
HowReliableistheCrowdsourcedKnowledgeof
SecurityImplementation?

MengsuChen∗ FelixFischer† NaMeng∗ XiaoyinWang‡ JensGrossklags†

VirginiaTech∗ TechnicalUniversityofMunich† UniversityofTexasatSanAntonio‡

mschen@vt.edu,flx.fischer@tum.de,nm8247@vt.edu,xiaoyin.wang@utsa.edu,jens.grossklags@tum.de

Abstract—Stack Overflow(SO)isthe mostpopularonline
Q&Asitefordeveloperstosharetheirexpertiseinsolving
programmingissues.Givenmultipleanswerstocertainquestions,
developers maytaketheacceptedanswer,theanswerfroma
personwithhighreputation,ortheonefrequentlysuggested.
However,researchersrecentlyobservedthatSOcontainsex-
ploitablesecurityvulnerabilitiesinthesuggestedcodeofpopular
answers, whichfoundtheir wayintosecurity-sensitivehigh-
profileapplicationsthatmillionsofusersinstalleveryday.This
observationinspiresustoexplorethefollowingquestions:How
muchcanwetrustthesecurityimplementationsuggestionson
SO?Ifsuggestedanswersarevulnerable,candevelopersrelyon
thecommunity’sdynamicstoinferthevulnerabilityandidentify
asecurecounterpart?
Toanswerthesehighlyimportantquestions,weconducteda

comprehensivestudyonsecurity-relatedSOpostsbycontrasting
secureandinsecureadvicewiththecommunity-givencontent
evaluation.Thereby,weinvestigatedwhetherSO’sgamification
approachonincentivizingusersiseffectiveinimprovingsecurity
propertiesofdistributedcodeexamples. Moreover,wetraced
thedistributionofduplicatedsamplesovergivenanswersto
test whetherthecommunitybehaviorfacilitatesorprevents
propagationofsecureandinsecurecodesuggestionswithinSO.
Wecompiled953differentgroupsofsimilarsecurity-related

codeexamplesandlabeledtheirsecurity,identifying785secure
answerpostsand644insecureanswerposts.Comparedwith
securesuggestions,insecureoneshadhigherviewcounts(36,508
vs.18,713),receivedahigherscore(14vs.5),andhadsignificantly
moreduplicates(3.8vs.3.0)onaverage.34%ofthepostspro-
videdbyhighlyreputableso-calledtrusteduserswereinsecure.
Ourfindingsshowthatbasedonthedistributionofsecure

andinsecurecodeonSO,usersbeinglaymeninsecurityrely
onadditionaladviceandguidance. However,thecommunity-
givenfeedbackdoesnotallowdifferentiatingsecurefrominsecure
choices.Thereputationmechanismfailsinindicatingtrustworthy
userswithrespecttosecurityquestions,ultimatelyleavingother
userswanderingaroundaloneinasoftwaresecurityminefield.
IndexTerms—StackOverflow,crowdsourcedknowledge,social

dynamics,securityimplementation

I.INTRODUCTION

Sinceitslaunchin2008,StackOverflow(SO)hasserved
astheinfrastructurefordeveloperstodiscussprogramming-
relatedquestionsonline,andprovidedthecommunitywith
crowdsourcedknowledge[1],[2].PriorworkshowsthatSO
isoneofthemostimportantinformationresourcesthatdevel-
opersrelyon[3],[4]. Meanwhile,researchersalsorevealed
thatsomehighlyupvoted,orevenacceptedanswersonSO

ThisworkwassupportedbyONRGrantN00014-17-1-2498.

containedinsecurecode[5],[6].Morealarmingly,Fischeret
al.foundthatinsecurecodesnippetsfromSOwerecopiedand
pastedinto196,403AndroidapplicationsavailableonGoogle
Play[5].Severalhigh-profileapplicationscontainingparticular
instancesoftheseinsecuresnippetsweresuccessfullyattacked,
andusercredentials,creditcardnumbersandotherprivatedata
werestolenasaresult[7].
TheseobservationsmadeuscuriousaboutSO’sreliability
regardingsuggestionsforsecurityimplementations.Takinga
pessimisticview,suchinsecuresuggestionscanbeexpected
tobeprevalentontheQ&Asite,andconsistentcorrective
feedbackbytheprogrammingcommunity maybeamiss.
Consequently,novicedevelopersmaylearnaboutincorrect
crowdsourcedknowledgefromsuchQ&Asites,propagatethe
misleadinginformationtotheirsoftwareproductsorotherde-
velopers,andeventuallymakeoursoftwaresystemsvulnerable
toknownsecurityattacks.
Therefore,withinthispaper,weconductedacomprehensive
in-depthinvestigationofthepopularityofbothsecureandin-
securecodingsuggestionsonSO,andthecommunityactivities
aroundthem.Toensureafaircomparisonbetweensecureand
insecuresuggestions,wefocusedonthediscussionthreads
relatedtoJavasecurity.WeusedBaker[8]tomineforanswer
poststhatcontainedanycodeusingsecuritylibraries,and
extracted25,855suchcodesnippets. Wereusedthesecurity
domainexpertisesummarizedbypriorwork[5]tomanually
labelwhetheragivencodesnippetissecureornot.However,
differentfrompriorwork[5]thatstudiedtheapplicationof
insecureSOanswerstoproductioncode,ourworkfocuses
ontheSOsuggestionsthemselves. Morespecifically, we
studiedcodingsuggestions’popularity,socialdynamics,and
duplication. Wealsoinquiredhowdevelopersmaybemisled
byinsecureanswersonSO.
ToidentifyprevalenttopicsonSO,weusedCCFinder[9]to
detectcodeclones(i.e.,duplicatedcode)inthedataextracted
byBaker.Theseclonesareclusteredwithinclonegroups.
953clonegroupswereobservedtousesecuritylibraryAPIs
andimplementfunctionalitieslikeSSL/TLS,symmetricand
asymmetricencryption,etc.Moreover,wefoundthatcode
exampleswithinclonegroupsaremorelikelytobeviewed
thannon-duplicatedcodesnippetsonSO.Thisfurthermoti-
vatesoursamplingmethodaswecanexpectclonestohave
ahigherimpactonusersandproductioncode.Amongthe
953clonegroups,therewere587groupsofduplicatedsecure

ar
Xi
v:
19
01
.0
13
27
v1

[c
s.
S
E]

4
Ja
n
20
19

code,326groupsofsimilarinsecurecode,and40groupswith
amixtureofsecureandinsecurecodesnippets.Theseclone
groupscovered1,802securecodesnippetsand1,319insecure
ones.Bymappingclonedcodetotheircontainerposts,we
contrastedinsecuresuggestionswithsecureonesintermsof
theirpopularity,users’feedback,degreeofduplication,and
causesforduplication.
WeexploredthefollowingResearchQuestions(RQs):

• RQ1:Howprevalentareinsecurecodingsuggestionson
SO?Priorworkwitnessedtheexistenceofvulnerable
codeonSO,andindicatesthatsuchcodecanmislead
developersandcompromisethequalityoftheirsoftware
products[4]–[6].Tounderstandthenumberandgrowth
ofsecureandinsecureoptionsthatdevelopershaveto
choosefrom,we(1)comparedtheoccurrencecounts
ofinsecureandsecureanswers,and(2)observedthe
distributionsofbothkindsofanswersacrossa10-year
timeframe(2008-2017).

• RQ2:DothecommunitydynamicsorSO’sreputation
mechanismhelpdeveloperschoosesecureanswersover
insecureones?Reputationmechanismsandvotingwere
introducedtocrowdsourcingplatformsto(1)incentivize
contributorstoprovidehigh-qualitysolutions,and(2)
facilitatequestionaskerstoidentifyresponderswithhigh
expertise[10]–[12]. Weconductedstatisticaltestingto
comparesecureandinsecureanswersintermsofvotes,
answerers’reputations,etc.

• RQ3:Dosecurecodingsuggestionshavemoreduplicates
thaninsecureones?Whencertainanswersarerepetitively
suggested,itislikelythatdeveloperswillencountersuch
answersmoreoften.Moreover,iftheseanswersarepro-
videdbydifferentusers,thephenomenonmightfacilitate
users’trustintheanswers’correctness.Therefore,we
comparedthedegreeofrepetitivenessforinsecureand
secureanswers.

• RQ4:Whydiduserssuggestduplicatedsecureorinse-
cureanswersonSO?Wewerecuriousaboutwhycertain
codewasrepetitivelysuggested,andweexploredthis
facetofcommunitybehaviorbyexaminingtheduplicated
answerspostedbythesameordifferentusers.

Inourstudy,wemadefourmajorobservations:

1)Aswithsecureanswers,insecureanswersarepreva-
lentonSOacrosstheentirestudiedtimeframe.The
inspected3,121snippetsfromdifferentclonegroups
correspondto785securepostsand644insecureones.
Amongthe505SSL/TLS-relatedposts,355posts(70%)
suggestinsecuresolutions, which makesSSL/TLS-
relatedanswersthemostunreliableonesonSO.Atleast
41%ofthesecurity-relatedanswerspostedeveryyear
areinsecure,whichshowsthatsecurityknowledgeon
SOingeneralisnotsignificantlyimprovingovertime.

2)ThecommunitydynamicsandSO’sreputationmecha-
nismsarenotreliableindicatorsforsecureandinsecure
answers.

accepted	answer	

KSOAP	2	Android	with	HTTPS

reputation	score	

I	am	using	KSOAP2	to	manage	SOAP	in	Android	
but	it	use	https	for	the	SOAP	url	and	I	am	getting	
this	error:	javax.net.ssl.SSLException:	Not	trusted	
server	certificate…	

I	can't	comment	yet	so	i	post	my	comments	to	
rallat	answer	here.	His	solution	works	but	it	
needs	further	explanations.	To	run	ksoap2	with	
ssl:	…	

score	

favorite		
count	

timestamp	

view	count	
tag		…	

Comparedwithsecureposts,insecureones

Fig.1:AtypicalSOdiscussionthreadcontainsonequestion
postandoneormultipleanswerposts[14]

obtainedhigherscores,morecomments,morefavorites,
andmoreviews.Althoughtheprovidersofsecurean-
swersreceivedsignificantlyhigherreputationscores,
theeffectsizeisnegligible(<0.147).239ofthe536
examinedacceptedanswers(45%)areinsecure.26out
ofthe72posts(36%)suggestedby“trustedusers”
(with≥20Kreputationscores[13])areinsecure.These
observationsimplythatreputationandvotingonSOare
notreliabletohelpusersdistinguishbetweensecureand
insecureanswers.

3)Thedegreeofduplicationamonginsecureanswersis
significantlyhigherthanthatofsecureones.Onaverage,
therearemoreclonesinaninsecuregroupthanasecure
one(3.8vs.3.0).Itmeansthatusersmayhavetodeal
withalargesupplyofinsecureexamplesforcertain
questions,beforeobtainingsecuresolutions.

4)Usersseemtopostduplicatedanswers,whileignoring
securityasakeyproperty.Duplicatedanswerswere
providedduetoduplicatedquestionsorusers’intentto
answermorequestionsbyreusingcodeexamples.This
behaviorisincentivizedbythereputationsystemonSO.
Themoreanswersarepostedbyauserandup-ranked
bythecommunity,thehigherreputationtheusergains.

Oursourcecodeanddatasetareavailableathttps://github.
com/mileschen360/Higgs.

II.BACKGROUND

TofacilitatethediscussionofSOcommunityactivities
aroundsecurityimplementations,wewillfirstintroduceSO’s
crowdsourcingmodel,andthensummarizethedomainknowl-
edgeusedtolabelsecureandinsecurecodesnippets.

A.StackOverflowasaCrowdsourcingPlatform

SomeobserversbelievethatthesuccessofSOliesinits
crowdsourcing modelandthereputationsystem[2],[15].
Thefourmostcommonformsofparticipationarei)question
asking,ii)questionanswering,iii)commenting,andiv)vot-
ing/scoring[15].Figure1presentsanexemplarSOdiscussion
thread,whichcontainsonequestionandoneormanyanswers.

https://github.com/mileschen360/Higgs
https://github.com/mileschen360/Higgs

TABLEI:Criteriausedtodecidecode’ssecurityproperty

Category Parameter Insecure

SSL/TLS

HostnameVerifier allowallhosts
TrustManager trustall
Version <TLSv1.1

CipherSuite RC4,3DES,AES-CBCMD5,MD2
OnReceivedSSLError proceed

Cipher/Mode
RC2,RC4,DES,3DES,AES/ECB,

Blowfish
Symmetric Key static,badderivation

InitializationVector
(IV)

zeroed,static,badderivation

PasswordBased
Encryption(PBE)

<1kiterations,<64-bitsalt,static
salt

Asymmetric Key RSA<2,048bit,ECC<224bit

PBKDF <SHA224,MD2,MD5
Hash DigitalSignature SHA1,MD2,MD5

Credentials SHA1,MD2,MD5

Type Random

Random Seeding
setSeed→nextBytes,setSeedwith

staticvalues

Whenmultipleanswersareavailable,theaskerdecideswhich
answertoaccept,andmarksitwith“✓”.
Afterauserpostsaquestion,ananswer,oracomment,other

userscanvotefororagainstthepost.Usersgainreputation
foreachup-votetheirpostsreceive.Forinstance,answers
earntheirauthors10pointsperup-vote,questionsearn5,
andcommentsearn2[16].Allusersinitiallyhaveonlyone
reputationpoint. Asusersgain morereputation,theyare
grantedmoreadministrativeprivilegestohelpmaintainSO
posts[13].Forinstance,auserwith15pointscanvoteup
posts.Auserwith125pointscanvotedownposts.Users
withatleast20Kpointsareconsidered“trustedusers”,and
caneditordeleteotherpeople’sposts.
Thescoreofaquestionoranswerpostisdecidedbytheup-

votesanddown-votesthepostreceived.Userscanfavoritea
questionpostiftheywanttobookmarkthequestionandkeep
trackofanyupdateonthediscussionthread.Eachquestion
containsoneormanytags,whicharewordsorphrasesto
describetopicsofthequestion.Eachposthasatimestampto
showwhenitwascreated.Eachdiscussionthreadhasaview
counttoindicatehowmanytimesthethreadhasbeenviewed.

B.CategorizationofJavaSecurityImplementations

Basedonstate-of-the-artsecurityknowledge,researchers
definedfivecategoriesofsecurityissuesrelevanttolibrary
misuses[5].TableIshowstheircriteria,whichweuseinthis
projecttodecidewhetheracodesnippetisinsecureornot.
SSL/TLS:Therearefivekeypointsconcerninghow

tosecurelyestablishSSL/TLSconnections.First,develop-
ersshoulduseanimplementationoftheHostnameVerifier
interfacetoverifyservers’hostnamesinsteadofallow-
ingallhosts[7].Second, whenimplementingacustom
TrustManager,developersshouldvalidatecertificatesinstead
ofblindlytrustingallcertificates.Third,when“TLS”ispassed
asaparametertoSSLContext.getInstance(...);,developers
shouldexplicitlyspecifytheversionnumbertobeatleast1.1,
becauseTLS’lowerversionsareinsecure[17].Fourth,the
usageofinsecureciphersuitesshouldbeavoided.Fifth,when
overridingonReceivedSslError(),developersshouldhandle

insteadofskippinganycertificatevalidationerror.Listing1
showsavulnerablesnippetthatallowsallhosts,trustsall
certificates,andusesTLSv1.0.

Listing1: Anexampletodemonstratethreescenariosof
insecurelyusingSSL/TLSAPIs[18]
//Createatrustmanagerthatdoesnotvalidatecertificatechains(trustall)
private TrustManager[] trustAllCerts =new TrustManager[]{
new X509TrustManager(){
public java.security.cert.X509Certificate[]

getAcceptedIssuers(){return null;}
public void checkClientTrusted(...) {}
public void checkServerTrusted(...) {} }};

public ServiceConnectionSE(String url) throws IOException{
try{
//UsethedefaultTLSv1.0protocol
SSLContext sc = SSLContext.getInstance(”TLS”);
//Installthetrust-alltrustmanager
sc.init(null, trustAllCerts, new java.security.

SecureRandom()); ... } ...
connection = (HttpsURLConnection) new URL(url).

openConnection();
//UseAllowAllHostnameVerifierthatallowsallhosts
((HttpsURLConnection) connection).setHostnameVerifier(new

AllowAllHostnameVerifier()); }

Symmetric:Thereareciphersandmodesofoperations
knowntobeinsecure.Cryptographickeysandinitialization
vectors(IV)areinsecureiftheyarestaticallyassigned,zeroed,
ordirectlyderivedfromtext.PasswordBasedEncryption
(PBE)isinsecureiftheiterationnumberislessthan1,000,
thesalt’ssizeissmallerthan64bits,orastaticsaltisinuse.
Listing2presentsavulnerablecodeexamplethatinsecurely
declaresacipher,akey,andanIV.

Listing2: Anexampletopresentseveralinsecureusage
scenariosofsymmetriccryptography[19]
//Declareakeyparameterwithastaticvalue
private static byte[] key = ”12345678”.getBytes();
//DeclareanIVparameterwithastaticvalue
private static byte[] iv = ”12345678”.getBytes();
public static String encrypt(String in){
String cypert = in;
try{
IvParameterSpec ivSpec =new IvParameterSpec(iv);
//CreateasecretkeywiththeDEScipher
SecretKeySpec k=new SecretKeySpec(key, ”DES”);
//DeclareaDEScipher
Cipher c= Cipher.getInstance(”DES/CBC/PKCS7Padding”);
c.init(Cipher.ENCRYPTMODE, k, ivSpec);
...} }

Asymmetric:Supposethatacodesnippetuseseither
RSAorECCAPIstogeneratekeys. Whenthespecifiedkey
lengthsforRSAandECCareseparatelyshorterthan2,048
bitsand224bits,weconsidertheAPIusagetobeinsecure.
Listing3showsavulnerablecodeexample.

Listing3:AnexamplethatinsecurelyusesRSAbyspecifying
thekeysizetobe1024[20]
KeyPairGenerator kpg= KeyPairGenerator.getInstance(”RSA”);
kpg.initialize(1024);
KeyPair kp=kpg.generateKeyPair();
RSAPublicKey pub= (RSAPublicKey) kp.getPublic();
RSAPrivateKey priv = (RSAPrivateKey) kp.getPrivate();

Hash:Inthecontextofpassword-basedkeyderivation,
digitalsignatures,andauthentication/authorization,developers
mayexplicitlyinvokebrokenhashfunctions.Listing4shows
anexampleusingMD5.

Listing4:InsecurelycreatingamessagedigestwithMD5[21]
final MessageDigest md= MessageDigest.getInstance(”md5”);
//Itisalsoinsecuretohardcodetheplaintextpassword
final byte[] digestOfPassword = md.digest(”HG58YZ3CR9”.

getBytes(”utf−8”));

Random:Tomakethegeneratedrandomnumbersun-
predictableandsecure,developersshoulduseSecureRandom
insteadofRandom.WhenusingSecureRandom,developerscan
either(1)callnextBytes()only,or(2)callnextBytes()first
andsetSeed()next.DevelopersshouldnotcallsetSeed()
withstaticvalues.Listing5presentsanexampleusing
SecureRandominsecurely.

Listing5:UsingSecureRandomwithastaticseed[22]
byte[] keyStart =”encryption key”.getBytes();
SecureRandom sr = SecureRandom.getInstance(”SHA1PRNG”);
sr.setSeed(keyStart);

III. METHODOLOGY

Tocollectsecureandinsecureanswerposts,wefirstex-
tractedcodesnippetsfromSOthatusedanysecurityAPI
(SectionIII-A).Next,wesampledtheextractedcodecorpusby
detectingduplicatedcode(SectionIII-B).Finally,wemanually
labeledsampledcodeassecure,insecure,orirrelevant,and
mappedthecodetorelatedposts(SectionIII-C).Additionally,
wecomparedtheviewcountsofthesampledpostsvs.unse-
lectedpoststochecksamples’prevalence(SectionIII-D).

A.CodeExtraction

Toidentifycodingsuggestions,thisstepextractssecurity-
relatedanswerpostsbyanalyzing(1)tagsofquestionposts,
and(2)thecodesnippets’APIusageofanswerposts.After
downloadingtheStackOverflowdataasXMLfiles[23],we
usedatoolstackexchange-dump-to-postgres[24]toconvert
theXMLfilestoPostgresdatabasetables.Eachrowinthe
databasetable“Posts”correspondstoonepost.Apost’sbody
text mayusetheHTMLtagpair<code>and</code>to
enclosesourcecode,soweleveragedthistagpairtoextract
code.Sincetherewereover40millionpostsunderprocessing,
andonepostcouldcontainmultiplecodesnippets,itisvery
challengingtoefficientlyidentifysecurityimplementations
fromahugeamountofnoisycodedata.Thus,webuilttwo
heuristicfilterstoquicklyskipirrelevantpostsandsnippets.

TABLEII:TagsusedtolocaterelevantSOdiscussionthreads

Category Tags

Javaplatforms android,applet,eclipse,java,java1.4,java-7,java-ee,
javamail,jax-ws,jdbc,jndi,jni,...

Third-party
tools/libraries

axis2,bouncycastle,gssapi,httpclient,java-metro-
framework,openssh,openssl,spring-security,...

Security aes,authentication,certificate,cryptography,des,en-
coding,jce,jks,jsse,key,random,rsa,security,sha,
sha512,single-sign-on,ssl,tls,X509certificate,...

1)Filteringbyquestiontags:Astagsaredefinedbyaskers
todescribethetopicsofquestions,wereliedontagstoskip
obviouslyirrelevantposts.Toidentifyasmanysecuritycoding
suggestionsaspossible,weinspectedthe64cryptography-
relatedpostsmentionedinpriorwork[6],andidentified93

tags.Ifaquestionpostcontainsanyofthesetags,weextracted
codesnippetsfromthecorrespondinganswerposts.Asshown
inTableII,thesetagsareeitherrelatedtoJavaplatforms,third-
partysecuritylibrariesortools,orsecurityconcepts.
2)Filteringbysecurity APIusage: Similartoprior
work[5],weusedBaker[8]todecidewhetherasnippetcalls
anysecurityAPI.ThispaperfocusesonthefollowingAPIs:

• Javaplatformsecurity:org.jetf.jgss.*,android.security.*,
com.sun.security.*, java.security.*, javax.crypto.*,
javax.net.ssl.*,javax.security.*,javax.xml.crypto.*;

• Third-partysecuritylibraries:BouncyCastle[25],GNU
Crypto[26],jasypt[27],keyczar[28],scribejava[29],
SpongyCastle[30].

Aftertakinginasetoflibrariesandacodesnippet,Baker
(1)extractsallAPIsoftypes,methods,andfieldsfromthe
libraries,(2)extractsnamesoftypes,methods,andfields,
usedinthecodesnippet,and(3)iterativelydeducesidentifier
mappingsbetweentheextractedinformation.Intuitively,when
multipletypeAPIs(e.g.,a.b.Candd.e.C)canmatchaused
typenameC,BakercomparestheinvokedmethodsonCagainst
themethodAPIsdeclaredbyeachcandidatetype,andchooses
thecandidatethatcontainsmorematchingmethods.
WeincludedacodesnippetifBakerfindsatleastone
API(classormethod)withanexactmatch.However,Baker’s
resultsetisnotfullyaccurateandrequiresanumberofpost-
processingstepstoreducefalsepositives.Theseincludea
blacklistfilterforstandardJavatypes(e.g.,String)andvery
popularmethods(e.g.,get()).Baker’soraclecontainsonlythe
givensecurityAPIs,whichhelpedreducefalsepositiveswhen
detectingsecurecodebutdidnothelpreducefalsenegatives.

B.CloneDetection

Withthefiltersdescribedabove,weidentified25,855code
snippets(from23,224posts)thatareprobablysecurity-related.
Sinceitisalmostimpossibleto manuallycheckallthese
snippetstoidentifysecureandinsecurecode,wedecidedto(1)
samplerepresentativeextractedcodeviaclonedetection,and
then(2)manuallylabelthesamples.Inadditiontosampling,
clonedetectionfacilitatesourresearchintwofurtherways.
First,byidentifyingduplicatedcodewithCCFinder[9],we
couldexplorethedegreeofduplicationamongsecureand
insecurecode.Second,throughclusteringcodebasedontheir
similarity,wecouldefficientlyreadsimilarcodefragments,
anddeterminetheirsecuritypropertyinaconsistentway.With
thedefaultparametersettinginCCFinder,weidentified2,657
clonegroupsthatcontained8,690codesnippets,witheach
grouphavingatleasttwosnippets.

C.CodeLabeling

Wemanuallyexaminedeachofthose8,690snippetsand
labeledcodebasedonthecriteriamentionedinSectionII.If
asnippetmeetsanycriteriaofinsecurecodeshowninTableI,
itislabeledas“insecure”.Ifthesnippetusesanysecurity
APIbutdoesnotmeetanycriteria,itislabeledas“secure”;
otherwise,itis“irrelevant”.DependingontheAPIsinvolved,
wealsodecidedtowhichsecuritycategoryarelevantpost

TABLE III: Code labeling results for 2,657 clone groups

Secure Insecure Mixed Irrelevant Total

of clone groups 587 326 40 1,704 2,657
of snippets 1,802 1,319 0 5,569 8,690

of answer posts 785 644 0 2,133 3,562

Fig. 2: CDFs of view count among the included answers,
excluded ones, and all answers related to Baker’s output

belongs. When unsure about certain posts, we had discussions
to achieve consensus. Finally, we randomly explored a subset
of the labeled data to double check the correctness.

Table III presents our labeling results for the inspected 2,657
clone groups. After checking individual code snippets, we
identified 587 secure groups, 326 insecure groups, 40 mixed
groups, and 1,704 irrelevant groups. In particular, a mixed
group has both secure snippets and insecure ones, which are
similar to each other. Although two filters were used (see
Section III-A), 64% of the clone groups from refined data
were still irrelevant to security, which evidences the difficulty
of precisely identifying security implementation with Baker.

The clone groups cover 1,802 secure snippets, 1,319 in-
secure ones, and 5,569 irrelevant ones. When mapping these
snippets to the answer posts (which contain them), we identi-
fied 785 secure answers, 644 insecure ones, and 2,133 irrele-
vant ones. One answer can have multiple snippets of different
clone groups. Therefore, we consider a post “insecure” if
it contains any labeled insecure code. A post was labeled
“secure” if it has no insecure snippet but at least one secure
snippet. If a post does not contain any (in)secure snippet, it is
labeled as “irrelevant”.

D. Verifying the Prevalence of Sampled Posts

To check whether our clone-based approach actually in-
cluded representative SO posts, we separately computed the
cumulative distribution functions (CDF) [31] of view count
for the included 3,562 posts (as mentioned in Table III), the
excluded 19,662 posts, and the complete set of 23,224 posts
identified by Baker. As shown in Fig. 2, the “included” curve
is beneath the “all” and “excluded” curves. This shows that
the highly viewed answers take up a higher percentage in our
sample set than the excluded answers.

Fig. 3: The distribution of posts among different categories

IV. MAJORFINDINGS

In this section, we present our results and discuss the main
findings regarding our stated research questions.

A. Popularity of Secure and Insecure Code Suggestions

Figure 3 presents the distribution of 1,429 answer posts
among the 5 security categories. Since some posts contain
multiple snippets of different categories, the total number of
plotted secure and insecure posts in Figure 3 is 1,506, slightly
larger than 1,429. Among the categories,SSL/TLScontains the
most posts (34%), whileRandomhas the fewest posts (2%).
Two reasons can explain such a distribution. First, developers
frequently use or are more concerned about APIs ofSSL/TLS,
Symmetric, andHash. Second, the criteria we used to label
code contain more diverse rules for the above-mentioned three
categories, so we could identify more instances of such code.
There are many more insecure snippets than secure ones in

theSSL/TLS(355 vs. 150) category, indicating that developers
should be quite cautious when searching for such code.
Meanwhile, secure answers dominate the other categories,
accounting for 94% ofAsymmetricposts, 71% ofHashposts,
54% ofSymmetricposts, and 52% ofRandomposts. However,
notice that across these 4 categories, only 67% of the posts
are secure; that is, considerable room for error remains.

Finding 1:644 out of the 1,429 inspected answer posts
(45%) are insecure, meaning that insecure suggestions
popularly exist on SO. Insecure answers dominate, in
particular, the SSL/TLS category.

To explore the distribution of secure and insecure answers
over time, we clustered answers based on their timestamps.
As shown in Figure 4, both types of answers increased year-
by-year from 2008 to 2014, and decreased in 2015-2017. This
may be because SO reached its saturation for Java security-
related discussions in 2014-2015. In 2008, 2009, and 2011,
insecure answers were posted more often than secure ones,
taking up 53%-100% of the sampled data of each year. For
the other years, secure posts constitute the majority within the
yearly sampled data set, accounting for 53%-59%.
To further determine whether older posts are more likely

to be insecure, we considered post IDs as logical timestamps.
We applied a Mann-Whitney U test (which does not require
normally distributed data [32]), and calculated the Cliff’s delta

Fig. 4: The distribution of posts over during 2008-2017

size (which measures the difference’s magnitude [33]). The
resultingp-value is 0.02, with Cliff’sΔ=0.07. It means that
secure answers are significantly more recent than insecure
ones, but the effect size is negligible.
Two reasons can explain this finding. First, some vul-

nerabilities were recently revealed. Among the 17 insecure
posts in 2008 and 2009, 6 answers use MD5, 6 answers
trust all certificates, and 4 answers use TLS 1.0. However,
these security functions were found broken in 2011-2012 [7],
[34]–[36], which made the answers obsolete and insecure.
Second, some secure answers were posted to correct insecure
suggestions. For instance, we found a question inquiring about
fast and simple string encryption/decryption in Java [37].
The accepted answer in 2011 suggested DES—an insecure
symmetric-key algorithm. Later, various comments pinpointed
the vulnerability and a secure answer was provided in 2013.
Note that there can be a significant lag until the community

adopts new secure technologies, and phases out technologies
known to be insecure. Although MD5’s vulnerability was
exploited by Flame malware in 2012 [34], as shown in Fig. 5,
MD5 was still popularly suggested afterwards, obtaining a
peak number of related answers in 2014.

Finding 2:Insecure posts led the sampled data in
2008-2011, while secure ones were dominant after-
wards. Older security-related posts are less reliable,
likely because recently revealed vulnerabilities out-
dated older suggestions. We found only few secure
answers suggested to correct outdated, insecure ones.

B. Community Dynamics Towards Secure and Insecure Code

For each labeled secure or insecure post, we extracted the
following information: (1) score, (2) comment count, (3) the
answerer’s reputation score, (4) the question’s favorite count,
and (5) the discussion thread’s view count.
Comparison of Mean Values.Table IV compares these
information categories for the 785 secure posts and 644
insecure ones and applies Mann-Whitney U tests to deter-
mine significant results. On average, secure posts’ answerers

Fig. 5: Distributions of MD5 and SHA256 related posts

have higher reputation (18,654 vs. 14,678). However, for the
SSL/TLS posts, the insecure answer providers have higher
reputation (15,695 vs. 14,447). Moreover, insecure posts have
higher scores, and more comments, favorites, and views. Users
seemed to be more attracted by insecure posts,which is
counterintuitive. We would expect secure answers to be seen
more favorable; with more votes, comments and views.
Three reasons can explain our observation. First, software

developers often face time constraints. When stuck with cod-
ing issues (e.g., runtime errors), developers are tempted to
take insecure but simpler solutions [6]. Take the vulnerable
SSL/TLS usage in Listing 1 for example. The insecure code
was frequently suggested on SO, and many users voted for
it mainly because the code is simple and useful to resolve
connection exceptions. Nevertheless, the simple solution es-
sentially skips SSL verification and voids the protection mech-
anism. In comparison, a better solution should use certificates
from a Certification Authority (CA) or self-signed certificates
to drive the customization ofTrustManager, and verify cer-
tificates with more complicated logic [39].
Second, some insecure algorithms are widely supported by
Java-based libraries, which can promote developers’ tendency
to code insecurely. For instance, up till the current version
Java 9, Java platform implementations have been required
to support MD5—the well-known broken hash function [40].
Third, insecure posts are less recent and may have accumulated
more positive scores than recent secure posts.

Finding 3:On average,insecure posts received higher
scores, more comments, more favorites, and more
views. It implies that (1) more user attention is at-
tracted by insecure answers; and (2) users cannot rely
on the voting system to identify secure answers.

Comparison of p-values and Cliff’sΔ.Table IV shows
that among all posts, insecure ones obtained significantly
more comments (p=0.02) and views (p=1.5e−3), while
the effect sizes are negligible. Specifically for theRandom
category, insecure posts have significantly higher view counts
(p=0.01) and the effect size is large. Meanwhile, the owners
of secure answer posts have significantly higher reputation
(p=0.02) but the magnitude is also negligible.

TABLE IV: Comparison between secure and insecure posts

Score Comment count Reputation Favorite count View count

All

Secure mean 5 2 18,654 8 18,713
Insecure mean 14 3 14,678 15 36,580
p-value 0.97 0.02 0.02 0.09 1.5e-3
Cliff’sΔ - 0.07 (negligible) 0.07 (negligible) - 0.10 (negligible)

Category 1:
Secure mean 7 2 14,447 9 21,419
Insecure mean 18 3 15,695 19 37,445

SSL/TLS
p-value 0.24 3.3e-4 0.42 0.86 0.31
Cliff’sΔ - 0.20 (small) - - -

Category 2:
Secure mean 5 3 19,347 7 16,232
Insecure mean 7 3 10,057 6 16,842

Symmetric
p-value 0.29 0.82 0.45 0.36 0.10
Cliff’sΔ - - - - -

Category 3:
Secure mean 5 2 17,079 4 11,987
Insecure mean 8 2 14,151 3 9,470

Asymmetric
p-value 0.17 0.45 0.72 0.95 0.77
Cliff’sΔ - - - - -

Category 4:
Secure mean 5 2 20,382 8 21,254
Insecure mean 14 2 20,018 22 74,482

Hash
p-value 0.26 0.78 0.18 0.20 0.07
Cliff’sΔ - - - - -

Category 5:
Secure mean 1 3 33,517 0 1,031
Insecure mean 21 6 17,202 31 56,700

Random
p-value 0.04 0.02 0.27 0.02 0.01
Cliff’sΔ 0.58 (large) 0.68 (large) - 0.64 (large) 0.74 (large)

Similar to prior work [38], we interpreted the computed Cliff’s delta valuevin the following way: (1) ifv <0.147, the effect size is “negligible”; (2) if
0.147≤v<0.33, the effect size is “small’; (3) if0.33≤v<0.474, the effect size is “medium”; (4) otherwise, the effect size is “large”.

Fig. 6: The answer distribution based on owners’ reputation

Figure 6 further clusters answers based on their owners’
reputation scores. We used logarithmic scales for the hori-
zontal axis, because the scores vary a lot within the range
[1, 990,402]. Overall, the secure and insecure answers have
similar distributions among different reputation groups. For
instance, most answers were provided by users with scores
within [102,104), accounting for 61% of secure posts and
68% of insecure posts. Among the 208 posts by trusted users,
71 answers (34%) are insecure and not reliable. One reason
to explain why high reputation scores do not guarantee secure
answers can be that users earned scores for being an expert
in areas other than security. Responders’ reputation scores do
not necessarily indicate the security property of the provided
answers. Therefore, SO users should not blindly trust the
suggestions given by highly reputable contributors.

Finding 4:The users who provided secure answers
have significantly higher reputation than the providers
of insecure answers, but the difference in magnitude
is negligible. Users cannot rely on the reputation
mechanism to identify secure answers.

Fig. 7: The distribution of clone groups based on their sizes

Comparison of accepted answers. It is natural for SO
users to trust accepted answers. Among the 1,429 posts, we
found 536 accepted answers (38%). 297 accepted answers
are secure, accounting for 38% of the inspected secure posts.
239 accepted answers are insecure, accounting for 37% of the
inspected insecure posts. It seems that accepted answers evenly
distribute among secure and insecure posts; they are not good
indicators of suggestions’ security property.

Finding 5:Accepted answers are also not reliable for
users to identify secure coding suggestions.

C. Duplication of Secure and Insecure Code

Among the 953 security-related clone groups, we explored
the degree of code duplication for secure clone groups, inse-
cure groups, and mixed groups. Figure 7 shows the distribution
of clone groups based on their sizes. Similar to Fig. 6, we used
logarithmic scales for both the horizontal and vertical axes. In
Fig. 7, most clone groups are small, with 2-3 similar snippets.

TABLEV:Comparisonbetweensecureandinsecuregroups
intermsoftheirgroupsizes

Securegroups’
mean

Insecure
groups’mean

p-value Cliff’s∆

Size 3.0 3.8 1.3e-4 0.13(negligible)

Thenumberofgroupsdecreasesdramaticallyasthegroup
sizeincreases.Interestingly,within[24,26),therearemore
insecuregroupsthansecureones.TableVcomparesthesizes
ofsecureandinsecuregroups.Surprisingly,insecuregroups
havesignificantlylargersizesthansecureones,although
thedifferenceisnegligible.Ourobservationsimplythatthe
frequentlymentionedcodesnippetsonSOarenotnecessarily
moresecurethanlessfrequentones.Userscannottrustcode’s
repetitivenesstodecidethesecurityproperty.

Finding6: Repetitivenessdoesnotguaranteesecu-
rity,souserscannotassumeasnippettobesecure
simplybecauseitisrecommendedmanytimes.

Tounderstandwhythereare mixedgroupsthatcontain
similarsecureandinsecureimplementations,weconducted
acasestudyon10randomlyselectedmixedgroups.Among
allthesegroups,securesnippetsdifferfrominsecureones
byusingdistinctparameterswhencallingsecurityAPIs.This
impliesagreatopportunitytobuildsecuritybugdetectiontools
thatcheckfortheparametervaluesofspecificAPIs.

Listing6:Aclonegroupwithbothsecureandinsecurecode
//AninsecuresnippetusingAES/ECBtocreateacipher[41]
Cipher cipher = Cipher.getInstance(”AES/ECB/PKCS5Padding”,

”SunJCE”);
Key skeySpec=KeyGenerator.getInstance(”AES”).generateKey();
cipher.init(Cipher.ENCRYPTMODE, skeySpec);
System.out.println(Arrays.toString(cipher.doFinal(new byte

[]{ 0, 1, 2, 3})));
//AsecuresnippetusingAES/CFBtocreateacipher[42]
final Cipher cipher=Cipher.getInstance(”AES/CFB/NoPadding”,

”SunJCE”);
final SecretKey skeySpec=KeyGenerator.getInstance(”AES”).

generateKey();
cipher.init(Cipher.ENCRYPTMODE, skeySpec);
System.out.println(Arrays.toString(cipher.doFinal(new byte

[]{ 0, 1, 2, 3})));

Listing6showsamixedclonegroup,wheretheinsecure
codeuses“AES/ECB”tocreateacipher,andthesecurecode
uses“AES/CFB”.Actually,bothsnippetswereprovidedbythe
sameuser,whichexplainswhytheyaresosimilar.These
answersaredifferentbecausetheaskersinquiredfordifferent
modes(ECBvs.CFB).Althoughtheanswererisanexpertin
usingbothAPIsandhasahighreputationscore27.7K,he/she
didnot mentionanythingaboutthevulnerabilityofECB.
Thismayimplyalackofsecurityexpertiseorvulnerability
awarenessofhighlyreputableSOusers,andawell-motivated
needforautomatictoolstodetectandfixinsecurecode.

Finding7: Secureandinsecurecodeinthesame
mixedgroupoftendiffersbypassingdistinctparame-
terstothesamesecurityAPIshighlightingopportuni-
tiesforautomatictoolstohandlesecurityweaknesses.

D.CreationofDuplicatedSecureandInsecureCode

Weconductedtwocasestudiestoexplorewhyduplicated
codewassuggested.
CaseStudyI:Duplicatedanswersbydifferentusers.
Weexaminedthelargestsecuregroupandlargestinsecure
group.Thesecuregrouphas65cloneinstances,whichare
similartothecodeinListing7.Thesesnippetswereoffered
toanswerquestionsonhowtoenableanAndroidappto
logintoFacebook.Thequestionsaresimilarbutdifferentin
termsoftheaskers’softwareenvironments(e.g.,librariesand
toolsused)andpotentialsolutionstheytried.Amongthe65
answers,only18(28%)weremarkedasacceptedanswers.
The majorityofduplicatedsuggestionsarerelevanttothe
questions,butcannotsolvetheissues.SOusersseemedto
repetitivelyprovide“generallybestpractices”,probablybe-
causetheywantedtoearnpointsbyansweringmorequestions.

Listing7:Anexemplarsnippettogenerateakeyhashfor
Facebooklogin[43]
PackageInfo info = getPackageManager().getPackageInfo(”com.

facebook.samples.hellofacebook”, PackageManager.
GETSIGNATURES);

for (Signature signature : info.signatures){
MessageDigest md= MessageDigest.getInstance(”SHA”);
md.update(signature.toByteArray());
Log.d(”KeyHash:”, Base64.encodeToString(md.digest(),

Base64.DEFAULT)); }

Thelargestinsecuregroupcontains32cloneinstances,
whicharesimilartothecodeinListing1.Thequestionsareall
abouthowtoimplementSSL/TLSorresolveSSLconnection
exceptions.13oftheseanswers(41%)wereaccepted. We
noticedthatonlyoneanswerwarns“Donotimplementthis
inproductioncode...”[44].Sixanswershaveatleastone
commenttalkingaboutthevulnerability.Theremaining25
answersincludenothingtoindicatethesecurityissue.
CaseStudyII.Duplicatedanswersbythesameusers.
Intotal,109usersreusedcodesnippetstoanswermultiple
questions.Amongthe207clonegroupstheseusersproduced,
thereare111securegroups,90insecuregroups,and6mixed
groups.66usersrepetitivelypostedsecureanswers,and49
userspostedduplicatedinsecureanswers.Sixamongthese
userspostedbothsecureandinsecureanswers. Mostusers
(i.e.,92)onlycopiedcodeonceandproducedtwoduplicates.
Oneuserpostednineinsecuresnippets,withsevensnippets
usinganinsecureversionofTLS,andtwosnippetstrustingall
certificates.Thisuserhas17.7Kreputation(top2%overall)
andisanexpertinAndroid.Byexaminingtheuser’sprofile,
wedidnotfindanyevidencetoshowthattheuserintentionally
misledpeople.Itseemsthattheuserwasnotawareofthe
vulnerabilitywhenpostingthesesnippets.
Tounderstandwhetherduplicatedcodehelpsanswerques-
tions,werandomlysampled103(ofthe208)clonegroups
resultingin56secureclonepairs,45insecurepairs,and2
mixedpairs.Unexpectedly,wefoundthat46pairs(45%)did
notdirectlyanswerthequestions.Forinstance,auserposted
codewithoutreadingthequestionandreceiveddown-vote
(i.e.,−1)[45].Intheother57cases,duplicatedcodewas
providedtoanswersimilaroridenticalquestions.

Finding8:Duplicatedanswerswerecreatedbecause
(1)usersaskedsimilarorrelatedquestions;and(2)
someusersblindlycopiedandpastedcodetoanswer
morequestionsandearnpoints.However,wedidnot
identifyanyuserthatintentionallymisledpeopleby
postinginsecureanswers.

V.RELATEDWORK

A.SecurityAPIMisuses

Priorstudiesshowedthat API misusescausedsecurity
vulnerabilities[5],[7],[35],[46]–[50].Forinstance,Lazaret
al.analyzed369publishedcryptographicvulnerabilitiesinthe
CVEdatabase,andfoundthat83%ofthemwerecausedby
APImisuses[48].Egeleetal.builtastaticcheckerforsix
well-definedAndroidcryptographicAPIusagerules(e.g.,“Do
notuseECBmodeforencryption”).Theyanalyzed11,748
Androidapplicationsforanyruleviolation[47],andfound
88%oftheapplicationsviolatingatleastonecheckedrule.
InsteadofcheckingforinsecurecodeinCVEorsoftware
products,wefocusedonSO.Becausetheinsecurecoding
suggestionsonSOcanbereadandreusedbymanydevelopers,
theyhaveaprofoundimpactonsoftwarequality.
TheresearchbyFischeretal.[5]iscloselyrelatedto

ourwork.Intheirwork,secureandinsecuresnippetsfrom
SOwereusedtosearchforcodeclonesinAndroidapps.
Ourresearchisdifferentinthreeaspects.First,itinvestigates
theevolutionanddistributionofsecureandinsecurecoding
suggestionswithintheSOecosystemitself.Second,while
[5]comparesaveragescoreandviewcountsforsecureand
insecuresnippets,theymerelydothisforsnippetswhoseexact
copieshavemigratedintoappsbutnotforourmuchbroader
setofsnippetsonSO.Therefore,thedatasetof[5]isnot
representativetoevaluatetheimpactofseverity,community’s
awareness,andpopularityofunreliableSOsuggestionson
securecoding.Third,weconductednotonlystatisticaltesting
onacomprehensivedatasettoquantitativelycontrastscore,
viewcount,commentcount,reputation,andfavoritecount,
butalsocasestudiestoqualitativelyanalyzethedifferences.
Wefurtherexploredthemissinglinkbetweengamificationand
securityadvicequalityoncrowdsourcingplatforms.

B.DeveloperStudies

Researchersconductedinterviewsorsurveystounderstand
developers’securitycodingpractices[4],[51]–[53].Forex-
ample,Nadietal.surveyed48developersandrevealedthat
developersfounditdifficulttousecryptographicalgorithms
correctly[53].Xieetal.interviewed15developers,andfound
that(1)mostdevelopershadreasonableknowledgeaboutsoft-
waresecurity,but(2)theydidnotconsidersecurityassurance
astheirownresponsibility[51].Acaretal.surveyed295
developersandconductedalabuserstudywith54studentsand
professionalAndroiddevelopers[4].Theyobservedthatmost
developersusedsearchenginesandSOtoaddresssecurity
issues.Thesestudiesinspiredustoexplorehowmuchwecan
trustthecrowdsourcedknowledgeofsecuritycodingonSO.

C.EmpiricalStudiesonStackOverflow

ResearchersconductedvariousstudiesonSO[3],[6],[50],
[54]–[57].Specifically,Zhangetal.studiedtheJDKAPI
usagerecommendedbySO,andobservedthat31%ofthe
studiedpostsmisusedAPIs[6]. Mengetal.manuallyin-
spected503SOdiscussionthreadsrelatedtoJavasecurity[6].
Theyrevealedvarioussecurecodingchallenges(e.g.,hard-
to-configurethird-partyframeworks)andvulnerablecoding
suggestions(e.g.,SSL/TLS misuses). Mamykinaetal.re-
vealedseveralreasons(e.g.,highresponserate)toexplainwhy
SOisoneofthemostvisiblevenuesforexpertknowledge
sharing[3].Vasilescuetal.studiedtheassociationsbetween
SOandGitHub,andfoundthatGitHubcommittersusually
askfewerquestionsandprovidemoreanswers[58].Bosuet
al.analyzedthedynamicsofreputationbuildingonSO,and
foundthatansweringasmanyquestionsaspossiblecanhelp
usersquicklyearnreputation[54].
Incomparison,ourpaperquantitativelyandqualitatively
analyzedsecureandinsecureSOsuggestionsintermsof(1)
theirpopularity,(2)answerers’reputations,(3)thecommu-
nity’sfeedbacktoanswers(e.g.,votesandcomments),and(4)
thedegreeandcausesofduplicatedanswers.Wearenotaware
ofanypriorworkthatanalyzesSOpostsintheseaspects.

D.DuplicationDetectionRelatedtoSOorVulnerabilities

Researchersusedclonedetectiontoidentifyduplication
withinSOorbetweenSOandsoftwareproducts[59]–[63].
Specifically,Ahasanuzzamanetal.detectedduplicatedSO
questionswithmachinelearning[60].Anetal.comparedcode
betweenSOandAndroidappsandobservedunethicalcode
reusephenomenaonSO[61].Otherresearchersusedstatic
analysistodetectvulnerabilitiescausedbycodecloning[64]–
[67].Forinstance, Kimetal.generateafingerprintfor
eachJavamethodtoefficientlysearchforclonesofagiven
vulnerablesnippet[67].Differentfrompriorwork,wedid
notinventnewclonedetectiontechniquesorcomparecode
betweenSOandsoftwareprojects. Weusedclonedetection
to(1)samplecrawledsecurity-relatedcode,and(2)explore
whySOuserspostedsimilarcodetoanswerquestions.

VI.OURRECOMMENDATIONS

ByanalyzingSOanswerpostsrelevanttoJava-basedsecu-
ritylibraryusage,weobservedthewide-spreadexistenceof
insecurecode.ItisworrisometolearnthatSOuserscannot
relyoneitherthereputationmechanismorvotingsystemto
inferananswer’ssecurityproperty,ArecentMetaExchange
discussionthreadalsoshowsthefrustrationofSOdevelopers
tokeepoutdatedsecurityanswersuptodate[68].Beloware
ourrecommendationsbasedonthisanalysis.
a)ForToolBuilders:Exploreapproachesthataccu-

ratelyandflexiblydetectandfixsecuritybugs.Although
afewtoolsidentifysecurity API misusesthroughstatic
programanalysisormachinelearning[5],[47],[69],[70],they
areunsatisfactoryduetothe(1)hard-to-extendAPImisuse
patternshardcodedintools,and(2)hard-to-explainmachine
learningresults.Peoplereportvulnerabilitiesandpatcheson

CVEandinsecuritypapers.ToolslikeLASE[71]werebuilt
to(i)generalizeprogramtransformationfromconcretecode
changes,and(ii)leveragethetransformationtolocatecode
forsimilaredits.Iftooldeveloperscanextendsuchtoolsto
comparesecure-insecurecounterparts,theycanautomatically
fixvulnerabilitiesinaflexibleway.
b)ForSODevelopers:Integratestaticcheckerstoscan

existingcorpusandSOpostsundersubmission.Automatically
addwarningmessagesorspecialtagstoanypostthathas
vulnerablecode.Encourage moderatorsortrustedusersto
exploitclonedetectiontechnologiesinordertoefficiently
detectandremovebothduplicatedquestionsandanswers.
Suchdeduplicationpracticeswillnotonlysaveusers’time
andeffortofreading/answeringuselessduplicates,butalso
mitigatethe misleadingconsensusamong multiplesimilar
insecuresuggestions.Asuserprofilesincludetoptagstore-
flectthefrequentlyasked/answeredquestionsbyusers.instead
ofaccumulatingasinglereputationscoreforeachuser,SO
developerscancomputeonescoreforeachtoptagtobetter
characterizeusers’expertise.
c)ForDesignersofCrowdsourcingPlatforms:Provide

incentivestousersfordownvotingordetailingvulnerabilities
andsuggestingsecurealternatives.Introducecertainmecha-
nismstoencourageownersofoutdatedorinsecureanswersto
proactivelyarchiveorclosesuchposts.Weexpectresearchers
fromtheusablesecurityandHCIdomaintoevaluateandtest
newdesignpatternsthatintegratesecurityevaluationinthe
gamificationapproach.

VII.THREATSTOVALIDITY

a)ThreattoExternalValidity:Thisstudylabelsinsecure
codebasedontheJavasecurityrulessummarizedbyprior
work[5],soourstudiedinsecuresnippetsarelimitedtoJava
codeandtheserules.Sinceweusedthestate-of-the-artinse-
curitycriteria,ouranalysisrevealedasdiverseinsecurecode
aspossible.Inthefuture,weplantoidentifymorekindsof
insecurecodebyconsideringdifferentprogramminglanguages
andexploitingmultiplevulnerabilitydetectiontools[72],[73].
b)ThreattoConstructValidity:Althoughwetriedour

besttoaccuratelylabelcode,ouranalysismaybestillsubject
tohumanbiasandcannotscaletohandleallcrawleddataor
moresecuritycategories.Weconservativelyassumeasnippet
tobesecureifitdoesnotmatchanygivenrule.However,it
ispossiblethatsomelabeledsecuresnippetsactuallymatch
theinsecuritycriterianotcoveredbythisstudy,orwillturn
outtobeinsecurewhenfutureattacktechnologiesarecreated.
WeconcludedthatinsecureanswersarepopularonSOand
gainhighscores,votes,andviews.Evenifthelabelsofsome
existingsecureanswerswillbecorrectedasinsecureinthe
future,ourconclusiongenerallyholds.
c)ThreattoInternalValidity:Weleveragedclonede-

tectiontosampletheextractedcodesnippetsandreduce
ourmanualanalysisworkload.Basedoncode’soccurrence
repetition,clonedetectioncanensuretherepresentativeness
ofsampleddata.However,themeasurementonasampledata
setmaybestilldifferentfromthatofthewholedataset.Once

webuildautomaticapproachestopreciselyidentifysecurity
APImisuses,wecanresolvethisthreat.

VIII.CONCLUSION

Weaimedtoassessthereliabilityofthecrowdsourced
knowledgeonsecurityimplementation.Ouranalysisof1,429
answerpostsonSOrevealed3insights.

1)Ingeneralsecureandinsecureadvices moreorless
balanceeachother(55%secureand45%insecure).
Userswithoutsecurityknowledgemayheavilyrelyon
thecommunitytoprovidehelpfulfeedbackinorder
toidentifysecureadvice.Unfortunately,wefoundthe
community’sfeedbacktobealmostuseless.Forcer-
taincryptographicAPIusagescenarios,thesituationis
evenworse:insecurecodingsuggestionsaboutSSL/TLS
dominatetheavailableoptions.Thisisparticularly
alarmingasSSL/TLSisoneofthemostcommonuse
casesinproductionsystemsaccordingtopriorwork[5].

2)Thereputationmechanismandvotingsystempopularly
usedincrowdsourcingplatformsturnouttobepow-
erlesstoremoveordiscourageinsecuresuggestions.
Insecureanswersweresuggestedbypeoplewithhigh
reputationandwidelyacceptedaseasyfixesforpro-
grammingerrors.Onaverage,insecureanswersreceived
morevotes,comments,favorites,andviewsthansecure
answers.Asacountermeasure,securityevaluationcan
beincludedinthevotingandreputationsystemto
establishmissingincentivesforprovidingsecureand
correctinginsecurecontent.

3) Whenusersaremotivatedtoearnreputationbyanswer-
ingmorequestions,theplatformencouragescontributors
toprovideduplicated,lessuseful,orinsecurecoding
suggestions.Therefore,withrespecttosecurity,SO’s
gamificationapproachcounteractsitsoriginalpurpose
asitpromotesdistributionofsecureandinsecurecode.
Althoughwedidnotidentifyanymalicioususerthat
misusesSOtopropagateinsecurecode, wedonot
seeanymechanismdesignedtopreventsuchmalicious
behaviors,either.

Whendevelopersrefertocrowdsourcedknowledgeasone
ofthemostimportantinformationresources,itiscrucially
importanttoenhancethequalitycontrolofcrowdsourcing
platforms.Thiscallsforastrongcollaborationbetweendevel-
opers,securityexperts,toolbuilders,educators,andplatform
providers.Byeducatingdeveloperstocontributehigh-quality
security-relatedinformation,andintegratingvulnerabilityand
duplicationdetectiontoolsintoplatforms,wecanimprove
softwarequalityviacrowdsourcing.Ourfutureworkisfo-
cusedonbuildingtheneededtoolsupport.

ACKNOWLEDGMENT

Wethankreviewersfortheirinsightfulcomments.Wealso
thankDr.KurtLutherforhisvaluablefeedback.

REFERENCES

[1]“Stack Overflow goes beyond Q&As and launches crowd-
sourced documentation,” https://techcrunch.com/2016/07/21/
stack-overflow-goes-beyond-qas-and-launches-crowdsourced-documentation/,
2016.

[2]“Stack Overflow’s Crowdsourcing Model Guarantees Suc-
cess,” https://www.theatlantic.com/technology/archive/2010/11/
stack-overflows-crowdsourcing-model-guarantees-success/66713/,
2010.

[3]L.Mamykina,B.Manoim,M.Mittal,G.Hripcsak,andB.Hartmann,
“DesignLessonsfromtheFastestQ&ASiteintheWest,”inProceedings
oftheSIGCHIConferenceonHumanFactorsinComputingSystems,
ser.CHI’11. NewYork,NY,USA:ACM,2011,pp.2857–2866.

[4] Y.Acar,M.Backes,S.Fahl,D.Kim,M.L.Mazurek,andC.Stransky,
“Yougetwhereyou’relookingfor:Theimpactofinformationsources
oncodesecurity,”in2016IEEESymposiumonSecurityandPrivacy
(SP),May2016,pp.289–305.

[5]F.Fischer,K.B̈ottinger,H.Xiao,C.Stransky,Y.Acar,M.Backes,and
S.Fahl,“StackOverflowconsideredharmful?Theimpactofcopy&paste
onAndroidapplicationsecurity,”in38thIEEESymposiumonSecurity
andPrivacy,2017.

[6] N.Meng,S.Nagy,D.Yao,W.Zhuang,andG.A.Argoty,“Securecoding
practicesinJava:Challengesandvulnerabilities,”inICSE,2018.

[7]S.Fahl, M. Harbach,T. Muders,L. Baumg̈artner, B.Freisleben,
and M.Smith,“WhyEveand MalloryloveAndroid:Ananalysis
of Android SSL (in)security,” in Proceedingsofthe2012ACM
ConferenceonComputerandCommunicationsSecurity, ser. CCS.
NewYork,NY,USA:ACM,2012,pp.50–61.[Online].Available:
http://doi.acm.org/10.1145/2382196.2382205

[8]S.Subramanian,L.Inozemtseva,andR.Holmes,“LiveAPIdocumenta-
tion,”inProceedingsofthe36thInternationalConferenceonSoftware
Engineering,ser.ICSE2014. NewYork,NY,USA:ACM,pp.643–652.

[9]T.Kamiya,S.Kusumoto,andK.Inoue,“CCFinder:Amultilinguistic
token-basedcodeclonedetectionsystemforlargescalesourcecode,”
TSE,pp.654–670,2002.

[10]P.JurczykandE.Agichtein,“Discoveringauthoritiesinquestionanswer
communitiesbyusinglinkanalysis,”inProceedingsoftheSixteenth
ACMConferenceonConferenceonInformationandKnowledgeMan-
agement. NewYork,NY,USA:ACM,2007,pp.919–922.

[11] H. Xie,J. C.S.Lui,and D.Towsley,“Incentiveandreputation
mechanismsforonlinecrowdsourcingsystems,”in2015IEEE23rd
InternationalSymposiumonQualityofService(IWQoS),June2015,
pp.207–212.

[12] A.Katmada,A.Satsiou,andI.Kompatsiaris,“Areputation-basedincen-
tivemechanismforacrowdsourcingplatformforfinancialawareness,”
inInternational WorkshopontheInternetforFinancialCollective
AwarenessandIntelligence,2016,pp.57–80.

[13]“Privileges,”https://stackoverflow.com/help/privileges.
[14]“KSOAP2AndroidwithHTTPS,”https://stackoverflow.com/questions/

3440062,2010.
[15]“The Success of Stack Exchange: Crowdsourcing + Rep-

utation Systems,” https://permut.wordpress.com/2012/05/03/
the-success-of-stack-exchange-crowdsourcing-reputation-systems/,
2012.

[16]“Whatisreputation?HowdoIearn(andlose)it?”https://stackoverflow.
com/help/whats-reputation.

[17] Y.Sheffer,R.Holz,andP.Saint-Andre,“RecommendationsforSecure
Useof Transport LayerSecurity(TLS)and Datagram Transport
LayerSecurity(DTLS),”RFC7525, May2015.[Online].Available:
https://rfc-editor.org/rfc/rfc7525.txt

[18]“KSOAP2AndroidwithHTTPS,”https://stackoverflow.com/questions/
4957359,2010.

[19]“Android - Crittografy Cipher decrypt doesn’t work,” https://
stackoverflow.com/questions/14490575,2013.

[20]“RSAEncryption-Decryption:BadPaddingException:Datamuststart
withzero,”https://stackoverflow.com/questions/14086194,2012.

[21]“How do I use 3DES encryption/decryption in Java?” https://
stackoverflow.com/questions/20670,2008.

[22]“wheretostoreconfidentialdatalikedecryptionkeyinandroidsothat
itcanneverbefoundbyhacker,”https://stackoverflow.com/questions/
35082426,2016.

[23]“StackExchangeDataDump,”https://archive.org/details/stackexchange,
2018.

[24]“Networks-Learning/stackexchange-dump-to-postgres,” https:
//github.com/Networks-Learning/stackexchange-dump-to-postgres,
Visitedon7/31/2018.

[25]“Bouncycastle,”https://www.bouncycastle.org.
[26]“TheGNUCryptoproject,”https://www.gnu.org/software/gnu-crypto/,

Visitedon7/31/18.
[27]“jasypt,”http://www.jasypt.org,2014.
[28] A.DeyandS.Weis,Keyczar:ACryptographicToolkit.
[29]“scribejava,” https://github.com/scribejava/scribejava, Visited on

7/31/2018.
[30]“spongycastle,”https://github.com/rtyley/spongycastle/releases,Visited

on7/31/2018.
[31]J.E.Gentle,ComputationalStatistics,1sted. SpringerPublishing

Company,Incorporated,2009.
[32] M.P.FayandM.A.Proschan,“Wilcoxon-Mann-Whitneyort-test?On

assumptionsforhypothesistestsandmultipleinterpretationsofdecision
rules.”StatisticsSurveys,vol.4,pp.1–39,2010.

[33]“Cliff’sDeltaCalculator:Anon-parametriceffectsizeprogramfortwo
groupsofobservations,”UniversitasPsychologica,vol.10,pp.545–
555,052011.[Online].Available:http://www.scielo.org.co/scielo.php?
script=sciarttext&pid=S1657-92672011000200018&nrm=iso

[34]LaboratoryofCryptographyandSystemSecurity(CrySySLab),“sky-
wiper(a.k.a.flamea.k.a.flamer):Acomplex malwarefortargeted
attacks,”BudapestUniversityofTechnologyandEconomics,Tech.Rep.,
2012.

[35] M. Georgiev,S.Iyengar,S.Jana, R. Anubhai, D. Boneh,and
V.Shmatikov,“The mostdangerouscodeintheworld: Validating
SSLcertificatesinnon-browsersoftware,”inProceedingsoftheACM
ConferenceonComputerandCommunicationsSecurity. NewYork,
NY,USA:ACM,pp.38–49.

[36]T. DuongandJ.Rizzo,“Herecomethexorninjas,”unpublished
manuscript2011.

[37]“FastandsimpleStringencrypt/decryptinJAVA,”https://stackoverflow.
com/questions/5220761,2011.

[38]S. Wang,T.-H.Chen,andA.E.Hassan,“Understandingthefactors
forfastanswersintechnical Q&A websites,”EmpiricalSoftware
Engineering,vol.23,no.3,pp.1552–1593,Jun2018.[Online].
Available:https://doi.org/10.1007/s10664-017-9558-5

[39]“SSL Certificate Verification:javax.net.ssl.SSLHandshakeException,”
https://stackoverflow.com/questions/25079751/
ssl-certificate-verification-javax-net-ssl-sslhandshakeexception.

[40]“MessageDigest,” https://docs.oracle.com/javase/9/docs/api/java/
security/MessageDigest.html,Recentlyvisitedon08/13/2018.

[41]“isthereaJavaECBprovider?”https://stackoverflow.com/questions/
5665680,2011.

[42]“Java:HowimplementAESwith128bitswithCFBandNoPadding,”
https://stackoverflow.com/questions/6252501,2011.

[43]“Android Facebook API won’t login,” https://stackoverflow.com/
questions/22150331,2014.

[44]“Trusting all certificates using HttpClient over HTTPS,”
https://stackoverflow.com/questions/4837230,2011.

[45]“encrypt message with symmetric key byte[] in Java,” http://
stackoverflow.com/questions/27621392,2014.

[46]F.Long,“SoftwarevulnerabilitiesinJava,”SoftwareEngineering
Institute, Carnegie Mellon University,Pittsburgh,PA, Tech. Rep.
CMU/SEI-2005-TN-044,2005.[Online].Available:http://resources.sei.
cmu.edu/library/asset-view.cfm?AssetID=7573

[47] M.Egele,D.Brumley,Y.Fratantonio,andC.Kruegel,“Anempirical
studyofcryptographicmisuseinAndroidapplications,”inProceedings
oftheACMConferenceonComputerandCommunicationsSecurity,
ser.CCS. NewYork,NY,USA:ACM,2013,pp.73–84.[Online].
Available:http://doi.acm.org/10.1145/2508859.2516693

[48] D. Lazar, H. Chen, X. Wang,and N. Zeldovich,“Why does
cryptographicsoftwarefail? Acasestudyandopenproblems,”in
Proceedingsof5thAsia-PacificWorkshoponSystems,ser.APSys’14.
NewYork,NY,USA:ACM,2014,pp.7:1–7:7.[Online].Available:
http://doi.acm.org/10.1145/2637166.2637237

[49]“State of software security,” https://www.
veracode.com/sites/default/files/Resources/Reports/
state-of-software-security-volume-7-veracode-report.pdf, 2016,
veracode.

[50] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan,andJ.-L.Sun,“What
security questions do developers ask? A large-scale study of
StackOverflowposts,”JournalofComputerScienceandTechnology,

https://techcrunch.com/2016/07/21/stack-overflow-goes-beyond-qas-and-launches-crowdsourced-documentation/
https://techcrunch.com/2016/07/21/stack-overflow-goes-beyond-qas-and-launches-crowdsourced-documentation/
https://www.theatlantic.com/technology/archive/2010/11/stack-overflows-crowdsourcing-model-guarantees-success/66713/
https://www.theatlantic.com/technology/archive/2010/11/stack-overflows-crowdsourcing-model-guarantees-success/66713/
http://doi.acm.org/10.1145/2382196.2382205
https://stackoverflow.com/help/privileges
https://stackoverflow.com/questions/3440062
https://stackoverflow.com/questions/3440062
https://permut.wordpress.com/2012/05/03/the-success-of-stack-exchange-crowdsourcing-reputation-systems/
https://permut.wordpress.com/2012/05/03/the-success-of-stack-exchange-crowdsourcing-reputation-systems/
https://stackoverflow.com/help/whats-reputation
https://stackoverflow.com/help/whats-reputation
https://rfc-editor.org/rfc/rfc7525.txt
https://stackoverflow.com/questions/4957359
https://stackoverflow.com/questions/4957359
https://stackoverflow.com/questions/14490575
https://stackoverflow.com/questions/14490575
https://stackoverflow.com/questions/14086194
https://stackoverflow.com/questions/20670
https://stackoverflow.com/questions/20670
https://stackoverflow.com/questions/35082426
https://stackoverflow.com/questions/35082426
https://archive.org/details/stackexchange
https://github.com/Networks-Learning/stackexchange-dump-to-postgres
https://github.com/Networks-Learning/stackexchange-dump-to-postgres
https://www.bouncycastle.org
https://www.gnu.org/software/gnu-crypto/
http://www.jasypt.org
https://github.com/scribejava/scribejava
https://github.com/rtyley/spongycastle/releases
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1657-92672011000200018&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1657-92672011000200018&nrm=iso
https://stackoverflow.com/questions/5220761
https://stackoverflow.com/questions/5220761
https://doi.org/10.1007/s10664-017-9558-5
https://stackoverflow.com/questions/25079751/ssl-certificate-verification-javax-net-ssl-sslhandshakeexception
https://stackoverflow.com/questions/25079751/ssl-certificate-verification-javax-net-ssl-sslhandshakeexception
https://docs.oracle.com/javase/9/docs/api/java/security/MessageDigest.html
https://docs.oracle.com/javase/9/docs/api/java/security/MessageDigest.html
https://stackoverflow.com/questions/5665680
https://stackoverflow.com/questions/5665680
https://stackoverflow.com/questions/6252501
https://stackoverflow.com/questions/22150331
https://stackoverflow.com/questions/22150331
http://stackoverflow.com/questions/27621392
http://stackoverflow.com/questions/27621392
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573
http://doi.acm.org/10.1145/2508859.2516693
http://doi.acm.org/10.1145/2637166.2637237
https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf
https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf
https://www.veracode.com/sites/default/files/Resources/Reports/state-of-software-security-volume-7-veracode-report.pdf

vol. 31, no. 5, pp. 910–924, Sep 2016. [Online]. Available:
https://doi.org/10.1007/s11390-016-1672-0

[51]J.Xie,H.R.Lipford,andB.Chu,“Whydoprogrammersmakesecurity
errors?”in2011IEEESymposiumonVisualLanguagesandHuman-
CentricComputing(VL/HCC),Sep.2011,pp.161–164.

[52]R.BalebakoandL.Cranor,“ImprovingAppPrivacy:NudgingApp
DeveloperstoProtectUserPrivacy,”IEEESecurity&Privacy,vol.12,
no.4,pp.55–58,Jul.2014.

[53]S. Nadi, S. Kr̈uger, M. Mezini, and E. Bodden, “Jumping
throughhoops: WhydoJavadevelopersstrugglewithcryptography
APIs?”inProceedingsofthe38thInternationalConferenceonSoftware
Engineering,ser.ICSE. NewYork,NY,USA:ACM,2016,pp.935–
946.[Online].Available:http://doi.acm.org/10.1145/2884781.2884790

[54] A.Bosu,C.S.Corley,D.Heaton,D.Chatterji,J.C.Carver,andN.A.
Kraft,“Buildingreputationinstackoverflow:Anempiricalinvestiga-
tion,”in201310thWorkingConferenceonMiningSoftwareRepositories
(MSR),May2013,pp.89–92.

[55] A.Barua,S. W.Thomas,andA.E.Hassan,“Whataredevelopers
talkingabout?AnanalysisoftopicsandtrendsinStackOverflow,”
EmpiricalSoftwareEngineering,vol.19,no.3,pp.619–654,Jun2014.
[Online].Available:https://doi.org/10.1007/s10664-012-9231-y

[56] M.S.Rahman,“AnempiricalcasestudyonStackOverflowtoexplore
developers’securitychallenges,”Master’sthesis,KansasStateUniver-
sity,2016.

[57]T.Zhang,G.Upadhyaya,A.Reinhardt,H.Rajan,and M.Kim,“Are
CodeExamplesonanOnlineQ&AForumReliable?:AStudyofAPI
MisuseonStackOverflow,”in Proceedingsofthe40thInternational
ConferenceonSoftwareEngineering,ser.ICSE’18. NewYork,NY,
USA:ACM,2018,pp.886–896.

[58]B.Vasilescu,V.Filkov,andA.Serebrenik,“Stackoverflowandgithub:
Associationsbetweensoftwaredevelopmentandcrowdsourcedknowl-
edge,”in2013InternationalConferenceonSocialComputing,Sept
2013,pp.188–195.

[59]F. ChenandS. Kim,“Crowddebugging,”inProceedingsofthe
201510thJointMeetingonFoundationsofSoftwareEngineering,ser.
ESEC/FSE2015. NewYork,NY,USA:ACM,2015,pp.320–332.
[Online].Available:http://doi.acm.org/10.1145/2786805.2786819

[60] M.Ahasanuzzaman,M.Asaduzzaman,C.K.Roy,andK.A.Schneider,
“MiningDuplicateQuestionsinStackOverflow,”inProceedingsofthe
13thInternationalConferenceon MiningSoftwareRepositories,ser.
MSR’16. NewYork,NY,USA:ACM,2016,pp.402–412.

[61]L.An,O.Mlouki,F.Khomh,andG.Antoniol,“Stackoverflow:Acode
launderingplatform?”in2017IEEE24thInternationalConferenceon
SoftwareAnalysis,EvolutionandReengineering(SANER),Feb2017,
pp.283–293.

[62] W.E.Zhang,Q.Z.Sheng,J.H.Lau,andE.Abebe,“DetectingDuplicate
PostsinProgramming QACommunitiesviaLatentSemanticsand
AssociationRules,”inProceedingsofthe26thInternationalConference
onWorldWideWeb,2017,pp.1221–1229.

[63] D.Yang,P.Martins,V.Saini,andC.Lopes,“StackOverflowinGithub:
AnySnippetsThere?”in2017IEEE/ACM14thInternationalConference
onMiningSoftwareRepositories(MSR),May2017,pp.280–290.

[64] N.H.Pham,T.T.Nguyen,H.A.Nguyen,andT.N.Nguyen,“Detection
ofrecurringsoftwarevulnerabilities,”inProceedingsoftheIEEE/ACM
InternationalConferenceonAutomatedSoftwareEngineering,ser.ASE
’10. New York, NY, USA: ACM,2010,pp.447–456.[Online].
Available:http://doi.acm.org/10.1145/1858996.1859089

[65]J.Jang,A.Agrawal,andD.Brumley,“Redebug:Findingunpatched
codeclonesinentireosdistributions,”inProceedingsofthe2012IEEE
SymposiumonSecurityandPrivacy,ser.SP’12. Washington,DC,
USA:IEEEComputerSociety,2012,pp.48–62.[Online].Available:
https://doi.org/10.1109/SP.2012.13

[66]Z.Li,D.Zou,S.Xu,H.Jin,H.Qi,andJ.Hu,“Vulpecker:An
automatedvulnerabilitydetectionsystembasedoncodesimilarity
analysis,”inProceedingsofthe32NdAnnualConferenceonComputer
SecurityApplications,ser.ACSAC’16. NewYork,NY,USA:ACM,
2016,pp.201–213.[Online]. Available:http://doi.acm.org/10.1145/
2991079.2991102

[67]S.Kim,S. Woo,H.Lee,andH.Oh,“Vuddy:Ascalableapproachfor
vulnerablecodeclonediscovery,”in2017IEEESymposiumonSecurity
andPrivacy(SP),May2017,pp.595–614.

[68]“Keeping answers related to security up to
date,” https://meta.stackexchange.com/questions/301592/
keeping-answers-related-to-security-up-to-date,2017.

[69]B.He,V.Rastogi,Y.Cao,Y.Chen,V.N.Venkatakrishnan,R.Yang,and
Z.Zhang,“VettingSSLusageinapplicationswithSSLINT,”in2015
IEEESymposiumonSecurityandPrivacy,May2015,pp.519–534.

[70]S.RahamanandD.Yao,“Programanalysisofcryptographicimple-
mentationsforsecurity,”in IEEESecurityDevelopmentConference
(SecDev),2017,pp.61–68.

[71] N. Meng, M.Kim,andK. McKinley,“Lase:Locatingandapplying
systematicedits,”inICSE,2013,p.10.

[72]“Flawfinder,”https://dwheeler.com/flawfinder/.
[73]“Checkmarx,”https://www.checkmarx.com.

https://doi.org/10.1007/s11390-016-1672-0
http://doi.acm.org/10.1145/2884781.2884790
https://doi.org/10.1007/s10664-012-9231-y
http://doi.acm.org/10.1145/2786805.2786819
http://doi.acm.org/10.1145/1858996.1859089
https://doi.org/10.1109/SP.2012.13
http://doi.acm.org/10.1145/2991079.2991102
http://doi.acm.org/10.1145/2991079.2991102
https://meta.stackexchange.com/questions/301592/keeping-answers-related-to-security-up-to-date
https://meta.stackexchange.com/questions/301592/keeping-answers-related-to-security-up-to-date
https://dwheeler.com/flawfinder/
https://www.checkmarx.com

