
units. In this scenario, we have conducted two groups of
experiments. The first group is the DDPG training experiment,
and the second group is DDPG with transfer learning method
(Algorithm 1), whose network initialized parameters are mi-
grated from the Fig. 2(a) 3 Vultures vs. 15 Zerglings with 200
episodes training.

p=

transfer

o :
information

=

Scenario 1 (b): 3 Vultures vs. 20 Zerglings

Scenario 1 (a): 3 Vultures vs. 15 Zerglings
Fig. 2. StarCraft scenario 1 setting.

The first scenario has a larger number of enemies which
take part in the fight, so the new task is more difficult
for DDPG empowering agents to win the game. Therefore,
transfer learning is imported to help agents take advantage
of the game. Fig. 3 presents that the original DDPG and
transfer learning DDPG method win rates after transferred 200
episodes knowledge from 3 Vultures vs. 15 Zerglings.

Our method has three main improvements comparing to
original DDPG. Firstly, the initial starting point is higher
than DDPG, which helps agents save strength for experience
collection and action trails. Secondly, transfer learning method
has a higher increasing rate than DDPG, from the diagram,
transfer learning method achieves 0.7 win rates after 300 trails.
However, DDPG still jumps into the stage of constantly testing
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Fig. 3. Win rates for 3 Vultures vs. 20 Zerglings.

period and cannot have better win rates after 1000 episodes.
Lastly, transfer learning reaches a higher platform after a
short training, and it keeps more than 0.9 win rates after 700
episodes training. Nevertheless, DDPG stops at 0.1 win rates
after 1000 episodes training.

C. Scenario Two

The second combat scenario is shown in Fig. 4(b), and we
control 2 Dragoons with 3 Zealots to fight against 2 Dragoons
with 3 Zealots. We have the same units and number with
the enemy. In this scenario, we will also show the original
DDPG and DDPG with transfer learning method result whose
network is transferred from Fig. 4(a) 3 Zealots vs. 3 Zealots
with 200 episodes training. Then after the same initial settings,
we retrain 2 Dragoons with 3 Zealots vs. 2 Dragoons with 3
Zealots. Fig. 4 shows the units settings.

transfer

information

Scenario 2 (b): 2 Dragoons and 3 Zealots vs.
2 Dragoons and 3 Zealots

Scenario 2 (a): 3 Zealots vs. 3 Zealots

Fig. 4. StarCraft scenario 2 setting.

From Fig. 5, the 2 Dragoons and 3 Zealots vs. 2 Dragoons
and 3 Zealots experiment result is obviously showed that the
DDPG with transfer learning method could obtain a high
growth trend of win rates at first. Then after 700 episodes
training, our units are able to reach more than 98 number
of wins in every 100 episodes. But the DDPG method only
keeps 0.3 win rates after training 1000 episodes. Besides, we
compare our result with DQN, PG, and ZO. In 2 Dragoons
and 3 Zealots vs. 2 Dragoons and 3 Zealots scenario, DQN
and PG only respectively achieve 0.61 and 0.69 win rates,
and ZO has 0.9 win rates [28]. However, our DDPG with
transfer learning method stabilizes at 0.98 win rates after 1000
episodes training. Thus, the result shows that our method is
supporting multi-agents learning strategy quickly.
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Fig. 5. Win rates for scenario 2. Both teams have 2 Dragoons and 3 Zealots
joining the combat.

V. CONCLUSION

In this paper, we developed the DDPG with transfer learn-
ing framework for StarCraft micromanagement with multiple
agents. In this way, we enabled the agents to move in a
continuous fashion. We also designed the reward function
considering the agents’ own situation and enemies’ informa-
tion to ensure the agents achieving steady high win rate with
limited training times. Two experiments were conducted with
detailed analysis. From the experiment results, we know that
the proposed method could achieve better performance with
less training time in the target task.
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