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In Situ Stochastic Training of MTJ Crossbars With Machine

Learning Algorithms

ANKIT MONDAL and ANKUR SRIVASTAVA, University of Maryland College Park

Owing to high device density, scalability, and non-volatility, magnetic tunnel junction (MTJ)-based crossbars

have garnered significant interest for implementing the weights of neural networks (NNs). The existence

of only two stable states in MTJs implies a high overhead of obtaining optimal binary weights in software.

This article illustrates that the inherent parallelism in the crossbar structure makes it highly appropriate for in

situ training, wherein the network is taught directly on the hardware. It leads to significantly smaller training

overhead as the training time is independent of the size of the network, while also circumventing the effects

of alternate current paths in the crossbar and accounting for manufacturing variations in the device. We show

how the stochastic switching characteristics of MTJs can be leveraged to perform probabilistic weight updates

using the gradient descent algorithm. We describe how the update operations can be performed on crossbars

implementing NNs and restricted Boltzmann machines, and perform simulations on them to demonstrate

the effectiveness of our techniques. The results reveal that stochastically trained MTJ-crossbar feed-forward

and deep belief nets achieve a classification accuracy nearly the same as that of real-valued weight networks

trained in software and exhibit immunity to device variations.

CCS Concepts: • Computing methodologies → Neural networks; Supervised learning; Unsupervised

learning; • Hardware → Spintronics and magnetic technologies; Emerging architectures; Non-volatile

memory;

Additional Key Words and Phrases: Magnetic tunnel junctions, neural networks, restricted Boltzmann ma-

chines, crossbar architecture, on-chip learning

ACM Reference format:

Ankit Mondal and Ankur Srivastava. 2019. In Situ Stochastic Training of MTJ Crossbars With Machine Learn-

ing Algorithms. J. Emerg. Technol. Comput. Syst. 15, 2, Article 16 (March 2019), 29 pages.

https://doi.org/10.1145/3309880

1 INTRODUCTION

Deep neural networks (DNNs) have become a popular choice for machine learning tasks such as
image classification, face recognition, and Natural Language Processing. However, this has been at
the cost of massive computations on von Neumann architectures exhibiting high energy and area
requirements [7]. The emergence of novel devices and special-purpose architectures has called for
a shift from conventional digital hardware for implementing neural algorithms [50].
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Attempts have been made toward dedicated hardware designs and realization of the synaptic
weights (and neurons) of a neural network (NN) by using CMOS transistors in an analog fashion
[33, 37], but these have met with challenges of scalability and volatility. Parallel research work has
focused on using post-CMOS devices such as memristors, which are non-volatile devices with a
variable resistance [38]. However, the fabrication of multi-level memristors with stable states is
still a challenge [36, 60]. Another choice is the magnetic tunnel junction (MTJ) [54], an emerging
binary device (since it has two stable states) that has shown its potential as storage elements and is
a promising candidate for replacing CMOS in memory chips [53]. Its non-volatility and scalability
make it a particularly lucrative choice for logic-in-memory type architectures for NNs.

NN architectures can be realized using a crossbar configuration, which allows greater scalability
and higher performance due to its inherent parallelism [32, 38, 45, 52, 59]. Several studies have
investigated how a crossbar array with memristors [4, 39, 41, 55], MTJs [52, 60], and domain-
wall ferromagnets [41, 42] can implement spiking neural networks (SNNs) trained using spike-
timing-dependent plasticity (STDP). Srinivasan et al. [48] propose the use of a pair of MTJs for
a synapse in an SNN: one for long-term and the other for short-term synaptic memory. They
develop a stochastic learning algorithm based on STDP and demonstrate learning efficacy superior
to a stochastic one-bit synapse. The literature also contains several works [8, 18, 57] considering
supervised learning of SNNs for various reasons.

Many works have dealt with methods and algorithms for training networks by modifying their
weights at the site of their occurrence [5] instead of doing it offline. Hasan and Taha [11] and
Soudry et al. [47] have implemented multi-layer NNs on memristive crossbars trained on-chip us-
ing the backpropagation algorithm and demonstrated on supervised learning tasks. Gokmen and
Vlasov [10] use stochastic computing techniques for parallel weight update on crossbar arrays—
numbers that are encoded from neurons are translated to stochastic bit streams, with device
conductance changing when the streams coincide. In Lee and Likharev [25], hybrid semiconduc-
tor/nanodevice technology neural nets with binary synapses were trained “in situ” using the error
backpropagation rule, and the results obtained were almost at par with networks with continuous
weights trained in software.

Efficient architectures for the realization of different types of network models, such as con-
volution and recurrent NNs [58], liquid state machines [17], and echo state networks [12], are
also being investigated. Neftci et al. [35] construct a restricted Boltzmann machine (RBM) with
integrate-and-fire neurons and present an event-driven variation of the contrastive divergence
(CD) learning algorithm. Herein, the recurrent structure of the network is exploited to mimic the
construction and reconstruction phases of CD weight update in a spike-driven fashion, and STDP
is used to carry out the weight updates. In Sheri et al. [46], an approach to implement CD in one
layer of an RBM with memristors as synapses is presented. However, the RBM has stochastic bi-
nary units and weight updates are ternary. Suri et al. [49] fabricate an HfOx device and test it for
synapse implementation, internal neuron-state storage, and stochastic neuron activation function
of a hybrid RRAM-CMOS RBM architecture.

Continuous weight networks can be simplified into discrete weight networks without signifi-
cant degradation in classification accuracy while achieving substantial power benefits [40]. The
use of discrete weight networks, such as BinaryConnect [6] and in Li et al. [28], also stems from
the challenge to address the high storage and computational demands of a large number of full-
precision weights. Ni et al. [36] design a distributed in-memory computing architecture based on
binary RRAM crossbars for memory and logic units. The existence of only two stable states in MTJs
makes them a good candidate for the realization of binary weight networks. Obtaining optimal
weights for a binary network in software can be impractical because its discrete nature requires
integer programming. One way of training such NNs is to perform weight updates stochastically,
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which is justifiable from evidence that learning in human brains also has some associated stochas-
ticity [50]. That such a method can lead to convergence with high probability in a finite time has
been shown in Senn and Fusi [44], although using the perceptron learning rule. In addition, when
physically realizing an NN on hardware, the underlying device variations (DVs) can have a sub-
stantial impact on the model accuracy and need to be accounted for in the training process. Merely
characterizing the variations in the hardware platform is not sufficient for overcoming this issue.

In this article, we explore the use of MTJ crossbars for the hardware implementation of the
synaptic weight matrices of feed-forward NNs and RBMs. We propose the in situ training1 of
these MTJ crossbars, which allows us to exploit their inherent parallelism for significantly faster
training and also accounts for DVs. We advocate a probabilistic way of updating the MTJ synaptic
weights of an NN through the gradient descent algorithm by exploiting the stochasticity in their
switching. We experiment with two crossbar structures: with and without access transistors. The
latter poses the additional challenge of sneak-path currents during programming, which makes
training in situ the only choice to achieve satisfactory performance. Then we go on to propose a
modification of the CD algorithm that is to be adopted when the MTJ crossbar is used to implement
an RBM, and a means of using MTJs for storing RBM hidden units’ states. Finally, we support our
proposed techniques with data by modeling device and circuit properties and running simulations.

2 BACKGROUND

2.1 Neural Networks

The computation performed by any layer of an NN during the inference (forward propagation)
phase basically comprises a matrix-vector multiplication. Say, x ∈ RM is the input to a layer and
W ∈ RN×M represents the synaptic weight matrix, then the output y ∈ RN is

y = f (Wx ), (1)

where f ( ) is an activation function. Training of the NN can be done by backpropagation using the
gradient descent optimization method. The weight update of the synapse connecting the ith input
to the jth output is given as

ΔWji = −η
∂E

∂Wji
= −ηxiδ j , (2)

where E is the cost function of the presented input sample x ,η is the learning rate, and δ j is the error

calculated at the jth output using y and the desired output. It is worth noting that such a weight
update is local in nature, in that it depends only on the information available at the synapse—the
input to it and the error at its output. Thus, the weight update of the entire matrix is

ΔW = −ηδxT . (3)

The major computational cost of this algorithm comes from the O (M .N ) complexity of Equa-
tions (1) and (3), whose implementation on general-purpose hardware requires time and memory
of the same order, thereby not motivating their use for large-scale applications. Fortunately, the
nature of computation in Equation (1) and the locality of weight update enable the design of highly
parallel hardware that reduce the overall complexity to O(1).

2.2 The Crossbar Architecture

The physical realization of a synaptic weight matrix is possible using the grid-like crossbar struc-
ture where each junction has a resistance corresponding to one synapse. Figure 1(a) shows a

1It is worthwhile to mention that we do not actually perform online training where the training data becomes available

during the in-field use of the system. Instead, our work deals with in situ/on-chip training where the entire training data

is already available (in labeled/supervised form or unlabeled/unsupervised form).
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Fig. 1. (a) A crossbar. (b) Magnetic tunnel junction. (c) A 2 × 2 crossbar.

simplified crossbar with each row corresponding to an input and each column to an output neuron.
Let Vi ∈ [−Vrd ,Vrd ] be the voltage applied at the ith input terminal and G ji be the conductance

of the synapse connecting it to the jth output. By Ohm’s law, the current through that synapse is
G jiVi , and by Kirchhoff’s law, the total current at the output is

Ij =
∑

i

G jiVi , (4)

which bears similarity to the dot products in (1). This can then be fed to suitable analog circuits
for implementing the activation function [11, 19].

Since the outputs are obtained almost instantaneously after the inputs are applied, the matrix-
vector multiplication of Equation (1) is performed in parallel with constant time complexity. As
for the update phase, the crossbar resistances can be modified by suitably modeling the required
change as the product of two physical quantities derivable from the inputs and the errors. In this
way, the O (M .N ) operations can be done in parallel using the M .N synapses.

2.3 Magnetic Tunnel Junction

The MTJ is a two-terminal spintronic device consisting primarily of two ferromagnetic layers
separated by a thin tunnel barrier (typically MgO) [54]. The magnetic orientation of one of the
magnetic layers is fixed, whereas that of the other is free, as shown in Figure 1(b). MTJs possess
two stable states where the relative magnetic orientations of the free and fixed layers are parallel
(P) and anti-parallel (AP), respectively, with the P state exhibiting a lower resistance than the AP

state (RP < RAP ). It is possible to switch the state of the MTJ by passing spin-polarized current
of appropriate polarity that flips the magnetization of the free layer through the mechanism of
spin-transfer torque [29]. The time required to switch is heavily dependent on the magnitude of
the switching current. Not only that, but this switching process is a stochastic one in the sense
that a pulse of given amplitude and duration has only a certain probability to successfully change
the state. This stochasticity is due to thermal fluctuations in the initial magnetization angle and is
an intrinsic property of the STT switching [29].

Depending on the magnitude I of the current and the critical current Ic0 [60], the switching
probability in the high-speed precessional regime (I > Ic0) is expressed as

P (a, t ) = exp (−4f (a)Δexp (−2t/T )), with f (a) =
(

2a

a − 1

) ( −2
a+1 )

, (5)
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Fig. 2. MTJ AP → P switching probability as a function of t and I .

where a = I/Ic0, t is the pulse width, Δ is the thermal stability, and T is the mean switching time
(which is dependent on a) [51].

The spin transfer efficiency (θ ) of an MTJ is different for the two switching directions, with
θP→AP having a smaller value than θAP→P [61]. This makes IP→AP

c0 > IAP→P
c0 , which means that

the same magnitude and duration of current will correspond to different switching probabilities
for the two switching directions. Figure 2 shows the dependence of the switching probability on
pulse width and switching current for the AP → P transition. Observe the similarity in the nature
of variation with I and t . The P → AP transition depicts this kind of a behavior as well, albeit with
different values of I and t .

3 MTJ CROSSBAR-BASED NNS

The stochastic switching nature of MTJs has necessitated the usage of high write currents or write
duration in memory applications to ensure low write errors. Alternatively, one can also use them
to implement the synaptic weights in a crossbar where each cross point would be an MTJ in one
of its two states. They are capable of being programmed with high speeds and exhibit endurance
of the order of 1015 write cycles. However, the inherently binary nature of MTJs implies that such
synapses can represent only two weight values and hence can implement only binary networks.
Although it is possible to have some continuous behavior with the inclusion of a domain wall in the
free layer [42], the maturity of such technology is not at par with that of the binary version [41].

Training binary networks. Obtaining optimal binary weights for an NN is an NP-hard problem
with an exponential time complexity [44], and hence a solution must involve training of the binary
network of some form. This prompts the use of a probabilistic learning technique since the required
weight update is continuous, whereas any possible change in the conductance of the MTJ could
only be discrete, in fact binary. As stated in Suri et al. [50], stochastic update of binary weights is
computationally equivalent to deterministic update of multi-level weights at the system level.

Vincent et al. [52] exploit the stochastic switching behavior of MTJs to propose its use as a
“stochastic memristive synapse” in an SNN taught using a simplified STDP rule. However, there
is no theoretical guarantee of the convergence of STDP for general inputs [27], and Lim et al. [31]
believe that the learning performance using STDP in still in its early stages. We propose using
a probabilistic learning approach by training using the gradient descent method (which requires
weight updates of the form in Equation (2)) as demonstrated in Section 4.2.

3.1 The Motivation for In Situ Training

There are two ways (primarily) in which MTJs in the crossbar can be connected to their respective
input and output terminals:
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(1) With selector devices (1T1R): Here, each MTJ synapse is connected in series with an MOS
transistor (as in Figure 1(c)), resulting in O (M × N ) transistors in the crossbars.

(2) Without selector devices (1R): Synapses are directly connected to the crossbar terminals;
there are no transistors within the crossbar, such as the one in Figure 1(a). Although a
1R structure provides greater scalability, it does so at the cost of reduced control of and
access to individual synapses.

Stochastic learning can be done (simulated) offline, and the final weights obtained can be pro-
grammed on to the crossbar deterministically. But, since MTJs have an inherently stochastic
switching behavior, deterministically programming them on a crossbar would require currents
having high magnitude and duration to guarantee successful write operations. The possibility of
selecting synapses to be written in the 1T1R architecture ensures no side effects of this method
stemming from alternate current paths (because there would be none). Yet despite circumvent-
ing this issue, this architecture can suffer from performance degradation due to the intrinsic DVs
that only aggravate with scaling. However, in a 1R architecture, such high programming currents,
when they sneak through alternate paths, are bound to cause unwanted changes in neighboring
synapses owing to which the weights may never converge. This necessitates in situ training of
the crossbar in a probabilistic way for both 1T1R and 1R configurations, as only training on the
hardware can account for both alternate paths and device variability.

3.2 Network Binarization and MTJ as a Synapse

Simply using±1 as the binary weight values, represented by the P andAP states of an MTJ, is naive,
and estimating a good scaling factorb is essential for overall network performance. An appropriate
way to determine a suitable b is to minimize the L2 loss between the real-valued (RV) weights W

and quantized ones, as was done in Rastegari et al. [40]. This provides a solution b = ‖W ‖1/n,
which is the mean of absolute values ofW (n being the number of elements inW ). Thus, an MTJ
in the P (AP ) state would signify a weight of +b (−b).

The weights of an NN are almost always bipolar, whereas the conductance of an MTJ or mem-
ristor is always positive. One method to realize negative weights is to effectively offset the con-
ductance with a fixed bias; in the case of MTJs, we choose Gbias = (GP +GAP )/2, as it brings
symmetry to the effective conductance: G = GP −Gbias would correspond to the positive weight,
say+b, andG = GAP −Gbias would correspond to the negative weight, say−b. These bias resistors
are fed with the negative of the input voltages, and the output current in any column of the cross-
bar can be obtained by adding the bias currents to the current received from the MTJ synapses. In
other words, the total output current can be written as

I =
∑

i

(Gi −Gbias )Vi =
∑

i

(GiVi + (−GbiasVi )) =
∑

i

(Ii + Ibias,i ). (6)

Figure 3(a) depicts the implementation of Equation (6), with the inverter producing the response
of the tanh activation function (which we have used in all of our NNs) as shown in Figure 3(b). The
average and maximum errors between the ideal value and the inverter output are 0.0327 and 0.0606,
respectively, which are marginally better than the sigmoidal circuit proposed in Khodabandehloo
et al. [19].

4 IN SITU TRAINING OF MTJ NN CROSSBARS

We first provide a high-level understanding of how an MTJ synaptic crossbar implementing a feed-
forward NN should work. For the sake of simplicity, all operations are described for a single-layer
NN and can be easily scaled to multiple layers (more details subsequently). We then illustrate how
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Fig. 3. (a) Synaptic weights and activation function in each column of the crossbar.Gb is the constant resistor

that creates the bias. (b) Comparison of the output characteristics of the inverter and the actual tanh func-

tion. Producing this behavior requires the relation MRf Vrd (GP −GAP ) = 7.2 to be satisfied with inverter

output load of 10kΩ. VDD and VSS of the inverter are 1.8V and −1.8V , respectively.

Table 1. Write Phase

Input Error ΔW W and G Switch
x > 0 δ > 0 ΔW < 0 Decreases P → AP
x > 0 δ < 0 ΔW > 0 Increases AP → P
x < 0 δ > 0 ΔW > 0 Increases AP → P
x < 0 δ < 0 ΔW < 0 Decreases P → AP

Signs of x , δ , and ΔW required change in weight W and conduc-

tance G, and the desired direction of switching of the MTJ synapse.

the gradient descent method can be used for the stochastic weight update of MTJs and finally
describe the in situ training procedure for the two crossbar architectures.

4.1 Overview of Operations

The training process is carried out as follows.

Read phase. Upon receiving a training input x ∈ RM , the input terminals are applied with volt-
ages V r

i ∈ [−Vrd ,Vrd ] ∀ i proportional to xi , whereas the output terminals are maintained at
ground potential. Current Iji = G jiV

r
i flows through the (j, i ) synapse, and the total current I at

the output terminals are suitably converted to output y.

Write phase. Using y and the desired output, calculate the error δ . Table 1 lists the four possible
cases of weight update depending on x and δ . The gradient descent algorithm requires a weight
update of the form of Equation (2). An appropriate way to realize this, as suggested in Lee and
Likharev [26], is to set switching probabilities proportional to (the magnitude of) Δw calculated
in Equation (2). Our way of achieving this is explained next.

The process of read and write are carried out for each input sample and repeated for several
iterations until convergence is achieved.

4.2 Stochastic Learning of an MTJ Synapse

We will now describe how the stochasticity of MTJ switching can be used to perform weight
updates with the gradient descent method. Just as the weight update in Equation (2) is a function
of two variables (the input and the error), the probabilistic switching of MTJs can be controlled by
two physical quantities: the magnitude and the duration of the programming current. We choose
the magnitude of the write current to be dependent on the input xi and the duration on the error
δ j . However, as can be seen from Equation (5) and Figure 2, the switching probability P is a highly
non-linear function of the parameters a and t (recall a = I/Ic0), whereas the desired probability,
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being proportional to ΔWji , is a linear function of xi and δ j . Further, the switching probability does
not immediately rise with the pulse width and the write current as they increase from 0, indicating
some kind of soft threshold. Note that the direction of switching can be decided by the polarity of
the write current.

We therefore model switching probabilities by a linear mapping of x and δ to write current Iwr

and duration twr , respectively, as follows. Usually |x | ≤ 1, and henceforth assume for simplicity
that |δ | ≤ 1 (can be ensured by normalizing and adjusting with η). The pulse width twr is set at a
minimum of t0 and increases linearly with |δ | (since twr needs to increase irrespective of the sign
of δ ) as

twr = t0 + t1 |δ |. (7)

Similarly, the write current (Iwr ) would be a minimum of I0 and increase linearly with |x | as

Iwr = I0 + I1 |x |. (8)

We now wish to find coefficients t0, t1, I0, and I1 that yield MTJ switching probabilities (P ) close
to the desired probabilities of weight update. A certain probability of switching can be obtained
for different combinations of I and t , as is evident from Figure 2. We first fix the range of pulse
widths by choosing suitable t0 and t1 (refer to Table 3). We want a nearly 0 switching probability
for twr = t0 irrespective of the value of Iwr because ΔW = 0 for δ = 0 regardless of x . We thus
choose the maximum Iwr (which is I0 + I1) to be that value of I for which the plot of P against twr

starts rising at t0. In other words,

P (I0 + I1, twr ) is

{
< P0 for twr < t0,
≥ P0 for twr ≥ t0,

(9)

where P0 is a small value. So now even if |x | is (as high as) 1, P = P0. In our experiments, we chose
P0 to be about 0.05.

A symmetric argument holds when x = 0. For twr = t0 + t1, we want P ≈ 0 if Iwr = I0, (because
ΔW = 0 for x = 0). But P should start increasing as soon as Iwr increases. In other words,

P (Iwr , t0 + t1) is

{
< P0 for Iwr < I0,
≥ P0 for Iwr ≥ I0.

(10)

Figure 4 shows how well the linear model approximates the required AP → P switching prob-
abilities (similar curve fitting for P → AP as well). Table 2 shows the write currents and duration
for boundary values of |x | and |δ |, and Table 3 lists the values of the coefficients in Equations (7)
and (8). One could use non-linear models for mapping |δ | and |x | to twr and Iwr , respectively, to
better fit the desired switching probabilities; however, that would complicate the analog circuit
responsible for the conversion. Owing to this, and the closeness with which the linear model can
replicate the stochastic switching characteristics, we stick to the linear version.

While training neural nets, it is necessary to have a small learning rate to avoid getting stuck in
local minima. In our training strategy, this means having small probability values of MTJ switch-
ing. However, it is necessary to ensure that the probabilities are not so low that they barely cause
any changes in the weight values. As can be seen from Figure 4, in the average case of having
|x | = |δ | = 0.5, the AP → P switching current and pulse width are I = 75μA and twr = 2.0ns, re-
spectively, and the switching probability stands at around 10%. The model parameters t0, t1, I0, and
I1 have been adjusted so that probability values are within a reasonable range—that is, neither too
small nor too large and help the training process to converge.

Next, we describe the 1T1R and 1R crossbar architectures implementing the NN. We show how
these can be trained in situ using the stochastic learning technique described earlier.
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Fig. 4. P vs twr of the linear model and desired

probabilities (obtained with η = 0.7) for the AP →
P transition. The region between the dashed ver-

tical lines is of interest. The dark green, cyan,

and red straight lines plot desired probabilities for

|x | = 0, 0.5, and 1, respectively. The brown, yellow,

and blue plots correspond to the actual switching

probabilities (obtained from the linear model) for

the mapped currents I = 60μA, 75μA, and 90μA.

Table 2. Boundary Values of the

Parameters in the Weight Update

Equation (2) and Their Counterpart in

Probabilistic Switching of the MTJ

Weight MTJ
Update Switching
|δ | = 0 twr = t0
|δ | = 1 twr = t0 + t1
|x | = 0 Iwr = I0
|x | = 1 Iwr = I0 + I1

Table 3. The Coefficients That Fit

the Model for Both AP → P and P →
AP Switching

Direction AP → P P → AP
t0 1.5ns 1.5ns
t1 1ns 1ns
I0 60μA 140μA
I1 30μA 60μA

Fig. 5. The 1T1R crossbar. (a) Schematic. (b) Read and write phases signals.

4.3 The 1T1R Architecture

This is the conventional architecture for memory applications where each cell has a selection tran-
sistor. One major advantage of being able to selectively turn off certain cells is that it disallows the
presence of undesired sneak currents that lead to unnecessary power consumption at a minimum.
Figure 5(a) shows a 1T1R crossbar where each MTJ synapse is connected in series with an NMOS
transistor. Input and output terminals are interfaced with necessary control logic (CL). All the
transistors in a single column will have a common gate voltage since the corresponding synapses
are connected to the same neuron output and hence will always have the same error “δ” and write
pulse width twr .

Figure 5(b) plots the signals during both the read and write phases. During the read phase (0 ≤
t ≤ Trd ), all transistors are turned on: c j = VDD ∀ j = 1...N so that all columns (neuron outputs)
are read simultaneously. Inputs xi are provided to their respective input CLs, which convert them
to read voltages V r

i . Output currents Ij are processed by the output CLs.
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4.3.1 Updating the Crossbar. Decide the write currents that should be provided to each input
row and the pulse widths for each output column as described in Section 4.2. Recall that the former
depend on x and the latter on δ . The direction of the currents would depend on the sign of the
desired weight update. Apply suitable write voltages at the input terminals while grounding the
output terminals to 0.

For the (j, i ) synapse, the write pulse width depends on only |δ j |, and the write current magni-
tude depends on |xi |. But the direction of switching depends on the signs of δ j and xi (see Table 1)
and has to be decided by the polarity of current. For example, two MTJ synapses belonging to the
same row but different columns may have opposite signs of δ . Thus, despite having the same input
xi , they are required to switch in opposite directions and hence need write voltages of the opposite
sign. This requires us to split the write phase into two parts as explained next.

Since the transistor gate control signals are connected to the output CLs, we can select or
deselect a certain column based on information at its respective CL, which is the error δ . We
therefore program the crossbar sequentially in two stages, with the columns updated in a given
stage depending on the signs of δ . Each phase has a duration ofTwr (which need not be more than
t0 + t1; see Equation (7)). The voltage signals in each phase are plotted in Figure 5(b) and detailed
as follows:

(1) Phase 1:Trd ≤ t ≤ Trd +Twr . Update the weights of the columns that had δ > 0. Then, the
transistor control signals would be

c j =

{
VDD , forδ j > 0 and 0 ≤ t −Trd ≤ twr, j

0, forδ j < 0 or twr, j ≤ t −Trd ≤ Twr .
(11)

And the write voltages applied at the input terminals would be

Vwr,i = VP (xi )u (xi ) +VAP (xi )u (−xi ), (12)

where u is the unit step function.
(2) Phase 2:Trd +Twr ≤ t ≤ Trd + 2Twr . Update the weights of those columns that had δ < 0.

Here, the signals are opposite to those in phase 1 as shown in Figure 5(b).

Here, VP (VAP ) is the voltage applied to switch from P→AP (AP→P) and can be obtained using
Equation (8) and RP (RAP ).VP andVAP still depend on |xi |, but for brevity explicit mention will be
omitted henceforth. Let MTJs in the crossbar be arranged in a way that positive (negative) current
from the ith input terminal to jth output terminal can switch S j,i from P → AP (AP → P ); hence,
VP > 0, (VAP < 0). Parameters in Table 3 giveVP ∈ [0.68, 0.98] volts andVAP ∈ [−0.81,−0.62] volts.

Thus, we can see that the read and update operations are completed in Trd + 2Twr time, which
is O (1). The weight update is sequential with respect to the sign of δ , but it is done in parallel for
all of those columns that have the same sign of δ .

4.3.2 Control Circuits. Figure 6 shows the internals of the input and output CLs. In Figure 6(a),
in the read phase, the read voltage V r is directly passed on. The write voltages VP and VAP are
obtained by suitably scalingV r or −V r , and shifting that by an offset to reach the desired range of
values. Due to opposite polarities,VAP is always obtained from a positiveV r , andVP from a nega-
tiveV r , with the switches in the dashed green box thrown as per the sign of x . Switches controlled
by P1 and P2 are “on” in write phases 1 and 2, respectively, and “off” otherwise. In our design,

V r ∈ [−Vrd ,Vrd ] with Vrd = 0.2V ,R2/R1 = 0.95,R4/R3 = 1.5,V
of f
1 = −0.318V ,V

off
2 = 0.272V .

Figure 6(b) depicts the CL in the output terminals to decide the duration of read and write phases
by controlling the crossbar transistors’ gate voltage c j . We haveVδ ∝ δ (through circuits described
in Section 4.5). If δ > 0,VC is high for some part of write phase 1 (as per Equation (11)), which pulls
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Fig. 6. Circuit of the crossbar’s input (a) and output CLs (b), and a write phase signals timing diagram (c).

Fig. 7. Alternate current paths in the 1R structure with a two-phase write strategy: a 2 × 2 crossbar (a); its

equivalent circuit in write phase 1 with c1 = VDD , c2 = 0,VO
1 = 0,V I

1 = VP ,V
I
2 = VAP (b). (MTJ synapses are

shown as resistors.) (c) Schematic of the proposed 1R architecture for the MTJ crossbar. (d) The equivalent

circuit in phase 1 with four-phase writing.

c j up toVDD for the same duration. Similarly, for δ < 0,VC and c j are high for a part of write phase
2. Figure 6(c) illustrates the timing diagram ofVC and its complement for the two possibilities of δ ,
and also of the sawtooth waveform for generatingVC . In phase 1,Vsaw stays 0 until time t0 = 1.5ns
and then rises linearly to the maximum value of Vδ . In phase 2, the behavior is the same but with
an opposite polarity.

Due to limitations on the scalability of 1T1R architecture, it is worth exploring the feasibility of
transistor-less crossbars to achieve even higher density of integration.

4.4 The 1R Architecture

Eliminating the need to have an access transistor for every synapse in the crossbar will allow for
compact designs having an integration density of about 4F 2/device. But the inability to select the
synapses to be updated during programming results in leakage currents through alternate paths
that not only waste energy but also can lead to undesirable changes in synaptic conductance. We
first see the effect of such currents with the previously proposed write strategy and then suggest
a modified strategy (and circuit) for the 1R architecture.

4.4.1 Two-Phase Update. Let us analyze the impact of sneak paths on the 1R crossbar with the
two-phase update strategy used previously. We first demonstrate the presence of sneak paths with
a small example. Figure 7(a) shows a 2 × 2 crossbar with transistors only at the output terminals
(to choose columns to be written in any particular phase). Assume without loss of generality that
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Table 4. Four-Phase Weight Update for the 1R Configuration in Figure 7(c): Condition

on Input and Error for a Synapse to be Updated, Along with the Control Signals (e, c )
and Write Voltages (V I ), for Each Phase

Input Error ei V I
i c j Switch

Phase 1 x > 0 δ > 0 u (xi )VDD u (xi )VP u (δ j )VDD P → AP
Phase 2 x < 0 δ > 0 u (−xi )VDD u (−xi )VAP u (δ j )VDD AP → P
Phase 3 x > 0 δ < 0 u (xi )VDD u (xi )VAP u (−δ j )VDD AP → P
Phase 4 x < 0 δ < 0 u (−xi )VDD u (−xi )VP u (−δ j )VDD P → AP

a certain input x with x1 > 0,x2 < 0 produced errors δ1 > 0,δ2 < 0 at the outputs. The equivalent
circuit during write phase 1 is drawn in Figure 7(b). It depicts the currents through the synapses,
with the ones through S21 and S22 being undesired. These may falsely switch S21 from P → AP and
S22 from AP → P if they are in P and AP states, respectively.

We now state a worst-case scenario for a crossbar with M inputs. If M is large, analysis using
Kirchhoff’s current law shows that the potential difference across an MTJ synapse could go as high
as (VP −VAP ). The current through such an MTJ, if in the P state, is I = (VP −VAP )/RP and is high
enough (recallVAP < 0) to switch it from P → AP . In the other extreme case, a potential difference
of (VAP −VP ) leading to current I = (VAP −VP )/RAP through an MTJ in the AP state will switch it
from AP → P .

It is also necessary to mention an average (expected) case. Here, these currents reduce to I =
(VP −VAP )/2RP and I = (VAP −VP )/2RAP , respectively, which are half of those found previously,
but still have some probability of switching MTJs (because these currents are roughly the same as
VP/RP and VAP/RAP ). Thus, chances of unwanted flips of MTJs are quite significant, which calls
for some modification in the circuit and/or in the programming method.

4.4.2 Four-Phase Update. The large sneak currents in the two-phase writing strategy, poten-
tially resulting in false switching, are due to the high potential differenceVP −VAP between input
terminals having different signs of inputs. One simple way to mitigate this issue is to further split
the two phases of weight update so that, in a given phase, only rows having the same sign of in-
put are updated at a time. This is equivalent to first clustering the columns according to the sign
of δ and then further clustering the rows according to the sign of x . This proposed four-phase
writing scheme would require additional transistors to choose the rows to be updated in a given
phase as shown in Figure 7(c). It is summarized in Table 4 where each phase will have the same
duration Twr ; thus, the total time for updating the crossbar is doubled to 4Twr . Note that this is
stillO (1) time. The required write voltages and transistor gate voltages can be obtained with very
similar circuits as in Figure 6(a) and (b). The Vsaw here would be same in phases 1 and 2, and the
opposite in phases 3 and 4. In this scheme, the programming currents for each row remain as they
were in the two-phase update, just their time of appearance now differs. They still depend on the
respective input and error.

Let us now see how bad the issue of sneak-path leakage is with this strategy. Figure 7(d) shows
the equivalent circuit for the 2 × 2 crossbar with the same set of assumptions (only synapses pro-
viding alternate current paths are shown). For anM × N crossbar, in the worst-case scenario, sneak
currents could beVP/RP andVAP/RAP , and can still result in false switching. This follows intuition
as the potential difference between an input terminal and an output terminal is at mostVP orVAP .
However, in the average case, the sneak current values are found to be onlyVP/3RP andVAP/3RAP .
These currents are small and do not have the potential to cause undesired switching as is evident
from the parameters listed in Table 3 and the range of values ofVP andVAP . For example, the soft
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Fig. 8. (a) Circuit for backpropagating errors to previous layers. (b) Circuit for finding the error at the last

layer of the NN using the obtained valueVy2 and corresponding targetVt . In DA1, we need R5/R6 = R8/R7 =

2. For DA2, we use R9 = R10 = R11 = R12 to get tanh′(a2) = 1 − tanh2 (a2).

switching threshold is about 45μA for AP → P switching with the maximum write pulse duration
of 2.5ns (Figure 2(b)), whereas the average case sneak current is 30μA. Similarly, for P → AP , the
threshold is about 105μA, whereas the average sneak current is 67μA.

Hence, the four-phase writing scheme significantly reduces the incidences of undesired switch-
ing at a small cost of increase in the duration of the write phase. As we shall see, this tradeoff is
not only worthwhile but also necessary for satisfactory performance of the training process.

4.5 Multi-Layer NNs

Multi-layer feed-forward NNs can be implemented on cascaded crossbars (each representing one
layer) with the output of one fed as the input to the next. It is pretty straightforward to implement
the backpropagation algorithm on such a structure, as demonstrated in Figure 8(a). Consider a two-
layer NN with weight matricesW1 (hidden layer) andW2 (output layer) represented by crossbars
1 and 2, respectively. For an input x , the final output y2 is given as

y2 = f (a2) = f (W2y1) where y1 = f (a1) = f (W1x ). (13)

The op-amp and inverter following crossbar 1 (just as in Figure 3(a)) compute y1 which is pro-
vided as an input to crossbar 2. With a mean square error cost function, the error of the second
layer is given as δ2 = 2(y2 − t ) f ′(a2), where t is the desired (target) value and f ′ denotes the de-
rivative of activation function f . This is obtained as follows: y2 and t , represented by Vy2 and Vt ,
respectively, are fed to the inputs of a differential amplifier (DA1) as shown in Figure 8(b) to obtain
the differenceVe = 2(Vy2 −Vt ). We used tanh as the activation function f ; its derivative is given as

tanh′(x ) = 1 − tanh2 (x ), which is obtained using a multiplier, such as the Hilbert multiplier [21],
followed by the differential amplifier DA2. Last, the outputs from DA1 and DA2 are multiplied to
get δ2.

The error of the first (hidden) layer is given as δ1 = (W2
Tδ2) × f ′(a1), where × represents a

component-wise product. As depicted in Figure 8(a), the matrix-vector product can be done on
crossbar 2 itself by reversing the roles of its input and output terminals: δ2 is now fed as the
input and out comesW2

Tδ2, which, when multiplied by f ′(a1), gives δ1 as the error to be used for
updating the weights of the hidden layer.

Note that DA1 is required only in the last layer of the NN to get the difference between the actual
and target outputs, whereas the components for backpropagation, comprising the two multipliers
and DA2, are present in all layers and are a part of the output CL. Also recall that the second
layer error δ2 has a dual role—deciding the MTJ write duration in crossbar 2 (with the circuit in
Figure 6(b)), apart from being backpropagated to compute δ1.
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Fig. 9. (a) Schematic of an RBM. The absence of connections within the visible and hidden layers makes

the units in any layer conditionally independent of each other. All weights are symmetric. (b) Schematic of

a DBN. The top layer is an RBM being trained. In the lower layer, the dashed and solid arrows represent

the top-down generative connections and bottom-up recognition connections, respectively [14]. (Note: All

weights are still symmetric; some connections removed for clarity.) (c) The DBN in (b) with a layer at the

end for classification.

For the MTJ crossbar NN we described, during forward propagation, the total duration of the
read phase would be at most nTrd for an n-layer NN. Backpropagation of errors to hidden layers
would require an extra Trd -long read phase for each such layer, during which the error at (the
output of) a layer is fed as an input to its crossbar to obtain the error at its preceding layer. Last,
all the layers can be updated simultaneously (in 2Twr or 4Twr time, as per the architecture).

Further, it must be mentioned that a large layer in an NN could be split into multiple crossbars,
some of which share inputs or outputs. All of these crossbars can still be read and written in
parallel, thanks to the locality of the weight update operations.

5 TRAINING OF RBMS

RBMs are a class of undirected graphical models used as generative models of data for the purpose
of feature extraction, dimensionality reduction, and classification [14]. They form the fundamental
building block of deep belief networks (DBNs), which have produced state-of-the-art results in
learning tasks. In this section, we provide a simplified mathematical background of RBMs and
DBNs, and describe the in situ training of RBM MTJ crossbars.

5.1 Basics of the RBM

RBMs consist of a set of visible and hidden units to represent the data and their features, respec-
tively, and symmetric weighted connections between them as shown in Figure 9(a). The energy
function of an RBM with visible and hidden units activations v and h and weightsW is given as

E (v, h) = −h
TW v − aT

v − bT
h, (14)

where a and b are vectors of biases for the visible and hidden units. The conditional probability of
the hidden units, given a certain state of the visible units, is

p (hj = 1|v) = σ �
�
bj +

∑
i

Wi jvi
�
�
, (15)

where σ (x ) = 1/(1 + exp (−x )) is the logistic sigmoid function. Similarly,

p (vi = 1|h) = σ ��
�
ai +

∑
j

Wi jhj
��
�
. (16)
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The marginal probability of observing a certain visible vector v is computed as

p (v) =
1

Z

∑
h

e−E (v,h) . (17)

Training of an RBM involves maximizing the log likelihood of the probability of the training data
and gives rise to a gradient ascent rule in the weight space. The weight update is calculated as

ΔWi j = ϵ
∂ loд p (v)

∂Wi j
= ϵ (〈vihj 〉data − 〈vihj 〉model ), (18)

where 〈.〉 denotes an expectation under the specified distribution and ϵ is the learning rate. Get-
ting an unbiased sample of 〈vihj 〉data is simple because the absence of connections among the
visible and hidden units lets us compute the probability with which the hidden units turn on using
Equation (15). However, getting an unbiased sample for the model is difficult because it requires
starting from a random training vector and performing alternate Gibbs sampling for a long time,
where each iteration of the sampling process updates the hidden states in parallel using Equa-
tion (15) and then the visible states (again, in parallel) using Equation (16). The mathematical
model of RBM considered only binary states, but this has long been extended to include continu-
ous values and model different kinds of data distributions [22].

In Hinton [13], a much faster learning method was proposed wherein the first (positive) part
of Equation (18) is computed using the hidden units’ activations obtained from Equation (15).
The second (negative) part is calculated by first reconstructing the visible units from the hidden
states using Equation (16) and then the hidden units from these reconstructed visible units (Equa-
tion (15)). The weight update rule thus stands as

ΔWi j = ϵ (〈vihj 〉data − 〈vihj 〉r econ ). (19)

This works well even though it only roughly approximates the gradient of the log probability of
the training data and is closer to the gradient of another objective function, the CD [13]. Observe
that this learning rule is also local, just like the one in Equation (2). Further, since this CD weight
update depends only on the training data and network parameters (the weights), and not on any
labels, it comes under the category of unsupervised learning. The bias vectors a and b are also
trained in a similar way.

One way to track the progress of learning is to measure the reconstruction error, which is the
squared difference between the training data and its reconstructed version [15].

5.2 Deep Belief Networks

RBMs can be stacked to form deep generative models called deep belief networks [16]. The lower
layers (which are close to the visible layer) capture low-level features, whereas the higher layers
represent abstract concepts. Figure 9(b) illustrates a DBN with two hidden layers. In a DBN with
l hidden layers, the joint distribution of the data v and the hidden layer variables h

1, h2, . . . hl is
expressed in terms of the conditional distributions [3].

P (v, h1, h2, . . . hl ) = P (v|h1)P (h1 |h2) . . . P (hl−1, hl ) (20)

Hinton et al. [16] have proposed a greedy layer-wise training procedure for the DBN, starting
with the lowest hidden layer h

1. Once it has been trained using the CD formulation mentioned
earlier, its weights are kept fixed and used to obtain the training data for the next layer h

2. This
is done by propagating the training samples v using the learned P (h1 |v) (computed using Equa-
tion (15)) and using either these probability values or samples from their distribution as training
data for the second layer. This is repeated for all subsequent hidden layers up to h

l .
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Often, DBNs are not used on their own; rather, the features extracted by them are used for the
purpose of classification by adding a classifier layer at the last hidden layer (Figure 9(c)) and using
a supervised gradient descent algorithm to train the weights of this classifier. Another common
practice is to use the weights of the trained DBN for initializing the hidden layers of a deep feed-
forward NN. These weights are then fine tuned with the supervised training criterion, along with
the weights of the classifier layer(s) appended at the end. This unsupervised pre-training of the
hidden layers, before the data labels are used, is justified on the grounds that random initialization
of the weights of hidden layers often leads to the network getting stuck at local minima when using
only supervised gradient descent methods. This is specially problematic for the lower layers as
their activations tend to get saturated, leading to vanishing gradients that slow down the learning
process [9].

5.3 Adaptation of the CD Algorithm

The standard CD algorithm is composed of the following steps:

(1) Clamp the visible nodes v to a training vector, say v1.
(2) Find the probabilities with which the hidden units turn on using Equation (15). In other

words, compute h
p
1 = σ (Wv1) (ignoring the bias for simplicity).

(3) Obtain the binary states hb
1 of the hidden units by sampling from the probability distribu-

tion h
p
1 . It is necessary to store the hidden states as binary values rather than using the RV

probabilities themselves so that they can communicate a single-bit value during recon-
struction, thereby acting as a strong regularizer [15]. This marks the end of a construction
phase.

(4) Reconstruct the states of the visible units using those of the hidden units just as in Equa-

tion (16):v
p
2 = σ (W Thb

1 ). It is common to simply use these probability values as it reduces
the sampling noise and hastens the learning process.

(5) Now reconstruct the hidden units as h
p
2 = σ (Wv

p
2 ). As per the recommendation in Hinton

[15], it is not required to sample binary states from h
p
2 so that unnecessary sampling noise

can be avoided.
(6) Perform the CD weight update as

ΔW = ϵ
(
h

p
1v

T
1 − h

p
2v

pT
2

)
. (21)

For the data-driven positive part of the weight update, it is better to use h
p
1 because it

eliminates the sampling noise present in hb
1 . Note that Equation (21) changes the weights

with the statistics of only one training example and thus does not require the expecta-
tion operator. The aforementioned steps should be repeated for all training samples over
several iterations.

Now we go on to explain how the CD algorithm would be adapted for implementation on the
MTJ crossbar. The standard CD algorithm has a weight update in Equation (21) with two terms,
each of which has activations of both the visible and hidden units. This makes it impossible to
perform such a weight update on the crossbar without explicitly calculating and storing in memory
at least the positive term. To avoid this, we choose to implement the updates from the construction

and reconstruction phases separately. Further, since thev1 andh
p
1 are available at the end of step (2),

the positive update can be done before the reconstruction. This further removes the necessity of

storing v1 and h
p
1 while v

p
2 and h

p
2 are calculated. It has been observed that this two-step weight

update does not quite affect the RBM’s learning [46]. We shall verify this at a later stage.
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Fig. 10. (a) Crossbar implementation structure of the RBM with MTJs as synapses and hidden units.

(b) Signals during the five stages of the CD update cycle. The quantities on which they depend are shown

in parentheses. The crossbar terminal voltages are at the visible unit CL for all except read stage 2, where

the hidden units provide an input for reconstruction of visible units. All reads and writes are of durationTrd

and Twr , respectively.

In the construction phase, the binary states hb
1 of the hidden units are chosen by sampling from

the probabilities h
p
1 (step (3)). Since the probabilities are generated from the output of a sigmoid

activation function, and the MTJ switching behavior (Figure 2(b)) bears close similarity to a sig-
moidal response, we use an MTJ itself to produce and store the binary state of a hidden unit. The
alternative to this would have been the use of some analog/digital random number generator to

compare its output with h
p
1 and generate a binary state; this is likely to have a higher overhead.

We shall further discuss the implementation of this technique in the next section.

5.4 Training of the RBM MTJ Crossbar

Figure 10(a) depicts the RBM crossbar with CL for each visible and hidden unit, and an MTJ for
storing the binary state of the latter. The MTJ synapses could be with or without selection transis-
tors. Because the reconstructed values of the visible units are outputs of the sigmoid and restricted
to the range (0, 1), we would require inputs to the RBM to be normalized to the same range for
better reconstruction. Each cycle of the CD algorithm implemented on the crossbar goes through
five stages as listed next, and the signals interfacing the crossbar are shown in Figure 10(b):

• Read stage 1: The training starts with the crossbar visible terminals having a voltage
V r ∈ [0,Vrd ] proportional to the training input v1. The current received at the hidden ter-
minals would be used to flip the MTJ units storing the hidden states and simultaneously be

converted to activations h
p
1 .

• Write stage 1: For the positive weight update stage, since both v1 and h
p
1 are positive, we

would only require to switch the MTJ synapses from AP → P with a suitable probability.

Just as in Section 4.2, we linearly mapv1 and h
p
1 to MTJ synaptic write current Iwr and pulse

width twr , respectively, as

twr = t0 + t1h
p
1 , (22)

Iwr = I0 + I1v1. (23)

We use the same values of t0, t1, I0 and I1 as listed in Table 4, which give write voltages
VAP ∈ [−0.81,−0.62] as previously.
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• Read stage 2: The MTJs storing the binary states hb
1 of the hidden units are read, and the

hidden terminals are applied a voltage V r depending on the value read. Since hb
1 is binary

(0 or 1), V r is either 0 or Vrd . The reconstruction of visible units v
p
2 is obtained using the

current flowing into the other end.

• Read stage 3: A reconstruction of the hidden units (h
p
2 ) is obtained by feeding v

p
2 to the

crossbar. Unlike read stage 1, there is no need to sample binary states from h
p
2 .

• Write stage 2: Last, the negative weight update, which would require MTJs to switch only
from P → AP , is carried out by passing currents with magnitude and duration proportional

to v
p
2 and h

p
2 , respectively, just as in Equations (22) and (23). Only the polarity and current

magnitudes are for P → AP switching, and VP ∈ [0.68, 0.98] volts.

The entire cycle thus takes 3Trd + 2Twr time. Since the logistic sigmoid σ is only a scaled and
shifted version of tanh, the same circuit (i.e., the inverter) can be used to realize it, although with
different parameters such as Rf andVSS . The hardware required to implement the proposed train-
ing algorithm is also pretty much the same as that in Section 4.3.2 except h replaces δ as the quan-
tity that decides write time of MTJs, the inverter in the output CL (Figure 6(b)) is not required, and
Vsaw is the same in both write stages.

In the training of the 1T1R NN crossbar in Section 4.3, the write stage had to be split into two
because of the four possible combinations of the signs of the input and error. The RBM crossbar,
however, does not require such splitting because the visible and hidden units’ values driving the
CD weight update are always positive, and weight updates of all synapses have the same sign in a
given write stage.

The 1R crossbar in Section 4.4 had a four-way split of the write stage because a two-way split
resulted in large sneak currents. However, an RBM crossbar with a 1R architecture would also
have a single phase, for reasons the same as those of the 1T1R crossbar. In any given write stage,
all synapses are updated, which means that all rows and columns are simultaneously active. Thus,
transistors for selecting rows (the ones labeled ei in Figure 7(c)) are not required, and only columns
would have selection transistors (labeled ci ) to control their respective write pulse widths twr . Since
there are no sneak paths during writing, the scalability of the 1R crossbar makes it the choice of
architecture for an RBM.

At this stage, one may ask why training inputs to the general NN crossbar should be bipolar,
as was considered in Sections 2.2 and 4.1. The explanation lies in the faster convergence of the
training when inputs are bipolar or specifically have an average close to 0 [24]. If inputs x are
normalized in [0, 1], then the update of the weights connected to the jth neuron (xδ j ) would all
have the same sign as that of error δ j . Thus, these weights would always move together, making
the training process inefficient and slow [24].

Figure 11(a) depicts two crossbars concatenated with each other forming a DBN with hidden
layers h1 and h2. They would be trained sequentially using the procedure described earlier.

5.5 MTJs for Hidden Units

In read stage 1, the MTJ hidden units are provided with a switching current Isw to switch them

AP → P (say, P state is “on”) with probabilityh
p
1 . Their states are read in read stage 2 using a certain

current Iread, and they are reset P → AP in either read stage 3 or write stage 3 in preparation for
the next cycle. Figure 11(b) shows the circuit of the MTJ hidden units, and Table 5 summarizes its
operation. The currents Isw and Ireset flow in opposite directions to flip the MTJ from AP → P and
P → AP , respectively. The read current Iread could be in any direction.

We shall now provide a detailed description of how the stochastic switching behavior of MTJs is
used for sampling the binary states of the hidden units. Table 6 summarizes the notations adopted.
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Fig. 11. (a) DBN crossbar structure: 4 × 4 and 4 × 3 crossbars for the first and second hidden layers.

(b) Circuit of the MTJ as an RBM hidden unit connected to the respective CL.

Table 5. The Stages of CD Training

When Different Currents (Figure 11(b))

Operate on the Hidden Units and the

Switches That Are Active

Current Switch Stage

Isw S4, S2 Read 1

Ir ead S4, S1 Read 2

Ir eset S1, S3 Read 3 or Write 2

Table 6. Notations for MTJ Curve Fitting

In Neuron current at the hidden unit CL

Isw MTJ hidden unit switching current

a Weighted sum input to sigmoid

I0 Value of Isw for σ (0) = 0.5 switching probability

Icf Value of Isw for σ (acf ) switching probability

We need to fit the transfer function of the sigmoid with the MTJ switching probability curve. A
hardware-friendly method is a simple linear mapping of the incoming neuron current In to the
MTJ’s switching current, which requires us to match the characteristics at exactly at two points:
say for values of the weighted sum a = 0 and acf (“cf” denotes curve fitting).

For the value of a = 0, we would have the neuron current In = 0. This should correspond to an
MTJ switching current of I0 and a probability of σ (0) = 50%—that is, equal chances of the binary
state to be 0 and 1. Recall from Section 3.2 that MTJ conductances GP and GAP correspond to
synaptic weights b and −b, and read voltage Vrd to input of 1. Thus, for a = acf , we would have

In = acf
Vrd (GP −GAP )/2

b
, (24)

and the MTJ switching current should be Isw = Icf . This gives the relation

Isw = I0 +
2bIn (Icf − I0)

acf Vrd (GP −GAP )
, (25)

which can be implemented using a differential amplifier. For our experiments, we perform the
curve fitting at acf = −3. The reason behind choosing a large value is to cover a significantly wide
range of values of activations. Figure 12(a) shows how close the MTJ switching probabilities are to
the desired probabilities of activation as current Isw and a are varied. The pulse width of Isw has
been chosen to be 2ns , which is the duration of the read stages. In contrast, Figure 12(b) shows the
same for acf = 3 wherein the probabilities match perfectly for positive values of a, but for a < 0
the MTJ switching probabilities obtained are significantly less than those of the desired values
(i.e., the transfer curve of the sigmoid). It is crucial to capture the small probabilities; otherwise,
values of a < −2 would produce currents Isw that are too small to ever flip the MTJs and turn the
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Fig. 12. Switching probabilities of the MTJ (solid red line) meant to store the RBM hidden unit’s states as a

function of Isw , and the desired hidden unit’s activations as output of sigmoid (dashed blue line) for acf = −3

(a) and acf = 3 (b). Vertical dashed lines in the plots depict the matching at respective values ofacf . In (a), the

parameters are I0 = 93.28μA, Icf = 70.38μA. Maximum read voltageVrd = 0.2V has been used throughout.

hidden units “on.” This will cause them to convey hb
1 = 0 in the reconstruction phase (step (4))

much more frequently than they should. In addition, one may consider not matching the curves at
0 and instead match at acf = 3 and −3; however, this results in poor fitting in intermediate values,
with the difference in probabilities being higher than 0.15 for a wide range of values of a.

6 EXPERIMENTAL SETUP AND RESULTS

To see how successfully the MTJ crossbar NNs and RBMs2 can be trained in situ, we performed
system-level simulations by modeling the functionality of the crossbar architecture in MATLAB
and training it on some datasets. To capture the MTJ device parameters, we used an HSPICE model
[20] and included thermal fields in its LLG equations for obtaining the stochastic switching char-
acteristics [43]. Certain device parameters used in and obtained from this model3 were then incor-
porated into the simulations of the crossbar. We discuss the results obtained on feed-forward NNs
and DBNs in that order.

6.1 Neural Networks

The performance of the NN was evaluated in the following scenarios (code named for further
reference), in which all training processes used the mean square error cost function, and neurons
had the tanh activation function:

(1) RV: First, we train and evaluate an NN with real-valued weights in MATLAB. Binary quan-
tization step (b) is obtained from this trained network as shown in Section 3.2.

(2) DP: Suitable binary weights are obtained by doing probabilistic learning in software
on a binary network. Then a 1T1R crossbar and a 1R crossbar are deterministically
programmed to these weights. We see the effect of DVs on the former and of alternate
current paths and resulting false switchings on the latter.

(3) ST: An MTJ synaptic crossbar is modeled and stochastically trained in situ using the linear
model of stochastic weight update described in Section 4.2 for the

2A tutorial on DBNs, along with code in Theano, can be found in references [1] and [2].
3MTJ cell dimensions: 35nm × 35nm × 1.4nm, RP = 4.86k Ω, RAP = 15.12k Ω, temperature T = 300K , saturation mag-

netization Ms = 1029emu/cm3, damping constant α = 0.014 yielded Δ = 40, I P→AP

c0 = 64.5μA, I AP→P

c0 = 21.2μA.
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Table 7. Classification Error Rates for the Three Datasets (on the Test Samples) With Various

NN and Crossbar Architectures Under Different Training Scenarios

Dataset SONAR MNIST WBCD
Network 1L 2L15 2L25 2L50 2L100 2L150 3L 1L 2L10 2L20

RV 16.4 12.8 11.9 9.87 7.34 6.44 7.25 8.35 7.40 7.10

DP
1T1R 19.2 15.2 14.3 13.50 10.89 9.55 10.45 9.85 8.30 8.55

1R 46.8 41.4 42.7 39.42 36.10 37.92 40.48 24.95 27.60 23.65

ST
1T1R 18.4 14.2 13.6 12.69 10.18 8.96 9.71 9.20 7.70 8.05

1R 18.3 14.5 14.0 12.72 10.20 9.03 9.66 9.40 7.85 7.95

Here, ST-1R crossbar used a four-phase update. Ideal devices are assumed for all except DP-1T1R, where 10% varia-

tion was considered. SONAR and WBCD figures are an average of 10 runs. MNIST and WBCD figures are shown as a

percentage (%).

(a) 1T1R architecture, with the two-phase write strategy (Section 4.3). and the
(b) 1R architecture, with both the two-phase (to see the effects of sneak currents) and

the four-phase update strategies (Section 4.4). For the former, node voltages of output
terminals not connected to the output CLs (i.e., columns not being updated) could be
easily calculated using Kirchhoff’s current and voltage laws, whereas for the latter, a
mesh analysis of the crossbar was required and node voltages at both (unconnected)
input and output terminals were obtained by solving a system of linear equations of
KCL and KVL in MATLAB.

(4) DV: Device variations of different extents are introduced in the stochastic training (ST)
of both the 1T1R and 1R crossbars. It reflects in the variations in the resistance of the P
and AP states, the standard deviations of which usually do not exceed 10% of their mean
values as per experiments [56].

We use the following datasets for evaluation:
SONAR, Rocks vs Mines [30]: Three different NN architectures are considered: one with one

layer (1L) and two with two layers having 15 and 25 hidden neurons, respectively, and named 2L15
and 2L25. They were trained and then tested on 104 samples of the test dataset.

MNIST Digit Recognition [23]: Three two-layer networks of 50, 100, and 150 hidden units,
respectively, and a three-layer network of 50 + 25 hidden units were trained on the first 10,000
samples of the training set and then evaluated on the 10,000 images of the test dataset.

Wisconsin Breast Cancer (Diagnostic) (WBCD) [30]: A single-layer network (1L) and two
two-layer networks (2L10 and 2L20) were considered, and the test dataset had 200 samples.

Table 7 summarizes the accuracy obtained with these networks under the different training sce-
narios mentioned earlier. The effect of DVs of different extents on the in situ ST is highlighted for
some of the networks in Table 8, with Figure 13 plotting the mean square error as the training
progresses for the 1R crossbar. Additionally, Figure 14 compares the error for the two write strate-
gies. It does not converge with the two-phase writing scheme due to higher instances of undesired
weight changes but does so with four phases.

From these results, the following are evident:

• When an MTJ synaptic crossbar without access transistors is stochastically trained in situ
(ST-1R), it shows classification accuracy only slightly lower (about 3% at worst) than when
the same network is trained in software with RV weights (which can be considered to be
the best achievable). However, it brings about significant improvement (up to 30%) in ac-
curacy over a deterministically programmed crossbar (DP-1R) since the latter suffers from
undesired weight changes arising from alternate current paths.
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Table 8. Misclassification Rates of NNs With ST of 1T1R and 1R Architectures Under Different

Levels of DVs Expressed in Terms of Standard Deviations of RP and RAP About Their Mean Values

Dataset SONAR MNIST WBCD
Network 1L 2L15 2L100 3L 2L20
Variation 1T1R 1R 1T1R 1R 1T1R 1R 1T1R 1R 1T1R 1R

2% 18.5 18.4 14.4 14.7 10.27 10.22 9.67 9.73 8.10 8.05
5% 18.7 18.7 14.7 14.8 10.28 10.29 9.78 9.80 8.25 8.30
10% 19.0 19.1 15.1 15.1 10.33 10.43 9.86 9.91 8.30 8.40
20% 19.3 19.5 16.0 15.9 10.42 10.72 10.15 10.28 8.60 8.75

MNIST gures are the worst of 3 runs. SONAR and WBCD are an average of the 10 worst runs.

Fig. 13. NN training error with different extents of DVs on the 1R crossbar for two datasets.

Fig. 14. Comparison of error during training of the 1R crossbar with two- and four-phase update schemes

for two datasets. No variations are assumed.

• In situ training also benefits the crossbar with transistors (ST-1T1R against DP-1T1R) in the
presence of DVs by slightly improving accuracy (by about 0.5% to 1%).

• It is possible to compensate for the loss in accuracy due to use of a binary network by
increasing the size of the network (adding more hidden layers and/or neurons).

• Further, the trained crossbar has robustness even in the face of DVs, owing primarily to
the fault-tolerant nature of the NN and its learning algorithms. As can be seen in Table 8,
increase in misclassification rates remain within 2% even with 20% variation.

The accuracy degradation of 2% to 3% that we achieve (on going from RV to ST) is comparable
to the 3.73% reported by Zhang et al. [60] and the 0.8% to 3.5% in Vincent et al. [52]. However, it
must be mentioned and emphasized that any comparison is fair only if it is on the same dataset and
network architecture. The benefit of using in situ training can also be seen when we compare our
work to that of Zhang et al. [59] (which performs offline learning). On the MNIST 2L100 network,
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we obtained an error rate of 10.20%, whereas Zhang et al. [59] had a much higher value of 30%
on the same network, although it must be mentioned that the latter was at a disadvantage due to
linear activation units. Further, the presence of a 20% device variability reduces our accuracy by
less than 1.5%, which is competitive with that of Zhang et al. [60], Zhang et al. [59], and Vincent
et al. [52].

There are a few similarities and differences between our work and the MTJ synapse–based STDP
learning proposed in Srinivasan et al. [48] that we would like to first mention. In our work, all MTJ
synapses from an input share the circuit that decides programming currents, and all synapses to
an output neuron have the same programming duration. Similarly, in Srinivasan et al. [48], the
STDP learning circuit for synaptic potentiation (and depression) are shared by the synapses that
connect an input neuron (pre-neuron) to all excitatory neurons. However, they get programmed
with different currents depending on their respective post-neuron spiking time, but their write
durations are always the same and independent of any spike times; it is only the write current
that varies from synapse to synapse. The STDP learning circuit consists only of two sets of two
transistors and a capacitor. However, our implementation of stochastic learning would require
more complex hardware (primarily two op-amps in the input CLs and one op-amp in the output
CLs). Additionally, we need multiplier circuits [21] to back-propagate errors to hidden layers of
the network.

However, Srinivasan et al. [48] have not described the hardware implementation of the neurons
of the SNN and their functionality, although one possible configuration appears in Sengupta et al.
[42]. This neuron in Sengupta et al. [42], although not being very complicated, is seemingly more
expensive than an op-amp [21] in terms of area requirements. But overall complexity is perhaps
higher for our design. However, Srinivasan et al. [48] achieve only about 75% classification accu-
racy on the MNIST dataset on an SNN with as many as 400 excitatory and 400 inhibitory neurons
trained with 460 images. We could get higher accuracies on our MNIST networks, although we
trained with many more (10,000) images.

6.2 Deep Belief Networks

For the training of the RBM crossbar, we consider only a 1R architecture since the absence of
sneak currents (as discussed in Section 5.4) does not leave any difference in the training procedure
of the 1T1R and 1R crossbars. The performance of the DBNs was evaluated in scenarios similar to
Section 6.1: first with RV weights, then deterministically programming the MTJ crossbar to suitable
binary weights, and finally performing ST of the crossbar without and with various extents of DVs.
Two datasets were used for obtaining data:

• MNIST: Two two-layered networks with 150 and 200 hidden units, and two three-layered
networks with 150 and 200 units in each hidden layer, were trained on the first 10,000 sam-
ples of the training set and then evaluated on all test samples.

• WBCD: One two-layered network of 40 hidden units was considered.

The last (output) layer of all networks was used for classification purposes, either using only
the Features Extracted (FE) at the last hidden layer as classifier inputs or performing Supervised
Fine Tuning (SFT) of the hidden layer weights, along with training of the output layer, with the
supervised training method used in NNs (refer Section 5.2). Table 9 lists the classification error
rates obtained with all networks and training scenarios. As is clearly evident, it remains within 4%
to 5% and 3% to 3.5% for FE and SFT, respectively, even with high levels of variations. Figure 15
depicts how the different kinds of errors converge both with and without variations. For MNIST,
plots of only the DBN with 200 + 200 hidden units are shown.
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Table 9. Misclassification Rates With Hidden Layers Trained as an RBM for the MNIST

and WBCD Datasets for Different Levels of DVs

Dataset MNIST WBCD
Network Size 150 150 + 150 200 200 + 200 40

Purpose FE SFT FE SFT FE SFT FE SFT FE SFT
RV 8.85 6.63 8.07 5.12 8.73 5.30 7.98 4.27 7.90 1.30
DP 38.29 34.40 37.83 41.54 39.17 36.53 37.92 40.07 24.00 29.40
ST 12.72 8.82 11.74 8.23 12.69 8.09 11.40 7.08 11.60 4.10

DV 2% 12.93 8.97 11.77 8.33 12.75 8.21 11.58 7.19 11.80 4.20
DV 5% 13.05 8.96 11.89 8.55 12.84 8.34 11.76 7.27 12.20 4.50
DV 10% 13.22 9.18 12.15 8.70 13.02 8.71 12.00 7.34 12.50 4.50
DV 20% 13.56 9.29 12.44 9.12 13.35 8.87 12.39 7.72 12.60 4.70

For the figures reported with 2 to 20% variations, the ones for MNIST are the worst of 3 runs and those for WBCD are an

average of 5 worst runs out of 10.

Fig. 15. Progress of training with RBMs as hidden layers for the MNIST dataset, with two hidden layers each

of 200 units (a–d) and the WBCD dataset, one hidden layer with 40 units (e, f). (a, b) The reconstruction error

on the first and second layers, respectively. (c, d) The classification mean square error with FE and SFT.

Additionally, Figures 16(a) and (b) compare the training with the standard CD algorithm and
the two-step CD that we use to train the MTJ crossbars, as described in Sections 5.3 and 5.4, re-
spectively. Real continuous weights were used for the sake of this comparison on the MNIST 200 +
200 network. Both the reconstruction errors and the classification MSE of the two different im-
plementations of CD are barely distinguishable. Last, Figure 16(c) depicts the bias of the weighted
sum inputs of the hidden layer toward negative values, which justifies the tight curve fitting for
a < 0 done in Figure 12(a). Apparently, the reason for this bias was the average input value (across
all input units and data samples) being less than 0.5 for both MNIST and WBCD. This required
a reconstruction value (of visible units) of less than 0.5 for low errors, which tend to shift the
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Fig. 16. (a, b) Comparison of standard CD and two-stage CD in terms of how the reconstruction errors

(a) and classification MSE (b) converge with iterations of training. The small gap between the green and black

dotted lines (representing standard and two-step CD, respectively) is only due to the different initializations

of the weights of the second hidden layer. Importantly, this gap remains the same throughout, indicating a

same rate of convergence. (c) Histogram showing distribution of inputs to the sigmoid activation function

of the first hidden layer. All plots are on the MNIST 200 + 200 network.

weights to negative values during the learning process so as to obtain negative weighted sums on
an average. Other datasets with different characteristics may be suited to a different fitting (e.g.,
the one in Figure 12(b)) that can be easily done using techniques described in Section 5.5.

In Neftci et al. [35], a spiking neuromorphic system trained with event-driven CD was used for
learning MNIST digits. The architecture had additional neurons in the visible layer for class labels
(since the RBM was discriminative [22]), and the weights connecting the 500 hidden neurons to
these class neurons were also trained using CD. Their model had a recognition error of 8.1%. The
hybrid RRAM-CMOS RBM architecture of Suri et al. [49] obtains an average error rate of about 11%
with 100 neurons in the hidden layers and a separate classification layer (which is similar to our
approach and unlike that of Neftci et al. [35]). Last, the memristor-based RBM in Sheri et al. [46],
with 500 hidden neurons and 40 additional visible nodes, classifies 87.55% MNIST digits correctly
but achieves convergence within only five epochs of 10,000 training samples.

7 DISCUSSION

We now analyze several other aspects of the in situ training method proposed by us:

• Training time: Training of an n-layer NN on one 1T1R crossbar using gradient descent will
take (2n − 1)Trd + 2Twr time per training sample per iteration, as per Section 4.5. However,
consider a DBN with (n − 1) hidden layers and a final classification layer. We saw that the
two-step CD algorithm takes 3Trd + 2Twr per sample for an RBM. A DBN would be trained
layer wise where the training data for the r th layer would be first obtained by propagating
the original training sample through the preceding r − 1 hidden layers, assuming that there
is no storage of data in on-chip or off-chip memory. Thereby, the total time for the r th layer
is (r + 2)Trd + 2Twr ; summing over r from 1 to (n − 1) gives a quadratic dependence on n
for duration of training of the hidden layers. After this unsupervised learning, training of
the classifier layer through gradient descent would take nTrd + 2Twr if only the features
extracted by the last hidden layer are used, whereas if we go for supervised fine tuning of
the entire network, it is (2n − 1)Trd + 2Twr .

The higher time requirement for DBN training may be justified by the relatively smaller
number of training iterations (typically 10 to 20) within which the reconstruction error and
MSE converge as compared to the larger number of iterations required if the network is
trained entirely in a supervised way (compare Figure 15 to Figure 13). If in the DBN the
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training data for subsequent hidden layers is stored instead of calculated, then memory can
be traded off for a linear dependence of training time.

• Power consumption in the crossbar: Let us estimate the expected power dissipated in the
1T1R MTJ crossbar NN by assuming an average case for all parameters. All inputs x and δ
are half of maximum, that is, ±0.5. Thus, read voltages are half of maximum, that is,Vrd/2,

and write voltage are those for x = 0.5, that is, VP (0.5) or VAP (0.5), denoted VP or VAP . At
all times, half of the MTJs are considered to be in the P state and the other half in the AP

state. This gives an average power in the read phase per MTJ synapse to be

Prd =
1

2
(Vrd/2)2

(
1

RP
+

1

RAP

)
(26)

and that in each of the two write phases to be

Pwr =
1

8
(VP

2
+VAP

2
)

(
1

RP
+

1

RAP

)
. (27)

This yields the average power per device in a cycle of training to be Prd + 2Pwr . Substituting
values stated previously, this calculates to 82 μW . Taking Trd = 2ns and an average twr =

2ns , the energy consumed per device per cycle is 0.164 pJ . The 1R crossbar NN without
transistors would have higher energy dissipation due to sneak currents. It must be noted
that these values are heavily dependent on device parameters. Future MTJ technologies
with scaled-down devices would consume lesser energy.

For the RBM crossbar, Prd remains the same. Write stages 1 and 2 have average write

voltages VAP and VP , respectively, and current flows through all synapses in both stages.

Thus, average power per synapse per cycle is 3Prd +
1
2 (VP

2
+VAP

2
) ( 1

RP
+ 1

RAP
), which turns

out to be 169μW , and the average energy is then 0.338 pJ .
• One very popular work with binary weights is BinaryConnect [6], wherein the weights used

during the forward and backward propagation are binary and obtained stochastically from
RV weights. However, the weight update step is not binarized to maintain a good precision
of the weights, as in the updates are RV. The performance of BinaryConnect is reported
to be as good as, or even better than, its counterparts with continuous weights. However,
the MTJ crossbar (or any binary device weight array) would not allow for storing of RV
weights, which perhaps explains a noticeable, although not significant, drop in classification
accuracy when compared to floating-point weights.

• A drawback of in situ training is that every chip has to be trained separately, each requiring
roughly the same amount of time. In addition, only the training algorithm for which the chip
is designed (e.g., CD) can be used, unless extra hardware is added for the implementation
of different techniques [58].

• Dependence on temperature: Higher operating temperatures reduce the thermal stability of
the MTJs (Δ ∝ 1/T ) and increase the switching probability for the same current magnitude
and duration. The curves in Figure 2 shift to the left.

• The binary nature of MTJs severely limits the precision of each synaptic weight, thereby
requiring larger crossbars with more hidden units to reach the accuracy exhibited by real
continuous weights. However, although memristive devices do have several intermediate
states, it is often difficult to program them reliably, so they too may end up being used in
binary mode [36]. Further advances in materials of both magnetic and memristive devices
will improve their prospects for use in memory and logic units.
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8 CONCLUSION

In this work, we show how MTJ crossbars representing weights of ANNs and deep belief nets
can be trained in situ by exploiting the stochastic switching properties of MTJs and performing
weight updates in a way akin to gradient descent. We demonstrate how the machine learning
algorithm can be implemented on crossbars with and without transistors. Results show that these
stochastically trained binary networks can achieve classification accuracy almost as good as that
of those trained in software and implemented on processors. This paves the way for the attainment
of highly scalable neural systems in the future capable of performing complex applications.
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