
RUDSEA: Recommending Updates of Dockerfiles via Software
Environment Analysis

Foyzul Hassan
University of Texas at San Antonio

USA
foyzul.hassan@utsa.edu

Rodney Rodriguez
University of Texas at San Antonio

USA
rodney.rodriguez@utsa.edu

Xiaoyin Wang
University of Texas at San Antonio

USA
xiaoyin.wang@utsa.edu

ABSTRACT
Dockerfiles are configuration files of docker images which pack-
age all dependencies of a software to enable convenient software
deployment and porting. In other words, dockerfiles list all envi-
ronment assumptions of a software application’s build and / or
execution, so they need to be frequently updated when the envi-
ronment assumptions change during fast software evolution. In
this paper, we propose RUDSEA, a novel approach to recommend
updates of dockerfiles to developers based on analyzing changes
on software environment assumptions and their impacts. Our eval-
uation on 1,199 real-world instruction updates shows that RUDSEA
can recommend correct update locations for 78.5% of the updates,
and correct code changes for 44.1% of the updates.

CCS CONCEPTS
• Software and its engineering;

KEYWORDS
Dockerfiles, Software Environment, String Analysis

ACM Reference Format:
Foyzul Hassan, Rodney Rodriguez, and Xiaoyin Wang. 2018. RUDSEA: Rec-
ommending Updates of Dockerfiles via Software Environment Analysis. In
Proceedings of the 2018 33rd ACM/IEEE International Conference on Automated
Software Engineering (ASE ’18), September 3–7, 2018, Montpellier, France.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3238147.3240470

1 INTRODUCTION
Modern software often depends on a large variety of environment
dependencies to be properly deployed and operated on production
machines. Databases, application servers, system tools, and sup-
porting files often need to be well installed and configured before
software execution, and thus may cause tremendous effort and
high risks during software deployment. This is not one-time but
continuous cost due to the fast software evolution and delivery
nowadays.

A practical approach to alleviate this effort is to use container
images. A container image is a stand-alone and executable package

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3240470

of a piece of software with all its environment dependencies, includ-
ing code, runtime, system tools, libraries, file structures, settings,
etc. It can be easily ported and deployed to other machines, but is
much lighter-weight than traditional virtual machines which can
achieve similar goals.

Despite the large benefit brought by container images during
software deployment, they also increase the effort of software de-
velopers because they need to generate and maintain the image
configuration files which describe how the container images can
be constructed with all environment dependencies, such as what
tools and libraries should be installed and how the file structure
should be set up. A recently study [7] on Dockerfiles by Cito et
al. shows that in top projects a docker file is averagely revised 5.8
times each year (note that there can be multiple dockerfiles in one
project, and the average and maximum number of dockerfiles per
project in our dataset is 4.9 and 41). Such a task can be tedious
and error prone because (1) modern software typically relies on
many environment dependencies, and due to fast evolution of soft-
ware requirements and underlying frameworks, such dependencies
also need to be changed very frequently; (2) some environment
changes (e.g., automatic system updates, environment changes dur-
ing installation of irrelevant software) can happen without any
developer actions so developers may even not be aware about them;
(3) developers can easily neglect environment dependencies of their
software when they set up or change them because the changes
are made in the operating system instead of the software itself; and
(4) many environment dependencies (e.g., system tools, supporting
files) cannot be checked during software compilation but only used
at runtime, so they can be easily missed during compilation and
testing (which is hardly thorough). Once an incomplete or erro-
neous image configuration file is being used, the container image
will also be incomplete or contains errors, which may cause failures
in production machines.

In this paper, we propose a novel technique, RUDSEA, to help de-
veloper update container image configuration files more easily and
with more confidence on their correctness. Specifically, based on an
existing image container file, RUDSEA first tracks the accesses to
the system environment from software source code and build con-
figuration files. Such accesses are extracted as environment-related
code scope. Then, for each code commit, RUDSEA traces its impact
on environment-related code scope and automatically determines
whether certain items in the image configuration file should be
updated accordingly. Based on the type of code impact and con-
figuration items, RUDSEA further recommends the actual updates
that should be made on the items. We implement our technique for
Docker1, which is currently the dominating framework in container
1https://www.docker.com/

796

https://doi.org/10.1145/3238147.3240470
https://doi.org/10.1145/3238147.3240470

ASE ’18, September 3–7, 2018, Montpellier, France Foyzul Hassan, Rodney Rodriguez, and Xiaoyin Wang

images for both software industry and open source community, and
the image configuration files for docker are called dockerfiles. Notef
that, although the implementation and evaluation of this research
focus on docker images and dockerfiles, the general approach is
applicable to other container images such as Kubernetes, OCI, etc.

To evaluate RUDSEA, we carried out an experiment on a dataset
of 375 dockerfiles in 40 software projects collected from GitHub.
Our evaluation shows that RUDSEA correctly recommends update
locations for 941 of 1,199 instruction updates in dockerfiles, with a
precision of 49.8%. Furthermore, RUDSEA is able to correctly rec-
ommend the actual revision for 529 of the 1,199 dockerfile updates.
To sum up, this paper makes the following contributions.

• RUDSEA, a novel technique on automatically recommending
update locations and contents for dockerfiles during software
evolution.

• A dataset of dockerfiles and their corresponding historical
versions as benchmarks for future research on this topic.

• An empirical evaluation of RUDSEA’s effectiveness on real
world dockerfiles.

The rest of this paper is organized as follows. First, we will intro-
duce some background knowledge about dockerfiles in Section 2.
Then, we describe our approach and detailed techniques in Section
3. After we present our evaluation results in Section 4, we discuss
some related works in Section 5 and concludes in Section 6.

2 BACKGROUND
In this section, we will introduce some background knowledge
about dockerfiles. A dockerfile typically consists of three parts.
The first part (From) specifies an existing container image that the
configured image is based upon. Some examples of existing images
may include a clean Ubuntu system of a certain version, or a publicly
available image prepared with Java, Android SDK and databases.
The second part (Parser Directives) describes rules such as escape
characters on parsing the rest of the dockerfile, and is optional.
The third part (Environment Replacements) is the main part of the
dockerfile, and describes how the image should be constructed with
a sequence of instructions. The major types of instructions are
listed below.

• RUN & WORKDIR: executing a system command or exe-
cutable within the working directory specified byWORKDIR.

• CMD & ENTRYPOINT : setting the default command (CMD)
to be executed and arguments(ENTRYPOINT) to be use when
executing the container image.

• LABEL: Setting environment variables in the container im-
age.

• EXPOSE: exposing a network port in the container image.
• ENV : defining a variable to be used in the rest of the docker-
file.

• ADD / COPY : add a new directory / file in the file system of
the container image, and copy directories / files from hosting
system to the image.

From the list, we can see that three types of instructions will
be updated frequently during software evolution, which are RUN
instructions (updating versions of tools / libraries to be installed),
Label instructions (updating environment variables), and Add /
COPY instructions (changing default file structures). By contrast,

other instructions are either typically stable (e.g., EXPOSE, CMD
& ENTRYPOINT) or used only in the dockerfile itself (e.g., ENV).
Therefore, our paper focuses on the updates of RUN, LABEL, and
ADD / COPY instructions.

3 APPROACH
As shown in Figure 1, our approach consists of two major compo-
nents. The first component extracts software code that is related
to the items in dockerfiles. Here the software code base includes
source files, build configuration files, and property files. The core
part of this component is value dependency analysis, and we ap-
ply it to both old and new versions to acquire the results for both
versions. The second component receives the analysis results of
two code versions and generates the actual updates. It leverages
change impact analysis to determine whether the code change may
affect the environment-related code, and equivalence analysis to
check whether new code is added as the equivalent part of known
environment-related code.

3.1 Extracting Environment-related Code
Scope

The major challenge of extracting environment-related code is
the complicated interface between software and its environment.
While software libraries and their versions are typically listed in
build configuration files (e.g., makefile for GNU Make, pom.xml
for Maven, build.gradle for Gradle), references to file paths and
environment variables are often scattered in source code, build
configuration files, property files, etc. A thorough definition of all
possible environment interfaces requires huge manual effort, and
the definition can easily be out-of-date due to quick evolution of
the underlying development frameworks, build configuration tools,
and their various plug-ins.

To overcome this challenge, RUDSEA uses a different solution.
Our intuition is that, all the environment related code, no matter
how they interface with environment, must refer to the values in
the items of dockerfiles. Note that here we assume that the original
version of the dockerfile is a correct one. Simply put, we can search
for the values from dockerfile items in the constant string values in
various source files, since such values must be used when software
interfaces with the environment.

However, a simple keyword search does not work, because devel-
opers frequently use string concatenations and value assignments
to generate runtime values from the string constants. For example,
the dockerfile may refer to a file path /home/project-name/foo/bar,
while in the source code, the file path may be a string concatenation
expression such as "/home/" + project + "/" + module + "/bar/",
where project and module are variables for flexibility of changing
sub-projects and modules. In such cases, the original values will not
be detectable with simple keyword search, but string concatenations
and assignments need to be considered. In our initial implementa-
tion of RUDSEA, we consider only string concatenations, as we find
that other string operations are rarely used in generating library
names, file paths, and environment variable values.

Therefore, RUDSEA uses a two-stage approach, which first lo-
cates the initial string constants which are long enough substrings
of a dockerfile item. Then, RUDSEA performs value dependency

797

RUDSEA: Recommending Updates of Dockerfiles ASE ’18, September 3–7, 2018, Montpellier, France

Environment Code
Extraction

Old Code
Version

Environment-related
Code Scopes

New Code
Version

Change Impact
Analysis

Equivalence
Analysis

Dockerfile
Item Updates

Dockerfile
Items

Figure 1: RUDSEA Overview

analysis to compute additional values through manipulating these

initial string constants. As our analysis is light weight, we need

only a parser and known string concatenation functions (which are

typically only several, and very similar among all programming

languages) for each programming language used in the software

project.

3.1.1 Locating Initial String Constants. The first step of locating

initial string constants is to extract dockerfile item values from

dockerfiles. To achieve this, we use a dockerfile parser to extract all

argument values of RUN, Label, and Add / COPY instructions. Since

RUN instructions often take Linux utility commands (e.g., mkdir,

apk-get install) as their parameters, and such commands are not

necessarily referred in the software code base, we filter out all such

commands from dockerfile item values.

After collecting the list of dockerfile item values, RUDSEA ex-

tracts all string constants from the software code base, and verifies

whether their length is over 3 and is a substring of any dockerfile

item values. If so, the string constant is added to the set of initial

string constants. In particular, given a string constant str , and a set
of dockerfile item values D, Formula 1 presents a boolean function
env which checks whether str is an initial string constant. In the
rest of the paper, the set of initial string constant is denoted as Init .

env(str) = len(str) ≥ 3 ∧ ∃d ∈ D,d .contains(str) (1)

In the formula, we use len(x) to represent the length of string
x , and x .contains(y) to represent string y is a substring of x . We

will use this check function also in our value dependency analysis

to make the abstract domain bounded. Based on the initial string

constants, RUDSEA performs value dependency analysis which

checks how string constants are combined with each other to form

more values, and tracks the string manipulation process.

3.1.2 Value Dependency Analysis. The value dependency analysis

in RUDSEA is a static analysis on string concatenations and assign-

ments within the software code base. Value dependency analysis

uses an abstract domain < Γ,T >. Γ is a set of mappings from the

set of string variables V in the software code base, to sets of string

values generated from the set of string constants (S) in the code
base. Specifically, Γ is defined in formula 2.

Γ = {var → L|var ∈ V ∧ L ⊂ S∗} (2)

For each value in L, we also track the locations of string constants
that form each value inT , so basicallyT is a mapping from a string

value in L to a set of program points.

Why RUDSEA does not use automatons to represent string

values? In our value dependency analysis, to track string concate-

nations and assignments, we use a string set domain instead of an

automaton as in string taint analysis [22] for two reasons as follows.

First, string taint analysis (and also the original string analysis [5])

uses the Mohri-Nederhof algorithm to handle strongly connected

components in string dependencies, and generates an approximate

automaton, which is a slow process and typically results in over-

approximation and affect analysis accuracy. Second, in string taint

analysis, the tracing from original string constants to the final string

values is at character level, which makes it difficult to propagate

updates from original string constants to the final string values.

Despite the accuracy, efficiency, and straightforward tracing

provided by the string value set domain, its major drawback (and

why it cannot be used in general string analysis) is that it is not

bounded. When a string variable is written within an unbounded

loop or recursive method, the possible values of the variable can be

infinite.

In the specific application scenario of RUDSEA, we find that

this problem can be solved. Our idea is to use the env function to

bound the string value set in our domain. The intuition is that, if a

possible value of a string variable does not satisfy env function, it

will not be a reference to dockerfile item values, and thus can be

discarded. Therefore, given that dockerfile item values are finite,

all string values in our abstract domain will be perfectly bounded

(without any accuracy loss regarding reference to dockerfiles) by

the dockerfile item values through env function. In particular, the

transfer functions of value dependency analysis on string initial-

ization, string assignments, and string concatenations are defined

in

Once value dependency analysis converges at a fixed point, we

can tell for each variable, what are its possible values (satisfying

env functions) and the original string constants and string con-

catenations used in forming each value. If a string variable var
contains a valueval that is identical with any dockerfile item value,

we will consider var and all the statements used in forming val
as in the environment-related code scope. Specifically, we denote

all the dockerfile item values generated from software code base

with value dependency analysis asGen, andGen is formally defined
in Formula 3. Recall that D is the set of all dockerfile item values

extracted from the dockerfiles.

Gen =
⋃

var ∈V
Γ(var) ∩ D (3)

798

ASE ’18, September 3–7, 2018, Montpellier, France Foyzul Hassan, Rodney Rodriguez, and Xiaoyin Wang

Then the environment-related code scope can be formally de-

fined as in Formula 4. Recall that T is a part of our abstraction

domain which maps any string value in Γ to program points in-

volved in generating the value. Gen and T will be further used in

our Dockerfile change generation stage.

Scope =
⋃

val ∈Gen
T (val) (4)

3.2 Dockerfile Change Generation

Given a new software version, RUDSEA’s dockerfile change anal-

ysis tries to find out what updates on the code will affect items

in dockerfiles. Note that RUDSEA does not take single code com-

mit as its input, because dockerfiles are often not updated until

a new release so there may be many code commits in between.

Environment change analysis include the change impact analysis

which examines whether known environment-related code scope

will be affected by the changes, and the equivalence analysis which

examines whether a new environment-related code scope is added.

3.2.1 Change Impact Analysis. In the change impact analysis, RUD-

SEA will perform value dependency analysis on the new version

of the software, and map the analysis results (string constants and

statements involving string concatenations / assignments) with

that from the original version with a file difference tool. In the rest

of this section, we denote Gen, T , and Scope generated from the

value dependency analysis on the original version as Genold , Told ,
and Scopeold , while the corresponding results on the new version

as Gennew , Tnew , and Scopenew . We further define the set of vari-

ables that has at least one possible value in Gen as Gvar . We refer

to such variables as docker variables. Similarly, we have Gvarold
and Gvarnew . Note that Gvar is formally defined in Formula 5.

Gvar = {var |var ∈ V ∧ Γ(var) ∩Gen � ∅} (5)

The intuitive assumption behind our change impact analysis is as

follows. If a variable var has a dockerfile item value in its possible

value set Γ(var) (i.e., var is a docker variable), it is likely to be used
for environment interfacing. Therefore, if it holds a different set

of values in the new version, the new set of values are likely to be

also used for environment interfacing and should be added to the

dockerfile. Furthermore, if a docker variable is deleted in the new

version, the corresponding dockerfile item value may also need to

be deleted if no other docker variables hold the same value in the

new version.

As an example, consider a variable var having a possible value
"/home/foo/bar" in the old version, and the value is a dockerfile

item value. In the new version, if the same variable has a possi-

ble value "/home/foo/bar2", then it is likely that we should add

"/home/foo/bar2" to dockerfiles. In particular, if "/home/foo/

bar" is no longer in Γnew (var), we should replace "/home/foo/

bar"with "/home/foo/bar2". If "/home/foo/bar" is still in Γnew (var),
we should insert a new instruction that performs exact the same op-

eration on "/home/foo/bar2" as on "/home/foo/bar". If the variable

var is deleted in the new version, and no other docker variables has

"/home/foo/bar" in its possible values, the value should be deleted

from the dockerfile.

A complication in this process is when a old docker variable (var
in Gvarold) holds multiple values inGenold , or hold other values
that are not in Genold . In such cases, when the possible values of
var contains some new value in the new version, it is hard to tell

which old value this new value is replacing or complementing. Our

solution is to compare their forming process stored in T . Given
a new value newv in Γnew (var), we compare Tnew (newv) with
each of the old values oldv in Γold (var), and map this new value

to an old value oldv whose forming process Told (oldv) is most
similar to Tnew (newv). Specifically, we measure similarity by the
size common program points between Told (oldv) and Tnew (newv).
3.2.2 Equivalence Analysis. While change impact analysis is able

to recommend dockerfile updates related to existing dockerfile

item values. There are also other cases where a new environment

dependency is added. RUDSEA needs to also detect those cases and

find out where the insertions need to be made.

To solve this issue, we develop equivalence analysis which checks

which two program points have similar usage in the program. They

are considered equivalent program points. In our analysis, we con-

sider similar code inside one basic block or in different alternative

blocks (i.e., basic blocks within the same level in a conditional

statement). Examples of alternative blocks are if and else blocks

within one conditional statement, or case blocks within one switch

statement.

The intuition behind equivalence analysis is that if a writing

statement to a string variable equiv is inserted as a equivalent

program point of a writing statement s which writes to a docker
variable var with dockerfile item value val , the inserted writing
statement will be considered as a new docker variable, and its

possible values will be recommended for insertion into dockerfiles.

For each possible value of equiv , RUDSEA recommends an insertion

of a new instruction that performs exact the same operation on

equiv as on val .

3.3 Implementation

We implemented the value dependency analysis of RUDSEA for

Java, PHP, and Gradle. To support Maven, simple property files,

and XML property files, we further convert all dependencies and

property definition in such files as string constant assignments (i.e.,

assignment of property value to property name, and dependency

values to a special variable “dependency”), thus they can be handled

by the dockerfile-update generation component of RUDSEA.

4 EVALUATION

To evaluate the effectiveness of RUDSEA, we carried out an experi-

ment on a set of software projects with dockerfiles, and used their

version histories as ground truth to check how accurate RUDSEA’s

recommendation is. Specifically, we try to answer the following

two research questions.

• RQ1: How effective is RUDSEA on recommending update

locations in Dockerfiles?

• RQ2: How effective is RUDSEA on recommending updates

in Dockerfiles?

• RQ3:What are the major reasons causing RUDSEA to fail

on recommending correct updates?

799

RUDSEA: Recommending Updates of Dockerfiles ASE ’18, September 3–7, 2018, Montpellier, France

In the rest of this section, we introduce the dataset construction,
evaluation metrics, evaluation results, and threats to validity in the
following four subsections, respectively.

4.1 Dataset of Dockerfiles
We collected a set of Docker-using open source projects in Github2.
In particular, we searched through top Java and PHP projects by
number of stars and check whether the project contains dockerfiles.
If so, we added the project into our dataset. We stopped after we col-
lected 20 PHP projects and 20 Java projects. Then, we checked the
history of the dockerfiles in these projects. In some projects, dock-
erfiles have their own repository, so we gathered the dockerfiles
from there. In some other projects, dockerfiles are attached with
each release (so they do not have a version history), we collected
all dockerfiles from all releases so that they form a version history.
From the version history of dockerfiles, we used diff to generate
ground truth updates of dockerfiles. We further removed all inter-
nal updates of dockerfiles (e.g., updates of comments, refactorings).
Finally, we acquired a dataset of 375 external updates of dockerfiles,
each of which can be ascribed to one or more updates in the source
code and / or build configuration files. In our evaluation, we use
the updates in the source code and / or build configuration files
as input, and the corresponding dockerfile updates as output. It
should be noted that each update may involve multiple instruction
updates. In total, the dockerfile updates include 1,199 instruction
insertions, revisions, and deletions.

One question should be studied is how large the dockerfiles
are, so that we can see how difficult the update localization is. To
answer this question, we further performed an empirical study
on our dataset. In the 40 Java and PHP projects, there are 197
dockerfiles in total. The number of dockerfiles in a single project
ranges from 1 to 41, and the average number is 4.9. The number
of valid lines (excluding blank and comment lines) in dockerfiles
varies from 1 to 64 lines, and the average is 28 lines. Since there
are often multiple docker files in one project, the average number
of dockerfile lines in a project is 137 lines, and the number of lines
ranges from 12 lines to 622 lines. Although dockerfiles are relatively
smaller than source code, they are condense formatted (i.e., there
are often multiple commands to be executed in one line), and their
dependency on the code is latent. So the localization of updates is
still a difficult problem.

4.2 Metrics
In our experiment, we use the traditional metrics of precision, recall,
and F-score to measure the effectiveness of techniques. We consider
a recommended location to be correct, if the recommended instruc-
tion to be updated is revised, deleted, or have another instruction
inserted before of after it in the real version history.

For a recommended update to be correct, we require the recom-
mendation has the same type (insertion, update, or deletion), same
instruction type, and argument value. Here we consider equivalent
updates as also correct. For example, recommending a same inser-
tion at a different location from the real insertion is also considered
correct as long as the location difference does not cause difference
in semantics.
2The dataset is available at https://sites.google.com/site/rudseaproject/

Table 1: Results on recommending update locations

Project # of Inst. Updates P (%) R (%) F (%)
PHP 720 53.9 79.7 64.3
Java 479 44.5 76.6 56.3
All 1,199 49.8 78.5 60.9

Table 2: Results on recommending updates
Project # of Inst. Updates P (%) R (%) F (%)
PHP 720 28.7 42.6 34.3
Java 479 27.0 46.3 34.1
All 1,199 28.0 44.1 34.3

4.3 Evaluation Results
To answer RQ1, we present our evaluation results in Table 1. In
the table, we present the type of projects, the number of actual
instruction updates, precision, recall, and F-score in Columns 1-5,
respectively. From the table we can see that RUDSEA is able to
achieve high recall (averagely 78.5%) and acceptable precision (av-
eragely 49.8%) in recommending update locations. Note that, since
averagely less than four updates are performed in each commit,
achieving a precision at around 50% means that developers need to
inspect averagely eight locations, and finding four of them correct.

To answer RQ2, we present the results in Table 2 with the same
format. From the table we can see that RUDSEA can achieve an av-
erage recall of 44.1% on recommending direct updates. This means
that RUDSEA can recommend exactly correct updates for 529 of
1,199 instruction updates, which may save a large amount of effort
of developers. Compared with the recall on location recommenda-
tion, we can see that for the updates RUDSEA successfully recom-
mends locations, about 56% (529) are exactly correct updates. To
answer RQ3, we studied the remaining 412 incorrect updates and
find the errors mainly fall into three categories.

First, RUDSEA may insert an instruction at a wrong location. For
simplicity, when RUDSEA finds that a docker variable has a new
value which can be mapped to a dockerfile item value v in change
impact analysis or equivalence analysis, RUDSEA always insert an
extra instruction after the instruction handlingv . Since instructions
in dockerfiles are executed in sequence, such an insertion location
may be wrong, especially when v is handled in a long instruction
concatenated with “&&”. This category accounts for 207 incorrect
updates and we believe that most of them can be resolved by more
fine-grained rules on dockerfile insertions.

Second, although RUDSEA correctly recommends an insertion,
the inserted argument may not be correct. Developers sometimes
add extra parameters to the RUN instructions they added, but RUD-
SEA is not able to recommend such parameters as it does not un-
derstand their semantics. This category accounts for 90 incorrect
updates.

Third, when a docker variable cannot be mapped to a variable
in the new version, RUDSEA simply deletes dockerfile item values
in its possible value set from dockerfile. Some complicated version
updates of the software cause difficulties in finding correct mapping
of variables between versions and thus RUDSEA may delete a value
that should be revised. This category accounts for 65 incorrect
updates and we believe that they can be partly resolved by using
more precise version diff tools.

800

https://sites.google.com/site/rudseaproject/

ASE ’18, September 3–7, 2018, Montpellier, France Foyzul Hassan, Rodney Rodriguez, and Xiaoyin Wang

4.4 Threats to Validity
Themajor threat to the internal validity of our evaluation is whether
the ground truth updates we used in our experiment are all correct.
Although we use real-world updates, developers may make erro-
neous updates or miss some updates, which may cause inaccuracy
in our results. Also, the implementation of RUDSEA may be not
perfect and involve bugs. The major threat to the external validity
is that our evaluation results apply to only the subject projects and
updates, or only Java / PHP projects. To reduce this threat, we use
projects from Github based on different programming languages.

5 RELATED WORK
Studies and Analyses of Dockerfiles. With the increase of soft-
ware complexity and components, managing of software depen-
dencies [12] and test dependencies [13] has become an important
problem. Tufano et al. [19] studied on broken snapshots and likely
causes behind broken snapshots. Recent research work on scien-
tific artifact reproduction [4] discussed about the uses of Docker
to address the challenge of operating system virtualization, cross-
platform portability, and reusable software components. Cito et
al. [6] discussed about the rise of Docker adoption in industry,
and performed an empirical study on dockerfiles [7]. Rahman and
Williams [15] performed an empirical study on the type of defects
in dockerfiles. Docker is also used for lightweight virtualization
for developers for distributed application development, build and
ship [11].
Analysis of Building Configuration Files. As build configura-
tion files are getting complex and diverse, research on build configu-
ration file is getting importance that includes dependency analysis,
migration of build systems and empirical studies. To keep consis-
tency during revision, Adams et al. [1] proposed a framework to
generate dependency graph of build configuration files. Al-Kofahi
et al. [2] proposed a fault localization technique for make files, and
SYMake [18] uses a symbolic-evaluation-based technique to detect
common errors in Makefile. Following works by Zhou et al. [24]
and Al-Kofahi et al. [3] try to find configuration values exercising
different parts of makefiles. Shambaugh [16] developed a verifier
for puppet configuration script, and Sharma et al. [17] proposed
techniques to detect bad smells in configuration files. Recently, Has-
san et al. studied the reproduction of building environments [8, 9],
and performed AST level analysis to generate fix patch for build
configuration files [10] .
String analysis. String analysis [5] is a static analysis technique
to estimate possible values of string variables. String analysis has
been applied to detecting vulnerabilities [22, 23], repair web in-
terfaces [21], software internationalization [20], inter-component
communication analysis [14], etc.

6 CONCLUSION AND FUTURE WORK
In this paper, we present RUDSEA, which is a novel approach to
recommend updates for dockerfiles during software evolution. RUD-
SEA leverages tracks environment accesses from code to extract
environment-related scopes from the old software version and the
new software version. Then, RUDSEA generates updates from the
two versions of analysis results. Our evaluation on 40 projects and

1,199 real-world instruction updates shows that RUDSEA can rec-
ommend correct update locations for 78.5% of the updates, and
correct updates for 44.1% of the updates, with moderate false posi-
tives.

ACKNOWLEDGMENT.
The authors are supported in part by NSF Awards CCF-1464425,
CNS-1748109, and DHS grant DHS-14-ST-062-001.

REFERENCES
[1] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter. 2007. Design recovery

and maintenance of build systems. In ICSM. 114–123.
[2] Jafar Al-Kofahi, Hung Viet Nguyen, and Tien N Nguyen. 2014. Fault localization

for Make-Based build crashes. In ICSME. IEEE, 526–530.
[3] Jafar Al-Kofahi, Tien N Nguyen, and Christian Kästner. 2016. Escaping AutoHell:

a vision for automated analysis and migration of autotools build systems. In
RELENG. 12–15.

[4] Carl Boettiger. 2015. An Introduction to Docker for Reproducible Research.
SIGOPS Oper. Syst. Rev. 49, 1 (Jan. 2015), 71–79.

[5] Aske Simon Christensen, Anders Møller, and Michael I Schwartzbach. 2003.
Precise analysis of string expressions. In SAS. Springer, 1–18.

[6] Jürgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. 2015. The Making
of Cloud Applications: An Empirical Study on Software Development for the
Cloud. In FSE. 393–403.

[7] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,
and Harald C Gall. 2017. An empirical analysis of the Docker container ecosystem
on GitHub. In MSR. IEEE, 323–333.

[8] Foyzul Hassan, Shaikh Mostafa, Edmund SL Lam, and Xiaoyin Wang. 2017. Au-
tomatic building of java projects in software repositories: A study on feasibility
and challenges. In ESEM. 38–47.

[9] Foyzul Hassan and XiaoyinWang. 2017. Mining readme files to support automatic
building of java projects in software repositories: Poster. In ICSE, Poster. 277–279.

[10] Foyzul Hassan and Xiaoyin Wang. 2018. HireBuild: An Automatic Approach to
History-Driven Repair of Build Scripts. In ICSE. 1078–1089.

[11] Muhamad Fitra Kacamarga, Bens Pardamean, and Hari Wijaya. 2015. Lightweight
Virtualization in Cloud Computing for Research. In Intelligence in the Era of Big
Data, Rolly Intan, Chi-Hung Chi, Henry N. Palit, and Leo W. Santoso (Eds.).
439–445.

[12] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. Experience Paper:
A Study on Behavioral Backward Incompatibilities of Java Software Libraries. In
ISSTA. 215–225.

[13] Shaikh Mostafa and Xiaoyin Wang. 2014. An empirical study on the usage of
mocking frameworks in software testing. In QSIC.

[14] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite Constant Propagation: Application to Android Inter-
component Communication Analysis. In ICSE. 77–88.

[15] Akond Rahman and LaurieWilliams. 2018. Characterizing defective configuration
scripts used for continuous deployment. In ICST. 34–45.

[16] Rian Shambaugh, Aaron Weiss, and Arjun Guha. 2016. Rehearsal: a configuration
verification tool for puppet. In International Conference on Programming Language
Design and Implementation. 416–430.

[17] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2016. Does your
configuration code smell?. In MSR. IEEE, 189–200.

[18] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N. Nguyen.
2012. SYMake: A Build Code Analysis and Refactoring Tool for Makefiles. In
ASE. 366–369.

[19] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Soft.: Evo. and Proc., 29, 4 (2017).

[20] Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, and Jiasu Sun. 2009. Transtrl: An
automatic need-to-translate string locator for software internationalization. In
ICSE, Tool Demo. 555–558.

[21] Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, and Hong Mei. 2012. Automat-
ing presentation changes in dynamic web applications via collaborative hybrid
analysis. In FSE. 16.

[22] Gary Wassermann and Zhendong Su. 2007. Sound and precise analysis of web
applications for injection vulnerabilities. In PLDI. 32–41.

[23] Fang Yu, Muath Alkhalaf, Tevfik Bultan, and Oscar H. Ibarra. 2014. Automata-
based Symbolic String Analysis for Vulnerability Detection. Form. Methods Syst.
Des. 44, 1 (Feb. 2014), 44–70.

[24] Shurui Zhou, Jafar Al-Kofahi, Tien N Nguyen, Christian Kästner, and Sarah Nadi.
2015. Extracting configuration knowledge from build files with symbolic analysis.
In RELENG. 20–23.

801

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Extracting Environment-related Code Scope
	3.2 Dockerfile Change Generation
	3.3 Implementation

	4 Evaluation
	4.1 Dataset of Dockerfiles
	4.2 Metrics
	4.3 Evaluation Results
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

