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Abstract—It is challenging for digital forensic practitioners to
maintain skillset currency, for example knowing where and how
to extract digital artifacts relevant to investigations from newer,
emerging devices (e.g., due to the increased variety of data storage
schemas across manufacturers and constantly changing models).
This paper presents a knowledge sharing platform, developed
and validated using an Internet of Things dataset released in the
DFRWS 2017-2018 forensic challenge. Specifically, we present
an automated knowledge-sharing forensic platform that auto-
matically suggests forensic artifact schemas, derived from case
data, but does not include any sensitive data in the final (shared)
schema. Such artifact schemas are then stored in a schema pool
and the platform presents candidate schemas for use in new cases
based on the data presented. In this way, investigators need not
learn the forensic profile of a new device from scratch, nor do
they have to manually anonymize and share forensic knowledge
obtained during the course of an investigation.

Index Terms—Digital forensics, forensic knowledge as a service
(ForKaS), Internet of Things (IoT), IoT forensics, knowledge-
sharing, ontology.

I. INTRODUCTION

S INTERNET of Things (IoT) devices are becoming

commonplace in our society (e.g., in environmental
monitoring, smart cities, smart business/inventory and prod-
uct management, smart homes/smart building management,
health-care, security and surveillance, and battlefields such as
Internet of Battlefield Things) [1]-[3], they are also a poten-
tial source of evidence in criminal investigations and civil
litigations [4].

One of the many challenges in a digital forensic investiga-
tion is the lack of information and knowledge-sharing between
investigators and cases, particularly those involving contempo-
rary technologies, such as newer IoT devices. For example, in a
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typical investigation process, two or more investigators located
in different cities and/or countries may be forensically examin-
ing the same (type of) device at the same time [see Fig. 1(a)].
As the experience and background of both investigators are
likely to vary, the outcomes of the forensic investigations may
also differ (e.g., in terms of the types and extent of artifacts
being recovered).

As the diversity of devices increases (e.g., IoT, wearable,
embedded, and other digital devices), so does the challenge
in the forensic examination of such devices [4]. For example,
an investigator who is unfamiliar with a particular device that
(s)he has not previously examined, say a Makerbot Replicator
718 Large 3-D Printer, may need to research the device before
undertaking any forensic examination. The amount of time
required in acquiring new knowledge could be prohibitive to
smaller or regional forensic investigation teams with limited
resources. The challenge is compounded with the advent of the
IoT. With an estimated 20 billion devices connected to the IoT
by 2020, forensic investigators are increasingly challenged to
extract and analyze forensic artifacts effectively and efficiently.
Automated, or semiautomated, knowledge sharing platforms
that protect case sensitive data are critically needed.

In addition, due to the sensitive nature of data acquired from
forensic examination, data is seldom shared. Such challenges
can have an impact on the timing, efficiency and consistency of
the investigations and findings. For example, Miller et al. [5]
noted that:

Practitioners tasked with investigating new device
types, be it for forensic or security related pur-
poses, however, do not have the luxury of relying
on previous work and, with the variety present in
AM [additive manufacturing] device architectures,
examination of only the device may be insufficient
to discover the entirety of the residual data footprint
left by its printing process. Additionally, acquiring
a representative sample of devices for study may be
cost prohibitive or the exploratory analysis of a par-
ticular device may be inadvisable due to operational,
evidentiary, or resource constraints.

Hence, we posit the importance of knowledge shar-
ing among the forensic community—particularly technology
enabled automated, or semiautomated, sharing platforms that
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Fig. 1. Overview of the proposed ForKaS platform. (a) Traditional investigation process. (b) Proposed investigation process.

strictly protect sensitive case data. Investigators need mech-
anisms for efficiently and effectively sharing knowledge
about forensic artifacts—their location, their forensic implica-
tions, their data structures, etc.—without sharing the artifacts
themselves. Specifically, in this paper we present a foren-
sic knowledge-sharing platform [see Fig. 1(b)], designed to
facilitate the sharing of knowledge/experience via a schema
generated from another investigation of a similar device. Such
a schema captures the knowledge of an investigator who
had previously examined a particular device, and contains
information, such as type and nature of artifacts that could be
acquired, to guide another investigator’s forensic examination.

Our proposed forensic knowledge as a service (ForKaS)

platform builds on the conventional four-layer digital forensic
framework (collection, extraction, analysis, and visualization),
by introducing the “abstraction” layer where the schema can be
generated and shared. We also implement a proof of concept
and evaluate the prototype using the publicly available smart
home dataset released for the DFRWS 2017-2018 forensic
challenge. Specifically, we demonstrate how one can effi-
ciently generate a schema based on the examination of the
smart home dataset (comprising a number of IoT devices) and
then share the generated schema via the platform; thereby,
increasing other investigators’ efficient and effective extraction
of evidence on devices they may or may not have analyzed
before. We also demonstrate how the schema can then be uti-
lized by a forensic investigator examining a different Android
device and an iOS device.

We regard the key benefits of ForKaS to include the

following.

1) Allow the sharing of knowledge and experience between
forensic investigators without the need to share the sen-
sitive data acquired from the forensic investigation or
dataset.

2) The inconsistency and time required of a forensic inves-
tigation finding could be minimized, since investigators

can draw on prior experience and findings from the
international forensic community (e.g., INTERPOL and
EUROPOL) to benefit their own investigations. This
also minimizes the steep learning curve associated with
newer technologies or technologies that the investigator
is unfamiliar with.

3) Forensic investigators can provide other stakeholders
(e.g., investigation officers and prosecutors) an expe-
dited, high-level overview of the case, using existing
schema.

The remainder of this paper is organized as follows. The lit-
erature review is presented in Section II. Section III introduces
the structure of the proposed ForKaS platform. In Section IV,
we present two key algorithms required in the prototype imple-
mentation. We then present the case study in Section V and the
discussion in Section VI. Lastly in Section VII, we conclude
this paper and discuss future work.

II. RELATED WORK

To keep pace with the constant evolution of consumer tech-
nologies [6], [7], there has been an increased focus on digital
forensic research, such as IoT forensics (see Section II-A).
Since the definition of “IoT device” is relatively broad, in
this section we will focus on a smart home scenario where
an IoT device usually refers to a device that is not conven-
tionally “smart,” or one that has an independent IP address
(e.g., smart LED light bulb, IP camera, smart watch/TV, and
a motion detector), and an Internet-connected device that can
be used to control the smart device (e.g., a smart phone).

We will also briefly review prior attempts to share foren-
sic knowledge/experience, for example as forensic taxonomies
(see Section II-B).

A. IoT Forensics

IoT forensics can be broadly categorized into device
level forensics, network forensics [8], [9], and cloud/server
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forensics [10], [11]. In the context of a smart home, for
example, forensic data artifacts could be acquired from IoT
devices, IoT controller/IoT hubs (e.g., Samsung SmartHub), a
voice assistant device (e.g., Amazon Echo and Google Home),
the home router and the cloud server [12]. In addition, the
data can also be acquired from the mobile device or applica-
tion (we refer interested reader to [13] for a comprehensive
review of mobile forensics and [14] for Android application
forensics), as demonstrated in the study of Amazon Echo by
Chung et al. [15] and Li et al. [16].

In 2017, Meffert et al. [17] conducted a forensic examina-
tion of openHAB, an open source 10T controller dominating
an IP camera and two sensors. In the study, openHAB was
deployed on an Ubuntu server and the historical states and
changes of the IoT devices were acquired from the local log
file. Both Oriwoh and Sant [18] and Zawoad and Hasan [19]
proposed a conceptual smart home forensics system and a con-
ceptual IoT forensic model, without evaluating the proposed
systems. Goudbeek et al. [12] proposed a forensic inves-
tigation framework for the smart home environment and
demonstrated how it can be used to guide a smart home
forensic investigation using three case studies, involving a
do-it-yourself home automation system and a managed home
automation system.

Baggili et al. [20] forensically examined an LG smart watch,
and demonstrated how data (e.g., timestamps of updates per-
formed, and voice memos were recorded on the watch) could
be acquired from a Samsung Galaxy S4 smart phone paired
with a smart watch. In another study, Do et al. [21] examined
Android Wear, an Android-based Operating System for smart
watch. The authors explained how sensitive data of the user
on a Samsung Gear Live smart watch (e.g., SMS messages,
contact information, and biomedical data) could be acquired.

Other areas of IoT forensics include unmanned aerial vehi-
cle (UAV; also known as drones) forensics. For example,
Horsman [22] conducted a forensic analysis of a Parrot
Bebop UAV via its Telnet protocol. The flight data acquired
was in structured files, which are formatted with JavaScript
Object Notation (JSON). Later works include the study of
DJI Phantom III by Clark ef al. [23], in which the acquired
flight data was found in the embedded microSD card and the
memory of DJI Vision application.

B. Forensic Schema, Ontology, and Taxonomies

There have been efforts by the forensic community to
standardize the format of evidence presentation in order to
facilitate exchange-ability and comparability of the evidence.
Most of these works focused on having a universal data format,
where the raw evidence data and the associated meta-data are
included. For example, Turner [24] proposed a wrapper of disk
image [i.e., digital evidence bags (DEBs)] to provide inves-
tigators the capability to store data from disparate sources.
Similarly, Garfinkel [25] and Levine and Liberatore [26]
represented all partitions and files of the disk image using
eXtensible Markup Language (XML) files. The Advanced
Forensics Format (AFF4) is another example of a foren-
sic format built for representation of meta-data and Zip64
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compression [27]. Last, Casey ef al. [28] developed Digital
Forensic Analysis eXpression (DFAX), using Cyber Observal
eXpression (CybOX), to represent digital trace information in
an exchangeable format.

There has also been focus on the artifacts that can be
forensically recovered, in order to create reusable knowledge
for different evidence sources. For example, using seman-
tic Web and ontology, one could add rich semantics to the
forensic evidence so that investigators can easily select and
query artifacts of interest from the evidence semantically.
Brady et al. [29] proposed the digital evidence semantic
ontology (DESO), which represents evidence in two general
classes, namely “artifact location™ and “artifact type.” Once the
semantic Web is built, an investigator can query artifacts gen-
erated by certain operating system since “operating systems”
is considered a subclass of artifact location in DESO. Other
ontologies proposed in the literature include those designed
for Windows Registry [30], network traffic [31], Android
System [32], abstract forensic-relevant actions [28], and vari-
ous log files [33]. Generally speaking, semantic Web facilitates
knowledge-driven digital forensics [34].

Perhaps one of the most recent and most integrative con-
tributions is Cyber-investigation Analysis Standard Expression
(CASE) [35], an open community-developed specification lan-
guage that extends DFAX and is built upon the Unified Cyber
Ontology (UCO). It addresses the challenge caused by the
large number of specification languages and ontologies intro-
duced previously. It addresses the challenge of merging data
sources from many organizations or handling large datasets
from a variety of tools.

However, there are limitations in existing ontology-based
works. For example, one assumption in these works is
for a human specialist to generate a universal ontology
based on his/her expertise. However, in a real world set-
ting, the creation of the ontology relies on the accumulation
of extensive experience. Experienced forensic investigators
lack experience in building ontologies and are discour-
aged from creating them given their constantly high case
load and the manual and laborious nature of ontology
development.

A number of forensic taxonomies that provide a sys-
tematic classification of forensic artifacts from different
Android mobile app categories [36]-[38] and Windows
Phone mobile app categories have been presented in the
literature [39] and [40]. However, existing ontology-based
approaches and (mobile app artifact) forensic taxonomies do
not provide a knowledge “template” that can be used to facili-
tate knowledge sharing (we also refer interested reader to [41]
for a comparison of some of these approaches).

The Artifact Genome Project (AGP) [42] makes important
strides in cataloging digital forensic artifacts by providing “an
online system for uploading and viewing digital forensic arti-
facts.” The benefit of the proposed system in contrast, however,
is that the proposed system provides a technology enabled
mechanism for ontological schema development, by deriv-
ing proposed schema entities and relationships from the data
extracted and analyzed in actual investigations. Whereas inves-
tigators must manually enter artifact metadata into AGP, the
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proposed platform automates knowledge generation, sharing,
and use to a large extent.

III. PROPOSED PLATFORM

In this section, we present our proposed forensic platform.
As illustrated in Fig. 2, the platform has five layers, namely
collection, extraction, analysis, visualization, and abstrac-
tion. The fifth layer, Abstraction, extends the conventional
four-layer approach (i.e., collection, extraction, analysis, and
visualization), by leveraging the experience of other forensic
investigators as they learn from their analyses (typically in
the analysis layer). In other words, our fifth layer abstracts
knowledge obtained by forensic investigators, enabling it to
be shared with other investigators. The description for each
layer of our platform and the modules can be found in
Sections II-A-III-E.

A. Collection

The Collection layer deals with the loading and encap-
sulating of the data source(s) to a forensic case (e.g.,
a murder investigation). This layer is also known as
the interface between the platform and the data source.
Suppose that set F refers to the data source, where F =
{fIf is a valid file of the data source}. To ensure that the
loaded data source is ready for the next layer, the case loader
and case creator modules will be responsible for achiev-
ing the encapsulation and reloading the case to the platform,
respectively.

When a forensic case is created, the data source F within
the case is logically separated into one or multiple entities. In
this platform, an entity is a unit with a group of files, where
artifacts may be found that are logically independent (see the

Structure of the knowledge-sharing-based forensic analysis platform.

circled “SmartThings DFRWS C:Users: ...” in Fig. 5). For
example, if the investigator is examining a Samsung Thing,
then the investigator can load up the “SmartThings DFRWS
C:Users: ...” entity.

Entities can exist at different granularities, for example at
an application level (e.g., a specific mobile app), and a device
level (e.g., a specific IoT device). Investigators examining
“complex” devices, such as mobile devices (e.g., Android and
iOS devices), should consider using application-specific enti-
ties (e.g., Facebook iOS app entity) rather than a device-level
entity (in this context, iOS entity).

In Fig. 2, E denotes the set of entities of a forensic case,
E = {e|le C F}.

B. Extraction

In the second layer (i.e., extraction), the file format is auto-
matically recognized by the platform, the data are retrieved
and parsed from the files (f) standardized for further inves-
tigation. Specifically, the entities (obtained from the first
layer) are processed through a parsing engine, which con-
sists of two modules, namely parser matcher and parser
pool. Parser matcher is responsible for assigning the most
appropriate parser within the parser pool to each file of an
entity. Given that P(E) is the set of parsed entities, then
P(E) = {P(e)|le € E} and P(e) = {P(f)|f € e}. So that, the
assigned parser can parse a file [ to P(f).

Here, in order to further process the parsed file P(f) in
the next layer, all P(f) are tabulated to a n-column table and
each column has some associated data. In other words, we can
represent P(f) via a set of an ordered two-tuple—(c, d), where
c is the identifier of the column, and d is an ordered n-tuple
including the corresponding data.
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C. Analysis

The analysis layer can be considered a knowledge imple-
menter. Through this layer, a parsed file P(f) can be examined
using the digital forensic investigator’s experience. If the
schema for the particular device or application does not exist
and the investigator wishes to contribute to the schema pool,
then (s)he can use the selector and tagger modules to select
and tag the relevant parsed files. On the other hand, if the
schema for the particular device or application exists, then
the investigator can use the schema loader module to load the
relevant schema to work on the parsed file P(f).

In either of the above approaches (i.e., select and tag, or
load), data of interest/relevance from P(f) will be identified
and tagged. Since P(f) is a set of (c,d), the tagged data
D will be a subset of P(f). Let R(f) denotes the examined
data of P(f), i.e., the output of this layer that contains the
investigator’s annotations, and hence R(f) is a set of (f, d).

D. Visualization

In the visualization layer, the visualization module allows
investigators (or any user) to view the forensic artifacts graphi-
cally. The module can recommend a suitable visualization type
(e.g., timeline), based on the schema type. This module also
allows the user to choose parts of the data under investiga-
tion [denoted as R(E)] to be visualized. In order to do so,
an investigator needs to assign a set of tags for visualization
on the visualization panel. The tags would then be shown to
the investigator during the investigation process. As long as a
column is labeled with any of these tags, the related data will
be obtained and visualized.

From the investigator’s perspective, labeling the data with
an appropriate tag is important. There are a number of com-
monly used tags, such as “device ID,” “device name,” “action,”
“yalue,” and “time.” Some of these values can be further bro-
ken down into subtags, such as fime can be separated into “start
time” and “end time,” or “last accessed time,” “last modified
time,” and so on.

E. Abstraction

The last layer is abstraction, which provides the knowledge
extraction capacity for investigators. As the name implies, the
extracted knowledge/schema can be shared between investi-
gators, say from different agencies or countries, without the
case-specific, sensitive data associated with the case. This way,
device metadata, rather than case data can be shared.

Suppose that a schema s is a set of S(f) (f e
e, e is an entity). To generate the element S(f), both P(f)
(the parsed file) and R(f) (the parsed data and investigated
data of file f) are needed. In other words, the targeted entity
where the schema was generated should have processed by
the parsing engine and the selector and tagger modules in the
analysis layer. Specifically, in order to obtain the knowledge
from each investigated file in the entity, we first extract ¢ out
of every (c, d) tuple ((c,d) € P(f)) and also f out of every
(t,d) tuple ((t,d) € R(f)), before assembling the extracted ¢
and f to a new element of S(f) — (c, 1) ((c, 1) € S(f)). Thus, a
schema of the entity can be created.
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In this layer, the schema generator module allows us to
create a schema, which will be stored in a schema pool. The
latter can reside in a cloud, such as an INTERPOL/EUROPOL
cloud. For example, when some investigator works on a case
involving a new or unfamiliar device, the investigator can
make a request to the schema pool. Upon receipt of such a
request, the schema matcher module attempts to find Schemas
that match the request. If one or more matching schemas are
found, the schema loader module will retrieve and load the
schemas to P(E), so that the requesting user/investigator can
apply it(them) to his/her case.

In P(E), the first step is to search through the data from
P(f). For each element of P(f), it will be retained as long as
column ¢ (¢ € (c, d)) matches the element (c, f) ((c, 1) € S(f)).
The second step is to replace the column name c of the
searched elements with the associated tag f. Note that the
schema matcher module conducts a scoring approach (see
Section I'V-B) in order to find the most appropriate schema
from the schema pool. It also provides a reference to the
investigator who intends to load a schema manually.

IV. KEY ALGORITHMS

In this section, we will describe the two key algorithms
required in the implementation of the prototype, namely file
parsing and schema recommendation.

A. File Parsing

Essentially, parsing file f to a set of (c, d) (see Section III-B)
is equivalent to converting the file to a 2-D table, where ¢
represents a column of the table and d denotes the corre-
sponding data of the column. Due to the different format of
the input files, different parsers are required. In other words,
the proposed platform will require new parsers be built as
needed, as significant device changes are introduced in the
market. However, a benefit of the proposed approach is that
it leverages common data structures across a large number of
IoT devices. Only significantly divergent entrants to the IoT
market will necessitate the development of new file parsers.

This update model is similar to how current commercial
forensic tools function, where updates are being introduced to
the forensic tool in order to acquire forensic artifacts from new
devices. However, we contend that the frequency with which
new parsers will need to be built will be less than the pace of
forensic tool updates that would otherwise be needed to update
forensic tools with device level artifact knowledge, since gen-
eral file formats and general data structures stay much more
constant across device models than specific artifact metadata.

We also note that devices of interest in most forensic cases
tend to be popular consumer technologies, such as commonly
used IoT devices and smart phones, and these commonly used
devices store/exchange data in some standardized file formats
such as JSON, XML, SQLite database, and comma-separated
values (CSV). Hence, most of these formats can be captured
in our platform [represented using (c, d) in a table].

Formats such as SQLite and other similar database for-
mats are typically structured as a table. Element tags, column
names, and row names can be extracted from JSON, XML, and
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{"manufacturer":{"name":"unknown", "device": [{"name":"multi sensor","status":[{"temperature":78, "battery":61},

{"temperature":78, "battery":62}, {"temperature":78, "battery":63}1}, {"name":"motion sensor","status":
:"active”, "battery":100}, {"motion™:"inactive", "battery™:

Fig. 3. Sample JSON file.

root

manufacturer

<unknown>

EII:IE:>

<,,,active, inactive, inactive>

battery |

<6l,62,63,100,100,100>

name status
<multi sensor,motion sensor>

<78,78,78>

Fig. 4. Convert the sample JSON file from a tree to a table.

CSV. JSON, XML, and CSV can be converted from one to
another, so if one format is supported, then the other formats
are guaranteed to be supported as well. Hence, for illustra-
tion, we only introduce the conversion process for JSON files
in this section. Other format conversion can be performed in
a similar fashion.

Fig. 3 illustrates how a JSON file can be converted to a 2-D
table within two steps.

1) Traverse JSON file based on its natural tree structure;
thus, all the leaf nodes are used to create the columns
of the table.

2) Traverse JSON file again to fill the table with the data
associated with the leaf nodes.

Since JSON files are naturally structured as a tree, there is
only one root node' in the tree and the data is only stored on
the leaf nodes. In terms of the JSON grammar: 1) each string
before “:” is a node of the tree; 2) between “{” and “}” are
child nodes; and 3) if neither “{” nor “[” appear before “:”
then the string/value following the “:” is the node’s data. Fig. 4
is the tree structure of the parsed sample JSON file in Fig. 3.

Since a leaf node and the associated data conform to the
structure of (c, d), we assign each column of the table to a
leaf node. If the name of a leaf node is n and the name of its
furthest node is n; (I refers to the level of the node), then the
unique name of a leaf node can be created by a ordered tuple
(ng, ...ni_1, ny, n), where ng is the root note. Note that the root
node is an nonexistent node of the JSON file, and the name
of the root node is always “null”? (e.g., node “manufacturer”
in Fig. 4 is ny rather than ng if node “motion” is n). The
empty table is created by the set of (ng, ..., n/_1, n;, n). Also,
c=(no,...,n_1,n,n).

1A JSON file consists of one JSON object or a JSON array of multiple
JSON objects.

2The reason for introducing such a nonexistent root node is to present
the structure of the JSON file with a single tree. Otherwise, the JSON file
structured with multiple JSON objects would include more than one root
nodes/trees.

[{"motion™
100}, {"motion":"inactive™, "battery":100}1}1]11}}

[ are leaf nodes of the sample JSON file.
<> shows the data stored in leaf nodes.

e [manufacturer, | [manufacturer, | [manufacturer,

[manufacturer, device, device, device,

name] n?n?:]' status status status
Jtemperature] \battery] ,maotion]

unknown multi sensor 78 61

I unknown I multi sensor I 78 I 62 I
unknown multi sensor 78 63
unknown | motion sensor | | 100 | active |
unknown motion sensor 100 inactive

| unknown |mntion sensor | | 100 | inactive |

Once the table is created, we traverse the JSON file again
to retrieve the data of the leaf nodes, using depth-first-search
(DFS). Function setTableCell(..) in Algorithm 1 is responsible
for feeding the data to the corresponding column of the table.
In the algorithm, two leaf nodes may have different relations.
The leaf nodes that have same depth are known as “brothers” if
they have the same furthest node. For leaf nodes with different
depths, the shallow node is the “uncle” of the deeper node. The
deeper node is the “nephew” of the shallow node if the deeper
node’s father has the same furthest node with the shallow node.
The right-hand side of Fig. 4 shows the tabulated table of the
sample JSON file.

B. Schema Recommendation

In this section, we will introduce the recommendation algo-
rithm in the schema adaptor module, which is tasked with the
identification of the most appropriate schema(s) to the investi-
gator. For optimized performance, we need to avoid searching
the entire schema pool for each request and the module should
filter out as many irrelevant schemas as possible. Therefore,
metadata are embedded in both the schema and the entity to
facilitate searching (this concept is similar to inserting relevant
keywords to facilitate searching over encrypted data that are
outsourced to a cloud—i.e., searchable encryption [43]).

Table I shows a simple example of using metadata to
describe an entity or a schema. In the prototype, it is rec-
ommended that the metadata should be included as soon as
a schema/entity is created, or wherever practical. To find the
best match(es) from the schema pool, a scoring algorithm is
executed and its output reflects how well a schema matches
the entity. Usually, the investigator is recommended to load the
schema with the highest score. Basically, the scoring algorithm
(Algorithm 2) calculates the extent to which a schema can be
applied to the entity.

For operational reasons, an organization may also choose to
implement a scaled down version of the platform. For example,
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Algorithm 1: Algorithm for Converting a JSON File to a
Table

Function setTableCell (colName, value) is
Data:

colName: Column name of the table.

datalist: List of data of a column.

value: Value of a datalist.

cell: Element of a datalist/a cell of the table. A cell

has two status, writable and unwritable.

if the last cell of the datalist of column ‘colName’ is
writable & the datalist is not null then

set the value to the last cell of the datalist;

set the cell to unwritable;

else

set the value to a new cell;

add the new cell to the end of the datalist;

if the length of the datalist is the longest then
for each column/node, excluding the column

holding the datalist do
if it is the uncle node of the node

representing the column ‘colName’ then
add the last value of the datalist to a

new cell;
set the new cell to unwritable;
add the new cell to the end of the
datalist;

Ise if It is a nephew/brother node then
add a writable empty cell to the end

of the datalist;

1]

else
add a unwritable empty cell to the
end of the datalist;

end
end
end
return 0;
end
TABLE I
SAMPLE METADATA FOR ENTITY AND SCHEMA

Category Options
Application Operating system, developer, version
Operating system/firmware  developer, kernel version
IoT Device name, model, manufacturer, firmware

in Table I, if the entity can be confined to the data of a specific
application rather than the entire IoT device, then search-
ing for the most effective schema from the pool would be
faster.

V. CASE STUDY

To evaluate the utility of the proposed ForKaS platform,
we developed a prototype that has been evaluated using the
IoT forensic dataset from the 2017-2018 DFRWS Forensic
Challenge,® where Simon was been investigated for murdering

3[Online]. Available: https:/jijames.github.io/DFRWS2018Challenge/

Algorithm 2: Algorithm to Score a Schema for a Given
Entity

Function scoringSchema (entity, schema) is
Data:

score: calculated score of the schema.
enfity: given entity.
schema: target schema.
totalColNumber: number of columns in each element
of a schema.
score = 0;
for each table of the parsed file of the entity do
hit = 0;
for each column of the table do
if the column can be found in the schema
then
| hit ++;
end
end
score = score+(hit/totalColNumber);

end
return score;

end

his wife, Betty, whose dead body was found on the floor of
their house. This dataset contains the forensic data obtained
from a Rasberry Pi, two Samsung Note 2 (belonging to Simon
and Betty), a smart watch, a sensor, a Samsung SmartHub,
etc., as well as Google OnHub Diagnostic report, Amazon
Echo Cloud Data, and MDS (Acme, Inc.) Smarthome Network
Dump.

Using this dataset, we built a schema pool using the
schema generator, comprising of a set of schemas, one for
each Entity of interest (e.g., Samsung SmartThings appli-
cation on Samsung Note 2). For example, when analyzing
Simon’s Samsung Note 2, we found a number of files.
One of the files was located at com.smartthings.
android\cache\http\ffflbbl88c7cdb095a6653a
6433028dc.1, and we were also able to iden-
tify this file as a JSON file (see the underlined file
in Fig. 5).

As the file was parsed using the ForKaS prototype, we
found that the file stored the data of the sensors in the
SmartHub network. Therefore, we selected the most impor-
tant data of the file that represent time, device name, device
ID, device state, and state value, respectively. We also set
the visualization module to accept such data as long as
the data is tagged with “time,” “device,” “ID,” “state,” and
“value.”

Once all recognized files of the application have been
investigated, the selected data will then be displayed on the
timeline-based visualization panel (see Fig. 6). The visualiza-
tion panel labeled each record with their “device state label,
grouped the data with their “device name,” and displayed the
respective record with their “device ID” in different colors.
The remainder of the selected data would be displayed when
the mouse cursor hovers over it.
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Fig. 6. Screenshot of the prototype’s visualization panel.

In summary, as Fig. 6 shows, the records of the four smart
devices (i.e., multipurpose sensor, motion sensor, TV, and out-
let) were retrieved. In terms of fime, all the records were
distributed on the time axis. Note that, the time stamp shown
on the figure was the current Unix epoch time (i.e., not affected
by the time zone). These generated schemes are then being
sent to the schema pool.

A. Data Analysis

In our case study, we also built our own SmartHub network,
which includes a motion sensor, two multipurpose sensors, and
one power outlet. We installed the SmartHub application—
SmartThings Classic (v2.16.0) on a rooted Samsung Galaxy
S7 (Android 6.0) and a jailbroken iPad mini (IOS 9.3.5). Once
the SmartHub application on either device was paired with the
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Fig. 7. Deploying the ForKaS platform in our case study.

SmartHub network, the data would be synchronized between
the device(s) and the SmartHub. After a week of activities,
we extracted the data of the SmartHub application from both
devices.

To extract the data from the iOS device, we opened
the SSH service on the device and located the folder of
the SmartThing application at /var/mobile/Contain
ers/Data/Application/307CAC89-E4A8-4021-9D
91-AB17EECF88E6/. Data from the Android device was
located at /data/data/com.smartthings.android
(see also our Github repository).* Note, the platform does not
need metadata (the directory/name of the file) for recognizing
and extracting the artifacts. The extracted folder and files do
not have to maintain their original metadata. While the current
prototype does not hide such metadata from investigators, it
easily could for a further privacy preserving design.

B. Schema Application

We then made a request to the panel pool and the
schema with the highest score was recommended (see
Fig. 5). Once we were presented with the most appropri-
ate schema, we loaded the data acquired from the analy-
sis of the Android and the iOS devices and applied the
schema to these data. In total, the schema retrieved 348
and 118 historical records from both test data, respectively.
Table II presents the identical data extracted using the schema
from both devices. In addition, we also verified that the
folder com.smartthings.android\cache\http of
the Android application and the folder \307CAC89-E4A8-
4021-9D91-AB17EECF88E6\Library\Caches\com.
smartthings\fsCachedData of the iOS application
stored the files with the artifacts.

VI. DISCUSSION

In order to verify the findings from the application of
the schema, we manually compared the findings of the test
data with the records on the applications of both devices.
We were able to determine that the test data was retrieved
correctly. However, we also remarked that there are a num-
ber of factors can affect the completeness of the data, such
as historical records being cached differently between oper-
ating systems and different users having varying browsing
habits (hence, different amount of data on the application was
captured).

4[Online]. Available: https://github.com/xiacluzhang1985/Samsung-Smart
things-testdata
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In addition, the schema recommended from the schema pool
was generated from a Samsung Note 2. However, we were
able to apply this schema on both our test devices of dif-
ferent make and model (i.e., a rooted Samsung Galaxy S7
and a jailbroken iPad mini). This demonstrated the utility
of the proposed ForKaS platform, where schema generated
from the analysis of a device/version may be applicable for
other devices running different operating systems and versions.
This is the case because, to ensure backward compatibility,
developers do not usually drastically change the approach
for data storage/transmission on another version of the same
product or a different product (e.g., Samsung Note 2 and
Samsung Galaxy s7). Furthermore, developers often use the
same data structures for different products. For example, the
schema, in this case, was successfully applied on a iOS device.
Meanwhile, using a schema, the investigator may discover new
artifacts of interest when applied on a different device. For
instance, even though the schema was generated based on the
analysis of an Android-based device, the location storage could
facilitate investigators examining an iOS device.

There are, however, limitations in our current implementa-
tion, as shown in Fig. 7. For example, the selector and tagger
modules in the current prototype are incapable of processing
unstructured/encrypted files. Therefore, such files will need
to be preprocessed. However, this also explains the need for
knowledge sharing. For example, if there is information on
the ForKaS platform that tells us user data from Samsung
SmartThings, Android device, and iOS device have a similar
structure, then we will be able to use a schema for Android
device or iOS device from the platform to facilitate the investi-
gation of Samsung SmartThings (as discussed in the preceding

paragraph).
VII. CONCLUSION

Digital forensics will be increasingly important as more
devices in our environment become digitalized and are capable
of collecting, storing, and disseminating data.

In this paper, we proposed a knowledge sharing platform
that allows forensic investigators to generate schemas from the
findings of their forensic examination of devices. The gener-
ated schemas can then be shared with the broader forensic
community, without the need to share sensitive data acquired
from the forensic examination. We then demonstrated the
potential for deploying such a platform using a case study.

Such a platform can be especially useful in time-sensitive
cases. For example, a law enforcement investigator may be
required to complete the forensic examination of a device or
system within 72 h or a couple of days. Hence, having access
to schemas generated by other experienced and trusted mem-
ber of the forensic community would expedite the forensic
investigation.

Future research includes the following.

1) Extending the prototype to support unstructured formats,
encrypted data, and other data formats (e.g., as discussed
in the preceding section) from both IoT devices and
other computing systems.

2) Surveying the forensic community on the design require-
ments (e.g., what interfaces should be incorporated to
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ease the sharing of knowledge, and what modifications
are required to be made in platform to meet the com-
munity’s requirements).

Integrating ForKaS into existing forensic platforms to
ease the entity extraction and schema development steps
in the context of current forensic workflows.
Integrating ForKaS into CASE and UCO to truly provide
an end-to-end, artifact-to-ontology information exchange
ecosystem.

Developing privacy preserving data validation mecha-
nisms to guarantee sensitive case data is not incorporated
into the schema and is not transferred to the schema
pool, to increase confidence and model/tool adoption.
Exploring the potential of using blockchain to facil-
itate the sharing of schemas and other data in the
platform/ecosystem.

Leveraging machine/deep learning approaches to facili-
tate the forensic analysis and extraction of key artifacts,
particularly from newer and emerging consumer tech-
nologies, to automatically generate the schemas.
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