
7

Energy-efficient Design of MTJ-based Neural Networks

with Stochastic Computing

ANKIT MONDAL and ANKUR SRIVASTAVA, University of Maryland College Park

Hardware implementations of Artificial Neural Networks (ANNs) using conventional binary arithmetic units

are computationally expensive, energy-intensive, and have large area overheads. Stochastic Computing (SC)

is an emerging paradigm that replaces these conventional units with simple logic circuits and is particularly

suitable for fault-tolerant applications. We propose an energy-efficient use of Magnetic Tunnel Junctions

(MTJs), a spintronic device that exhibits probabilistic switching behavior, as Stochastic Number Generators

(SNGs), which forms the basis of our NN implementation in the SC domain. Further, the error resilience of

target applications of NNs allows approximating the synaptic weights in our MTJ-based NN implementation,

in ways brought about by properties of the MTJ-SNG, to achieve energy-efficiency. An algorithm is designed

that, given an error tolerance, can perform such approximations in a single-layer NN in an optimal way owing

to the convexity of the problem formulation. We then use this algorithm and develop a heuristic approach

for approximating multi-layer NNs. Classification problems were evaluated on the optimized NNs and results

showed substantial savings in energy for little loss in accuracy.

CCS Concepts: • Computer systems organization → Neural networks; • Mathematics of computing

→ Convex optimization; • Hardware → Spintronics and magnetic technologies; Emerging architectures;

Additional Key Words and Phrases: Magnetic tunnel junctions, energy efficiency, approximate computing,

regularization

ACM Reference format:

Ankit Mondal and Ankur Srivastava. 2019. Energy-efficient Design of MTJ-based Neural Networks with Sto-

chastic Computing. J. Emerg. Technol. Comput. Syst. 16, 1, Article 7 (October 2019), 27 pages.

https://doi.org/10.1145/3359622

1 INTRODUCTION

The capability of the human brain to learn and solve complex problems has inspired advancements
in areas of neuroscience, artificial intelligence, and machine learning. Decades of research in Arti-
ficial Neural Networks (ANNs), despite our limited understanding of biological Neural Networks
(NNs), have shown promising results in applications such as pattern recognition and image classi-
fication [50]. However, a typical ANN can have thousands of neurons and synapses, making their
hardware implementation both computation- and memory-intensive [41]. This has prompted the

A preliminary version of this work has appeared in the ISLPED 2017 [42].

This work is supported by the National Science Foundation (NSF) under Grant 1642424.

Authors’ addresses: A. Mondal and A. Srivastava, 8223 Paint Branch Drive, A V Williams building (Department of Elec-

trical and Computer Engineering), University of Maryland, College Park MD 20742; emails: amondal2@terpmail.umd.edu,

ankurs@umd.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1550-4832/2019/10-ART7 $15.00

https://doi.org/10.1145/3359622

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

https://doi.org/10.1145/3359622
mailto:permissions@acm.org
https://doi.org/10.1145/3359622

7:2 A. Mondal and A. Srivastava

development of optimization techniques at different levels of these complex networks to achieve
energy efficiency [44, 55].

Approximate Computing is an emerging concept that involves the computation of imprecise
results to achieve significant reductions in power consumption [15]. The inherent error-resilience
of Recognition, Mining, and Synthesis applications make them a perfect candidate for such trade-
off between the quality of results and the energy requirements. A similar paradigm is Stochas-
tic Computing (SC), which concerns the use of low-cost logic gates, instead of binary arithmetic
units, for computations [2, 12, 46]. In SC, data, which are interpreted as probabilities and called
Stochastic Numbers (SNs), are represented in the form of bit streams of 0s and 1s and generated
by circuits called Stochastic Number Generators (SNGs). SC has been shown to be significantly
energy-efficient when compared to conventional methods [43]. Traditionally, SNGs are composed
of pseudo-random number generators (such as Linear Feedback Shift Registers) and comparators;
however, these can account for a significant fraction of the design cost of the complete system
in terms of energy and area. For example, the energy can be up to 80% when implemented us-
ing CMOS [2, 56]. Thus, designing low-cost SNGs is of prime importance to the overall energy-
efficiency of SC-based circuits, and new nanoscale technologies have provided some hope in this
regard.

Magnetic Tunnel Junction (MTJ) is one of several emerging spintronic devices [64]. Apart from
non-volatility, its high integration density, scalability, and CMOS compatibility make it a suitable
candidate for replacing CMOS in future memory devices [27, 28, 57]. The Spin-Transfer Torque
RAM, which is based on MTJs, has been explored as a memory device. While a lot of research has
focused on reducing its critical switching current density to lower the write energy [20], attempts
have been made to exploit the probabilistic switching characteristics of MTJs to use them as SNGs
(such as in Reference [8]), which could produce bit streams representing any fraction between
0 and 1. Such applications include the use of MTJs in the implementation of Bayesian inference
systems with SC [23] and of synapses in neuromorphic computing systems [63], and for spike
generation in spiking neural networks [51].

This article integrates SC based on MTJs into ANNs and explores the different ways of achieving
energy efficiency at both the device level and the network level; in the latter, through approxima-
tions. Our contributions are summarized as follows:

• We outline the characteristics of an MTJ with regard to switching time and energy, develop
a low-energy MTJ-SNG by exploiting the properties of SC, and compare it with the baseline.

• We propose the use of our MTJ-SNG as an architectural construct for ANNs in the SC do-
main and develop an optimization algorithm that approximates the synaptic weights in a
single-layer NN for achieving energy-efficiency by sacrificing little accuracy.

• This algorithm is then extended to a multi-layer NN by heuristically breaking down the
entire problem into separate problems for each layer and solving each of them optimally.

• Last, we show how regularization techniques can be incorporated in the NN training process
to obtain better results and prove the effectiveness of our algorithm through simulations.

The rest of the article is organized as follows: In Section 2, we provide the necessary background
of neural networks and Stochastic Computing and discuss related work. Section 3 describes MTJs
and proposes an energy-efficient MTJ-SNG. The algorithm for approximating the weights of NNs
is prescribed in Section 4. Section 5 mentions methods for achieving more optimal results from
the algorithm. Simulation results are given in Section 6; Section 7 does further analysis of our
techniques and Section 8 wraps up our work.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:3

Fig. 1. (a) A neuron. (b) The tanh function. (c) Schematic of an MLP with one hidden layer.

2 PRELIMINARIES

2.1 Neural Network Architecture

The fundamental units of an NN are neurons, which represent non-linear, bounded functions, and
synapses, which are interconnections between neurons. Each neuron performs a weighted sum of
its inputs, which in turn is fed to a non-linear activation function to squash the output to a finite
range [50]. The output of a neuron, called the activation level, can be expressed as

y = f �
�

N∑
i=1

wixi + b�
�
, (1)

where N is the number of inputs to the neuron, wi is the synaptic weight of the connection from
the ith input xi , b is a bias, and f () is an activation function (such as tanh or sigmoid). Figure 1(a)
depicts the operations performed by a neuron and 1(b), the behavior of the tanh function.

Feedforward networks are the most elementary Neural Networks, in which information flows
only in one direction from the input to the output, represented by an acyclic graph. The simplest
feedforward network, called a Perceptron, contains just the input and output layers. More popular
and useful are the Multi-layer Perceptrons (MLPs), which have one or more layers of neurons,
called hidden layers, between the inputs and the outputs (Figure 1(c)).

The ability of an NN to learn is what makes it useful. Prior to using in applications such as
function approximation and classification, an NN has to be trained using several examples, which
are pairs of inputs and their corresponding outputs or labels. The weights are initialized to random
values and then adjusted as the network is trained to perform a certain task. Weight updates can
occur either after each training example is scanned (online learning) or after all of them are scanned
(batch training). One single pass/iteration through the entire training dataset is called an epoch.
This is called Supervised learning, as opposed to Unsupervised Learning, where data is not labelled
prior to training and desired outputs are not specified. The most popular technique of training an
NN is the error back-propagation method, which relates the error or cost function with the weights
of all the layers. This kind of a “backward calculation” is used to compute the gradient of the error
function that is then used to update the weights in the direction in which error goes down the
steepest [50]. This is known as gradient descent or the delta rule and is given as

Δwi = −η
∂E

∂wi
, (2)

where η is known as the learning rate and E is the error function.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:4 A. Mondal and A. Srivastava

Fig. 2. (a) Scaled addition in SC, (b) Integral SC (ISC) representation (m = 2), and (c) Multiplication in ISC
(m1 =m2 = 2).

2.2 Stochastic Computing

The concept of Stochastic Computing (SC) and other closely related computational paradigms
dates back to the 1960s and ’70s [12, 46, 47] and essentially refers to the representation of analog
quantities by probabilities of discrete events that occur sequentially and are statistically indepen-
dent. In contrast to conventional arithmetic computing, SC uses bit streams to represent numbers,
typically denoted by the probability of ‘1’s in the stream. A Stochastic Number (SN) with value
p ∈ [0, 1] is represented as a Bernoulli sequence of bits, such that if there are n bits in the sequence,

out of which k are ‘1’, then p = k
n

[2]. This is known as the unipolar format. In the bipolar format,

p ∈ [−1, 1], and the same bit sequence would now have the value p = 2k−n
n

. For example, the bit
stream 0100101000 would be interpreted as 0.3 in the unipolar format and −0.4 in the bipolar
format.

In SC, multiplication is performed by an AND gate in the unipolar format [2]. Thus, given
two stochastic streams X and Y, their product is AND(X,Y). In the bipolar format, it is given as
XNOR(X,Y). However, it is not possible to perform a precise addition in the SC domain, as the
sum of two SNs might very well lie beyond the range. Only a scaled addition is possible, which is
achieved through a 2:1 Mux whose Select input is the scaling factor and is also an SN. The scaled
addition of A and B, with scaling factor S, would give Z = A.S + B.(1-S) as in Figure 2(a). With
S = 0.5, one can get A+ B

2 , albeit with a loss of precision. However, most implementations of NNs
involve the sum of a large number of numbers and a loss of precision would only result in severe
errors at its outputs.

To overcome this issue, Ardakani et al. [3] introduced the concept of Integral Stochastic Comput-
ing (ISC), which allows us to represent numbers beyond the range of conventional SC. In the unipo-
lar format, a real number s ∈ [0,m] can be expressed as the sum ofm numbers s1, s2, . . . sm ∈ [0, 1].
Each si can be represented as stochastic streams and s can be obtained as the bit-wise summation of
thesem streams, as illustrated by an example in Figure 2(b). For example, 1.25 can be expressed as
0.75 + 0.5, which have 8-bit stochastic representations, say, 11011011 and 01001101, respectively.
Now, the integral stochastic stream of 1.25 can be obtained by a bit-wise summation of these, which
is 12012112, also represented using two streams.

In general, a number s ∈ [0,m], when represented as the sum ofm SNs, would require �loд2m�+1
streams (similar to a binary representation). This concept extends similarly to the bipolar format
as well [3]. Multiplication and addition in ISC are performed using binary radix multipliers and
adders, respectively. Given two real numbers s1 ∈ [0,m1] and s2 ∈ [0,m2], their product and sum
would have �loд2 (m1m2)� + 1 and �loд2 (m1 +m2)� + 1 bits, respectively, in the ISC domain. Fig-
ure 2(c) gives an example. It must be noted that though computations in ISC require binary radix
adders and multipliers, these are much less expensive than those in conventional methods of com-
puting. For example, addition of two integral SNs with m1 =m2 = 2 and precision 1/n, will need
a 2-bit adder irrespective of their precision; whereas the same in arithmetic computing will need
a (1 + loд2 n)-bit adder. The difference is same for the case of multiplication.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:5

It is also possible to design good approximations to non-linear functions in ISC using Finite
State Machines. Commonly used activation functions in NNs are the hyperbolic tangent (tanh), the
logistic sigmoid, the ReLU, and the softmax. Brown et al. [5] introduced FSMs based on saturating
counters wherein the probabilities of state transition are dependent on the function input and a
pair of stochastic control variables. These FSMs can be used to realize any non-linear function;
examples for the tanh, the linear gain, and the exponential are demonstrated in Reference [5]. The
basic FSM designs for tanh and exponentiation functions have been extended by Reference [3] for
use in the ISC domain. In Reference [36], a ReLU neuron for SC is proposed that adds a history
shift register array to the FSM of tanh to maintain a non-negative output. An FSM for the logistic
sigmoid additionally modifies the output of the states of the FSM to shift the midpoint of the
sigmoid’s output to 0.5. Finally, it is also possible to perform the softmax function in the ISC
domain [19] by making use of several (as many as there are inputs) exponentiation FSMs and
an LUT.

2.3 Related Work

Several research efforts have been made both towards the efficient implementation of deep neural
networks through approximations (as in References [44], [61], and [55]) and towards the realization
of NN hardware with non-conventional methods of computation. In Reference [44], Mrazek et al.
provide a methodology for designing a power-efficient NN with a uniform structure using approx-
imate multipliers. The key constraints governing the approximation were determined through an
error resilience analysis, with the acceptable error types being specified by a gate level description
of the accurate circuit. The algorithm basically performs a design space exploration with the search
being guided by an error metric. Zhang et al. [61] propose an approximate computing framework
that considers approximating not only the computations but also the memory accesses. They de-
veloped an optimization procedure that assesses how critical each neuron is in terms of its impact
on output quality and energy consumption and that jointly considers error-tolerance capability
and energy consumption. In Reference [55], Venkataramani et al. use back-propagation itself to
analyze the neuron criticality, as the process of training is of an error-healing nature. They use pre-
cision scaling to design approximate “low-impact” neurons and the weights connected to them,
and design a quality-configurable Neuromorphic Processor Engine that provides a programmable
hardware for implementing the approximate NNs.

Several works have investigated the use of analog devices for computational purposes. Tarkov
[52] proposes using a memristor as a device that stores synaptic weights, thereby obviating the
need for a large amount of memory, and develops an algorithm for mapping a weight matrix onto
a memristor crossbar. Hu at al. [17] extend this idea by developing a Dot-Product Engine (DPE)
for matrix-vector multiplications by taking into account the device and circuit issues. The speed-
accuracy product of the DPE was found to be significantly higher than that of a custom digital
ASIC. Venkatesan et al. [56] proposed a spintronic-based Stochastic Logic that used the random
switching characteristics of a nanomagnet to generate random numbers and MTJs to store them
in binary form. MTJs themselves have been proposed as true random number generators by Wang
et al. [58], wherein the feasibility of the circuit design is verified by using 28nm ultra thin body and
buried oxide fully depleted silicon-on-insulator technology. Nickvash et al. [26] have extensively
studied the switching characteristics of nanomagnets and developed analytical PDFs for small and
large values of current. This is then extended to complex nanomagnet circuits (all-spin logic) and
the effect of device-level variations on circuit performance is characterized. In Reference [49], the
stochastic switching behavior of a giant spin-Hall device was analyzed and taken advantage of to
design low-power probabilistic logic gates, along the lines of an energy-accuracy trade-off. Such
a nanomagnet-based implementation was more efficient than probabilistic CMOS logic.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:6 A. Mondal and A. Srivastava

There exists significant literature in the field of Stochastic Computing [6, 29, 34]. Qian et al. [48]
synthesize in stochastic logic a reconfigurable architecture that performs processing operations on
a datapath. A thorough analysis of the sources of errors that introduce uncertainty in the stochas-
tic operations has been done and a fault tolerance better than conventional (non-SC) architectures
has been demonstrated. Also, hardware usage turned out to be significantly less with SC-based
implementations for several kinds of applications. In Reference [3], Ardakani et al. design an ef-
ficient implementation of an NN in the ISC domain. They achieve significant reduction in power
consumption at the same rate of misclassification when compared to CMOS implementation. Kim
et al. [29] combine the ideas of SC in DNN and energy-accuracy trade-off by removing near-zero
weights during the training phase (and later retraining the network), combining the addition and
squashing operations, and incorporating progressive precision in the SC bit streams. Li et al. [37]
evaluate Deep Convolutional Neural networks in the Stochastic Computing framework and pro-
pose modifications in hardware to account for certain simplifications in the design of SC hardware.
An empirical formula for the number of states in an FSM-based tanh is developed, and the order
of pooling and activation function are reversed, since the activation is more suited to be applied
on the higher-precision inner product. These techniques together bring down the network error
from 27.83% (for the non-optimized version) to 3.48%. Canals et al. [6] introduce the concept of
Extended Stochastic Logic (ESL) to overcome the limitation in the range of numbers represented
by conventional SC. Any real number can be encoded in the form of a ratio of two numbers in the
standard range. The authors design blocks for performing basic arithmetic functions such as ad-
dition, subtraction, multiplication, and division and also specialized ones such as a bipolar divider
and hyperbolic tangent. These are then employed in ANNs to solve a 2-D classification problem and
a regression, both of which demonstrate close-to-ideal accuracy and noise immunity. The authors
of Reference [40] apply SC for the inference in Deep Belief Networks. A reconfigurable activation
unit is designed to realize different functions and Stochastic Number generators are shared among
neurons in the same layer. Significant benefits are obtained in terms of area, power, and energy
consumption as compared to 32-bit floating and 8-bit fixed-point implementations. The work in
Reference [35] proposes a hardware-oriented approximate activation function (specifically, a sig-
moid) and a new hybrid stochastic multiplier composed of OR gates followed by a binary parallel
counter. The presence of OR gates for partial summation reduces the size of the parallel counter.
This new architecture saves area, power, and energy by impressive factors.

3 MTJ-BASED STOCHASTIC COMPUTING

In this section, we shall describe the characteristics of an MTJ with regard to its probabilistic
switching and exploit the properties of Stochastic Numbers to design a low-energy optimized MTJ-
based SNG and compare it to its non-optimized version. This MTJ-SNG would be the underlying
source of approximations in our energy-efficient NN implementation.

3.1 Characteristics of Magnetic Tunnel Junctions

MTJ is the most popular spintronic device being considered for NVM technologies [57]. It consists
primarily of three layers—two ferromagnetic layers made of CoFeB, and an oxide (typically MgO)
layer sandwiched between them acting like a tunnel barrier. An MTJ can exist in one of two stable
states, depending on the relative magnetizations of its free and fixed layers—Parallel (P, logic 0) or
Anti-Parallel (AP, logic 1). Based on the magnetic anisotropy, MTJs can be broadly classified into
two categories [21, 57]:

(1) In-plane MTJ, where the magnetic orientations are in the plane of the tunnel barrier, and
(2) Perpendicular MTJ, where the orientations are perpendicular to that plane.

Figures 3(a) and 3(b) depict these, along with the P and AP configurations.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:7

Fig. 3. (a) and (b) Schematics of Magnetic Tunnel Junctions with two different magnetic anisotropies,
(c) Spin-Torque Transfer switching from P→AP (left) and AP→P (right). Dashed lines show the path of op-
positely spin-polarized electrons.

It is possible to flip the magnetization of the free layer of an MTJ by passing spin-polarized
current of appropriate polarity. This mechanism, known as Spin-Torque Transfer [28, 64], is illus-
trated in Figure 3(c). Depending on the magnitude I of the current and the critical current Ic0 [60],
given as1

Ic0 =
αγeμ0MsHKV

μBθ
, (3)

the switching behavior of MTJs can be classified into three types: Precessional (I > Ic0), Dynamic
Reversal (0.8Ic0 < I < Ic0), and Thermal Activation (I < 0.8Ic0). The time required for switching
is a function of the current I . Further, the process is a stochastic one, which means that current of
a given magnitude and pulse width has only a given probability of successfully changing the state
of the MTJ. This stochasticity is due to thermal fluctuations in the initial magnetization angle and
is an intrinsic property of the STT switching [38]. Since we desire a high-speed SNG, we operate
in the Precessional mode, where high currents lead to switching times of the order of a few ns [9].
Here the switching probability is expressed as

P (a, t) = exp (−4f (a)Δexp (−2t/T)), with

a =
I

Ic0
and f (a) =

(
2a

a − 1

) (−2
a+1)
,

(4)

where t is the pulse width, Δ = HK MsV
2kBT

is the thermal stability, and T is the mean switching time

(which is also dependent on a) [54]. The probabilities for AP→P switching, for different voltage
bias, are shown in Figure 4(a). The other switching direction exhibits very similar behavior.

The spin transfer efficiency (θ) of an MTJ is different for the two switching directions, with
θP→AP having a smaller value than θAP→P [62]. This makes IP→AP

c0 > IAP→P
c0 , which means that

the same magnitude and duration of current will correspond to different switching probabilities
for the two switching directions. We have simulated the behavior of an MTJ with perpendicular
magnetic anisotropy using an MTJ HSPICE Model2 [27], as it is more scalable and has a lower
switching current than its in-plane counterpart. The values of Ic0 obtained were 64.5μA for P→AP
switching and 21.2μA for AP→P switching and of Δ was 47.5.

1In this formula, and the ones that follow, HK is the effective anisotropy field, Ms is the saturation magnetization, α is the

magnetic damping constant, γ is the gyromagnetic ratio, μB is the Bohr magneton, μ0 is the permeability of free space, V

is the volume of the free layer, kB is the Boltzmann constant, T is the temperature, θ is the spin transfer efficiency, and tF

is the thickness of the free layer.
2The parameters used were: cell dimension 35nm × 35nm, tF = 1.4nm, Ms = 1029emu/cm3, α (damping constant) =

1.4X 10−2, RA product = 6Ωμm2, T = 300K . These values are representative of the materials used in the MTJ, which is

CoFeB for the ferromagnetic layers and MgO for the tunnel barrier.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:8 A. Mondal and A. Srivastava

Fig. 4. (a) MTJ stochastic switching characteristics. (b) Variation of energy with value of SN p with and
without BMS (green undotted and red dotted lines, respectively). (c) The BMS.

Let us now analyze theoretically the switching time and energy consumption of the MTJ. Given
a pulse of widthTp , the expected time at which switching takes place (given it does) is expressed as

tsw =

∫ Tp

0

τ
dP

dt
dτ , (5)

where the derivative of P is the switching probability density function. Let IAP and IP denote the
currents in the AP and P state, respectively. The expected energy consumed in such a scenario,
for AP→P switching, is

EAP→P
sw = V

(
IAP tsw + IP (Tp − tsw)

)
, (6)

where V is the applied voltage bias. Whereas the energy spent in the case where switching does
not take place is

EAP→P
nsw = V IAPTp . (7)

Thus, the expected energy consumed is therefore given as

〈E〉AP→P = P (Tp)EAP→P
sw + (1 − P (Tp))EAP→P

nsw . (8)

Expressions are similar for the P→AP switching.

3.2 MTJ as a Stochastic Number Generator

An MTJ can be used as an SNG by exploiting the probabilistic nature of its switching. Given a
voltage pulse, the probability of switching can be decided by controlling the pulse width. For each
bit generated by the MTJ representing a stochastic number p ∈ [0, 1], one would typically do the
following iteratively:

i. Reset to ‘0’ with 100% probability (not required if state didn not change in the previous
iteration)

ii. Write ‘1’ with probability p, and
iii. Read the value stored in the MTJ (which would be ‘1’ with probability p and ‘0’ with

probability 1 − p).

Repeating this procedure n times would give us a sequence of n bits, out of which p.n are expected
to be 1, thereby representing the SN p.

We quantify the characteristics of the MTJ in terms of its switching probabilities, average switch-
ing times, and expected energy consumption using Equations (4) through (8), with current values
(IP and IAP) taken from the HSPICE model. We obtained that switching from AP→P with 99.9%
probability at a voltage bias of 0.9V requires a pulse of duration 3.87ns and has an expected energy

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:9

Table 1. Pulse Width for 50% Switching Probability,
Expected Energy Consumption, and the Energy-delay
Product (EDP) for P → AP Switching with Different

Values of Bias Voltages

Vbias Tp |P=0.5 (ns) 〈E〉 (pJ) Tp〈E〉(×10−21 Js)
0.7V 3.97 0.374 1.485
0.8V 3.22 0.401 1.291
0.9V 2.73 0.431 1.177
1.0V 2.34 0.463 1.083

consumption of 0.51pJ . However, for the P→AP direction, the same quantities are higher at 6.39ns
and 0.81pJ , respectively (observation of similar nature made in some other works as well, such as
Reference [25]). We thus choose the P state to be the reset state (logic 0), and switch to the AP
state (logic 1) with some probability for generating the SN. This means that switching P→AP with
probability p will produce bit streams where the probability of finding ‘1’ s is p.

To decide the bias voltage for the P→AP switch, we assess the energy and delay characteristics
of four different voltages with reasonable switching times and use the energy-delay product (EDP)
as the metric for comparison. Table 1 specifies, for different bias voltages, the required pulse width
for a switching probability of 50%, the expected energy consumption 〈E〉, and the product of these
two quantities, which is equivalent to the EDP. Lower voltages consumed less energy, but had
higher pulse width. As per our metric, we choose 1.0V as the bias voltage for P→AP switch, since
it has the smallest EDP of 1.083 × 10−21 Js . The red dotted line in Figure 4(b) plots the relation
between energy and switching probability at this bias voltage.

Resetting the MTJ to ‘0’ requires a pulse width of 3.87ns , and switching to ‘1’ with 99.9% prob-
ability requires 5.46ns . Reading the value stored in the MTJ using a sense amplifier can be done
with a current of about 1μA for 2ns [33]. Thus, the total time necessary for generating one bit of
the SN is (a maximum of) 11.33ns .

3.3 Proposed Biased MTJ-SNG

We make a slight modification to the overall procedure of generating the bits of the SN. As seen
earlier, generating an SN with valuep using the MTJ requires that it switch with the same probabil-
ity from P→AP. If p is closer to 1 than to 0, then more time, and hence more energy, has to be spent
in writing ‘1’ to the MTJ, as compared to the case where we had to generate an SN with value 1 − p.

To prevent this characteristic from making the SNG energy-intensive, we choose to generate
1 − p whenever p > 0.5 (but generate p if p ≤ 0.5). In other words, whenever p > 0.5, instead of
switching P→AP with probability p, we switch with probability 1 − p (which is ≤ 0.5). Now all
we would need to do is to invert the bits output from this Biased MTJ-SNG (BMS, the name being
derived from the biased nature of the data produced by the MTJ-SNG) so we get back the SN p.
Therefore, we generate either p or 1 − p, whichever is smaller, and use an XOR gate to choose
between the generated SN and its inverse, as shown in Figure 4(c). The ‘S’ input can be derived
from the most significant bit of the binary number that is being converted to a stochastic number
[2]. As an example, if p = 0.3, the MTJ-SNG will generate p itself and S will be 0 to output A = 0.3.
However, if p = 0.7, the MTJ will generate (1 − p) (= 0.3) and S will be 1 to output Ā = 0.7.

The energy required to generate one bit from the BMS is plotted (green undotted line) in
Figure 4(b) as a function of p. The symmetry of the plot comes from generating the smaller of
p and 1 − p. Table 2 compares the two MTJ-SNGs in terms of the total time, average energy, and
average power required per bit output. The XOR in the BMS has a small contribution of 0.1μW .
Since the BMS requires us to generate SNs only lesser than or equal to 0.5, the maximum write

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:10 A. Mondal and A. Srivastava

Table 2. Comparison of Normal and Biased MTJ-SNG

MTJ-SNG Time (ns) Avg. Energy (pJ) Avg. Power (μW)
Normal 11.33 0.726 64.08

BMS 8.21 0.526 64.07

duration reduces from 5.46ns to 2.34ns (the latter corresponds to the pulse width giving 50%
switching probability), thereby decreasing the total time. The average energy and power have
been calculated considering a uniform distribution of p over the range [0, 1]; BMS brings about
a reduction by 27.5% in energy (without introducing any approximation or error in the SN being
generated). The power does not scale with the energy, as the write latency also reduces.

3.3.1 Randomness of the MTJ’s Behavior. Several applications in cryptography require random
numbers of very high quality to keep systems secure. Fukushima et al. [10] experimentally demon-
strate the generation of true random numbers using MTJs. Two MTJs meant to generate the num-
ber 0.5 had a mean error of only 1.3% and standard deviation of 0.4%. The random bitstreams
generated by the two MTJs were found to be independent and had a very low correlation value
of ±1 × 10−4. Additionally, the MTJ-based random number generator designed in Reference [58]
passed 12 out of the 15 NIST SP-800 statistical tests. And the work in Reference [22] tests the suit-
ability of using MTJs for generating Stochastic Numbers and finds low levels of self- and cross-
correlation among the generated bitstreams.

We performed LLG simulations (in MATLAB) of MTJ switching to test the quality of the bits
using the NIST Statistical Test Suite [1], which checks for randomness. A total of 220 bits were
generated (which is the minimum size required by the suite), out of which 49.91% were 1. The bit-
stream passed all the 15 tests. The Stochastic Computing Correlation (SCC) measurement adopted
in SPINBIS [22] yields SCC values within ±0.01 for our bitstreams, which is very close to the ideal
value of 0.

3.3.2 Comparison with CMOS-based SNG. The authors in Reference [56] report that a
spintronic-based SNG built with the MTJ can be seven times more power-efficient than a CMOS-
SNG. Knag et al. [31] synthesize a 100MHz SNG with a 32-bit LFSR and a comparator in 65nm
technology, which has a power consumption of 80.2μW . This translates to an energy consump-
tion of 0.8pJ per bit of the SN having a throughput of 1 bit every 10s . These figures are slightly
worse than our BMS, which produces a bit every 8.21ns with an energy of 0.53pJ .

It is worth noting the following in terms of scalability and power of SNGs. The power of a CMOS-
based SNG (LFSR + comparator) scales linearly with the size of the LFSR and the comparator,
which strictly governs the precision of the SN generated. But an MTJ-based SNG would have a
power consumption independent of the desired precision of SNs. Further, the switching energy
of an MTJ depends heavily on the device dimensions that dictate the thermal stability Δ (which
is proportional to the volume). A high value of Δ indicates good non-volatility on one hand, but
implies large switching current on the other.

4 ENERGY-EFFICIENT MTJ-BASED NN IMPLEMENTATION

Stochastic circuits have gained popularity in low-cost implementation of NNs [3] [29]. We pro-
pose using MTJs as a hardware component for realizing NNs in the SC domain by exploiting
their probabilistic switching nature to generate SNs representing inputs and synaptic weights.
The error-resilient nature of NN applications motivate us to approximate the network outputs,
and hence the weights, effectively designing approximate multipliers, and thereby gaining energy
efficiency. In this section, we develop an algorithm that, given a trained network, the training

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:11

Fig. 5. (a) Neuron implementation in ISC. The outputs of the binary tree adder and multiplier consist of
multiple bit-streams. (b) Schematic of 1-layer NN.

dataset and an error tolerance adjust the weights in the best possible way in the solution space,
while remaining within the error constraint at all times.

4.1 NN Implementation in the SC/ISC Domain

Here, we describe how the operations of a neuron would be performed in the ISC domain (described
in Section 2.2). We know that the activation level of a neuron is given as

y = f (a) = f �
�

M∑
i=1

w̃i x̃i
�
�
, (9)

where f is the activation function operating on a, the weighted sum of inputs. Several types of
activation functions can be used in an NN. We go for the tanh function for the following reasons:

• It is non-linear and has a bipolar output.
• It limits the output to finite range [−1, 1].
• It is continuous and differentiable, enabling us to use the gradient descent method for

training.
• It mimics the behavior of biological neurons to a good extent.

In Equation (9), the x̃i (inputs) are assumed to be in the range [−1, 1] (if not, they can be nor-
malized). Let the w̃i (weights) be in [−β, β]. The latter can be represented in the ISC domain with
�log2 β� + 1 stochastic streams. However, if β > 1, this would need those many SNGs, leading to
higher area and energy consumption. However, if β < 1, producing SNs equal to the value of the
weights would mean an under-utilization of the available range/precision. Therefore, we have to
scale them down to the range [0, 1] or [−1, 1] to be able to use only 1 stream, and that too use it
effectively. Since the ISC implementation of the tanh function using FSM is in bipolar format, we
go for the interval [−1, 1]. So the weighted sum would now be written as

a = β
M∑

i=1

wixi , (10)

where xi ,wi ∈ [−1, 1] ∀ i and would be represented as stochastic numbers. Figure 5(a) illustrates
the operations of a neuron in the ISC domain, implementing Equations (9) and (10). The addition,
multiplication, and neural activation would be achieved as explained in Section 2.2. Several such
neurons in parallel would form a layer as in Figure 1(c), and multiple layers connected in series
would make up the entire network. Note that the output of the tanh is a single stochastic stream
in the bipolar format.

Let us now briefly describe the FSM-based realization of the tanh activation in the SC domain
[5]. It essentially composed of a number of states S0, S1 . . . SN−1 arranged linearly and mimicking

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:12 A. Mondal and A. Srivastava

Fig. 6. A Finite State Machine for realizing the non-linear function tanh in SC. Each bit of the input bitstream
transitions the FSM to the left or right by one state depending on whether it is 0 or 1, respectively, unless
the end has been reached.

a saturating counter as shown in Figure 6. Any transition of the FSM can only be to the state in
the left or the right, as long as the counter has not saturated. The FSM is initialized at the middle;
that is, at state SN /2. Upon receiving a ‘1’ from the input bitstream, the machine moves to the state
to its right, and left otherwise. It outputs a ‘0’ if the current state is in the left half (that is, states
S0 to SN /2−1), and a ‘1’ if it is in the right half. Note, however, that the actual function computed in
this way, with N states in the FSM, is tanh(Nx/2). The approximation to the tanh obtained using
the N -state FSM is good only when N is not very small.

Such a drawback is automatically overcome when implementing the tanh(x) in the ISC domain
with a large enough range. As per Reference [3], in the case of m input bitstreams capable of
representing numbers in the range [−m,m], the FSM would havem times the number of states as
that used for a single bitstream. Further, the maximum number of states that can be transitioned
(incremented or decremented) after each time step also goes up to m. The output represented by
the FSM states remain the same—0 for the left half, and 1 for the right half. We can express the
equivalence between the desired function and the function represented by the stochastic tanh as

tanh
(Nx

2

)
� 2 × E[NStanh(m × N ,X)] − 1. (11)

In the above equation, NStanh represents the stochastic tanh in ISC realized by an FSM with
m × N states, X is the bitstream corresponding to x , and E is the expectation operator stating
the fraction of ‘1’ s in the output bitstream. For example, to obtain the tanh(x) for a number
x represented by four bitstreams, the FSM should have 4 × 2 = 8 states and is thus capable of
providing good enough approximations to the function. As per our notations and Figure 5(a), the
neural dot product would be in the range [−Mβ,Mβ] and the FSM for tanh would have 2Mβ states.
Kim et al. [29] provide a lot of insight into how to obtain tanh with scaled inputs; such strategy
can be put in place as and when necessary.

4.2 Problem Formulation

As can be seen from Figure 4(b), the generation of SNs (from the proposed BMS) that are closer to
0 or 1 require less energy as compared to those that are closer to 0.5. In the bipolar format of SC,
this would imply low energy requirement for numbers closer to 1 or −1 than to 0. This property
of the BMS forms the basis of achieving energy-efficiency through approximations that tend to
shift the weights “farther from” 0 towards 1 or −1, whichever is closer. We therefore aim to bring
the weights of the network as close to 1 or −1 as possible while ensuring that output errors are
within a specified tolerance level for all the training inputs. We investigate both single-layer and
multiple-layer NNs.

4.3 Optimizing a 1-layer NN

For a single layer network, we illustrate how to formulate the network approximation as a
convex optimization problem. Convexity of the feasible region of such a problem implies that any
local minimum in that region is also the global minimum, ensuring that the optimum value of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:13

Table 3. Notations for Problem Formulation of 1-layer NN

Name Meaning Type Dimension
W The output layer weights Matrix M × N
x̂r The r th training input sample Vector M
β The scaling factor forW Scalar 1
ar The r th weighted sums (output layer) Vector N
yr The r th activation levels (output layer) Vector N

the objective function is always achieved. Further, non-convex optimization problems are more
complicated to solve.

The objective of our formulation is to minimize the separation of the weights from 1 or −1
(whichever is closer). Since the weights are independent of each other, the objective function can
be expressed as the sum of the “distance” of the weights from 1 or −1. One way of specifying an
error tolerance at the output layer is to measure the deviation of the output neurons from their
actual values (the values obtained from the trained network) and restrict all of them to within some
threshold. Such a constraint should be applicable to all input vectors used in the optimization.

However, the tanh function (which provides the neuron output) is not only non-linear but also
non-convex. Thus, neither neuron activation levels nor the errors in them can be directly incorpo-
rated in the convex formulation. But the input to this activation function is affine (hence, convex),
because it is a weighted sum of inputs. We therefore need to translate the output errors to errors
in inputs of tanh. Given a limit to the deviation in neuron output, we pre-compute the upper and
lower limits of the weighted sum input using the tanh−1 function and force it to remain within
these limits. Since tanh is a monotonically increasing (hence, invertible) function, these limits can
be computed exactly. Thus, the non-convexity of the tanh function neither impedes the optimiza-
tion process nor introduces any inexactness.

Figure 5(b) illustrates a 1-layer network having M inputs and N outputs and Table 3 lists the
notations. In addition, the presence of ˆ(hat) symbol indicates that the quantity is the original value
obtained from the trained network, and hence is a constant in the problem; whereas its absence
denotes a variable.

The Optimization Procedure: The procedure for approximating weights in a 1-layer NN is
shown below.3 It takes a trained network and an error thresholdϕ as inputs and minimizes the “sum
of distances” using D samples of the training dataset. The Absolute Value (AV) of the deviation of
the neuron output should not exceed ϕ.

Line 2 computes the maximum and minimum values that the weighted sum inputs of the tanh
function can take. Here yr

j denotes the output of the jth neuron for the r th training input, and ur
j

& vr
j are the corresponding limits. The objective function (line 3) to be minimized is the sum of

distances of the weights from 1 or −1.W ′ in line 5 stores how far they are from 1 or −1, whichever
is closer. It effectively implementsW ′

i j = min(1 +Wi j , 1 −Wi j); however, this expression cannot be

directly used, as the minimum of affine functions is not convex [4]. This is also the reason why
we impose a constraint on the range of the weights in line 4 (minimum of distance from 1 and −1
is not convex). Line 6 computes the weighted sum inputs of the tanh function, line 7 constrains
them within the limits obtained in line 2, and line 8 finally returns the approximate neuron outputs
that can now be used to check the accuracy of the NN. The optimization problem stated above is

3For solving the optimization problems, we use CVX, a package for specifying and solving convex programs [14]. The

way in which certain specifications (constraints and expressions) in the procedure are written is guided by the disciplined

convex programming rules of CVX.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:14 A. Mondal and A. Srivastava

Weight Approximation for a single-layer NN

1: procedure OptimWeights(M,N ,Ŵ , x̂ , ŷ, β,ϕ)

(In the following, i, j, and r run from 1 to M,N , and D, respectively)

2: The constraint on the neuron outputs are
���yr

j − ŷ
r
j
��� ≤ ϕ.

Compute the upper and lower limits of all weighted sums as

ur
j = tanh−1

(
ŷr

j + ϕ
)

and vr
j = tanh−1

(
ŷr

j − ϕ
)
, respectively

3: Solve the optimization problem: minimize
W

Wsod =
M∑

i=1

N∑
j=1

W ′i j

subject to the following constraints (lines 4 to 7):

4: Restrict the weights to their original range: if
(
Ŵi j ≥ 0

)
then 0 ≤Wi j ≤ 1

else −1 ≤Wi j ≤ 0

5: Find the distance of the weights from 1 or −1, whichever is closer

W ′i j =
⎧⎪⎨⎪⎩

1 +Wi j i f Ŵi j ≤ 0, (12)

1 −Wi j otherwise (13)

6: Compute the weighted sum to all neurons for all inputs: ar = β (WT x̂r)

7: Constrain these weighted sums within their upper and lower limits: vr
j ≤ ar

j ≤ ur
j

8: return yr = tanh(ar)
9: end procedure

convex, because the objective function and the inequality constraints are convex and the equality
constraints are affine [4].

4.4 2-layer NN

A similar formulation could have been made for NNs containing more than one layer, having
the objective of minimizing the “sum of distances” of each of the weight matrices, with con-
straints computing the hidden layer(s) outputs and finally restricting the error in the output layer’s
weighted sums. However, the presence of the non-convex activation function in the hidden layer(s)
would make the problem (as a whole) non-convex. To mitigate this issue, we propose break-
ing down the problem into separate but identical convex problems, each of which optimizes the
weights in successive layers of the NN under some error constraints. Thus, in a 2-layer NN having
M inputs, L hidden neurons, and N output neurons, we shall solve two problems successively—first
for the hidden layer and then for the output layer, with error thresholds ϕZ and ϕW , respectively.
Notations used for the 2-layer network, for terms that do not appear in a 1-layer network, are
described in Table 4.

4.4.1 Estimation of Maximum Tolerable ϕZ . In a 2-layer NN, given some value of ϕW , there
exists an upper limit to the amount of error that can be tolerated at the outputs of the hidden
layer. We know that the weighted sum input to the jth neuron of the output layer is

aj =

L∑
l=1

Wl jhl . (14)

A constraint on the output layer neuron outputs for all of the D inputs is written as

|Δyr
j | = |yr

j − ŷr
j | ≤ ϕW ∀j = 1 . . .N , r = 1 . . .D. (15)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:15

Table 4. Notations for Problem Formulation of 2-layer NN

Name Meaning Type Dimension
W The output layer weights Matrix L × N
Z The hidden layer weights Matrix M × L

βW , βZ The scaling factors ofW and Z Scalar 1
br The r th weighted sums of hidden neurons Vector L
hr The r th hidden neuron outputs Vector L

We use a first-order approximation (from Taylor series expansion) to the errors in the weighted
sums and write Equation (15) as

|ar
j − âr

j | ≤
ϕW

f ′(âr
j)

∀j = 1 . . .N , r = 1 . . .D, (16)

where f ′ is the first derivative of tanh. Because tanh is a monotonically increasing function, f ′

is always positive. To establish a lower bound, we need to consider the strictest of all constraints,
which takes us to

|aj − âj | ≤ min
r

�
�

ϕW

f ′(âr
j)
�
�
= λj (say) ∀j = 1 . . .N . (17)

Because we are interested in deviations in hidden neuron outputs, using Equation (14) and then

writing (hl − ĥl) = ϵl , we obtain

������

L∑
l=1

Wl j (hl − ĥl)
������
=

������

L∑
l=1

Wl jϵl

������
≤ λj ∀j = 1 . . .N . (18)

The LHS of (18) represents a hyperplane (for each j) in the L-dimensional space, with slab con-
straint (18) having L variables and N equations.

Case 1: L > N . The feasible region defined by the inequality in (18) is unbounded. Thus, we can
only estimate a lower bound Φ̄Z on the maximum error tolerable at the hidden layer. Considering
a way of specifying error constraint similar to that of the outer layer, no neuron in the hidden
layer should deviate by an amount more than the given ϕZ . This can be written as |ϵl | ≤ ϕZ ∀ l or
‖ϵ ‖∞ ≤ ϕZ (restricting the L∞ norm). Let us denote by ϕ̄ j the lower bound corresponding to the
jth constraint. It can be obtained by finding the point with the smallest L∞ norm that violates the
jth constraint. That is,

ϕ̄ j = min ‖ϵ ‖∞ subject to
������

L∑
l=1

Wl jϵl

������
≥ λj . (19)

Since the slab constraint should hold for each of the N output neurons (as in (18)), the lower bound
can be found as the smallest of all ϕ̄ j

Φ̄Z = min
j

ϕ̄ j . (20)

Because all equations are linear, Φ̄Z can be obtained quickly through linear programming.
Case 2: L ≤ N . The feasible region defined by inequality (18) is bounded. We can find a lower

bound using the same argument as above, as well as an upper bound ΨZ . The latter will correspond
to the largest L∞ norm of the points that satisfy all the constraints. Since maximizing a norm is
non-convex, we can maximize the L coordinates one-by-one and then take the largest of these

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:16 A. Mondal and A. Srivastava

values. So letψl = max ϵl with constraint (18) in place. Then upper bound

ΨZ = max
l

ψl = ‖ψ ‖∞. (21)

(Note that all theψl will be positive.)

4.4.2 Problem Formulation. Algorithm 1 shows how the weights of the two layers can be opti-
mized independently, with the output from the first being an input to the second. Recall that the
error threshold Φ̄Z estimated in Equation (20) provides only a lower bound to the maximum toler-
able error. Thus, using this estimate may not yield the best approximation possible with the given
ϕW and it is necessary to solve with higher values of the threshold ϕZ and look for better solutions
(further approximations). We use a search-based method for this where we start with ϕZ = ϕ̄Z and
keep increasing ϕZ in steps as long as it is not large enough to make the optimization problem of
the output layer (line 4 of Algorithm 1) infeasible, and then reduce it to within a desired accuracy.

ALGORITHM 1: Problem Formulation for 2-layer NN

1: Obtain ϕ̄Z from ϕW using Equation (20) (and ΨZ using Equation (21) if relevant)

2: Choose ϕZ = ϕ̄Z or higher

3: h = OptimWeights(M,L, Ẑ , x̂ , ĥ, βZ ,ϕZ)

4: y = OptimWeights(L,N ,Ŵ , h, ŷ, βW ,ϕW)

We can also generalize the optimization for a network with k layers. Let Mi , Ni denote the num-

ber of inputs and outputs of the ith layer, andŴi and βi be the weight matrix and its scaling factor,
with x̂i , ŷi being its inputs and outputs, and ϕi being the error tolerance. Algorithm 2 illustrates
how the approximation should be performed. The first step is to get the maximum tolerable er-
ror for all the hidden layers, starting from the highest one. Then the weights can be optimized
layer-by-layer starting from the lowest hidden layer, with approximate outputs of any layer used
as inputs to the next layer.

ALGORITHM 2: Problem Formulation for k-layer NN

1: for i = k − 1 to 1 do

2: Obtain ϕ̄i from ϕ̄i+1 using Equation (20)

3: end for

4: for i = 1 to k do

5: Choose ϕi = ϕ̄i or higher

6: yi = OptimWeights(Mi ,Ni ,Ŵi , x̂i , ŷi , βi ,ϕi)

7: x̂i+1 = yi

8: end for

5 REGULARIZATION AND CONSTRAINTS FOR CLASSIFICATION PROBLEMS

We now introduce two methods to improve the trade-off between energy and error rate of the
MTJ-based NN implementation proposed in the previous section. These are: Regularization, to
influence the distribution of the weights of the network in a way that leads to lower energy; and
a modified way of specifying error constraints applicable to classification problems.

5.1 Regularization

This is a technique used primarily to prevent the over-fitting of networks on the training datasets.
It is achieved by adding an extra term, known as the penalty function, to the cost function (E in

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:17

Fig. 7. (a)–(c) Regularization function types 1, 2, and 3, respectively, and (d)–(f) their derivatives.

Equation (2)) to be minimized during training. It has the effect of changing the distribution of the
weights of the network. With regularization, the overall loss function is expressed as

E = EI + EP (W), (22)

where EI is the error function (such as Mean Square Error or cross-entropy loss) computed from
the inputs and the weights, and EP is the regularization penalty function dependent solely on the
weights. The weight update using gradient descent is now written as

Δwi = −η
(
∂EI

∂wi
+
∂EP

∂wi

)
. (23)

Commonly used regularization functions are the L1 and L2 norms of the weights that impose
a penalty on weights with a large magnitude and prevent them from growing by a large extent.
However, the concept can be used in general to minimize any penalty function suited for the
purpose. For example, in Reference [59], a wedge-shaped function is used to assist the network in
learning discrete weights. Recall that the BMS consumes a lower energy when it has to produce
SNs close to 1 and −1, which correspond to weight values β and −β , respectively. This preference
for extreme values of the weights can be incorporated in the training of the network. We propose
three kinds of regularization functions that push weight values to their extremes.

Type 1: A function that is maximum at 0 and keeps decreasing with increasing magnitude of
the weights.

f (w) = λ

(
1 − |w |

w0

)
. (24)

The derivative of this function is given as

f ′(w) = − λ

w0
siдn(w). (25)

With this penalty function, the weights will always have a tendency to move away from 0.
Note that it is only the ratio of λ and w0 that affects the magnitude of the slope. Both equations
have been graphically depicted below in Figures 7(a) and (d). So, whenw > 0, f ′(w) = −λ/w0 and
Δw > 0, pushing the weight away from 0. However, one disadvantage of using this is that because
it impacts all weight values equally irrespective of their magnitude, there is a high chance that the
value of β would also go up.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:18 A. Mondal and A. Srivastava

Type 2: To counter the increase in β , we can impose a penalty on only those weights that are
close to 0. Such a function can be defined as

f (w) =

{
λ

(
1 − |w |

w0

)
for −w0 ≤ w ≤ w0,

0 elsewhere.
(26)

Thus, weights that are beyond the range [−w0,w0] are not affected by the regularization as
depicted in Figures 7(b) and (e).

Type 3: While everything is fine with type 2 regularization, it might be beneficial to attempt to
reduce the value of β itself, while also keeping the weights away from 0. Such an objective can be
achieved with

f (w) =
�����
λ

(
|w |
w0
− 1

) ����� . (27)

This will try to bring the weights closer to a suitably chosenw0 as plotted in Figures 7(c) and (f). In
our experiments, w0 was selected as the mean of absolute value of the weights obtained without
regularization and the same was used for all three types of regularization. The reason behind this
is that the mean value minimizes the L2-norm of its difference from the weights. The effect of
the penalty function on the weight change Δw depends only on the derivative f ′(w), and can be
adjusted by tuning the value of λ.

5.2 Classification Specific Customization

In Section 4.3, we put a constraint on the Absolute Value (AV) of the error at each of the output
neurons, which was then translated to upper and lower limits of the input of the tanh activation
function. Classification problems typically have as many output neurons as the number of classes,
and the one corresponding to the neuron having the highest value is taken as the output. That is,

Class = k = arg max
j

yj , (28)

with y being the output from the last layer. As long as the kth output remains the highest, the
input will be classified to be of class k . This leads to a different formulation of the error constraint
for such NNs where the kth output is only allowed to increase and the rest can only decrease.
Mathematically, this means

yk ≥ ŷk and yj ≤ ŷj ∀ j � k . (29)

This is equivalent to having only a lower limit for the input of the kth neuron and an upper limit
for the others,

ak ≥ âk and aj ≤ âj ∀ j � k . (30)

With some relaxation ϕ in the error of the neuron outputs, we may write

ak ≥ vk and aj ≤ uj ∀ j � k (31)

in line 7 of the optimization procedure, where vk and uj would be computed as in line 2. We shall,
henceforth, refer to this modified error constraint by the name Classification Specific (CS). It is
to be noted that the above constraints would be applicable only to the last layer of the NN; all
hidden layer neurons would still have a restriction on the absolute value of the error, as such strict
ordering of output does not exist for them.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:19

Fig. 8. Flow chart showing the process and network optimization and characterization. We start with train-
ing an NN without regularization.

6 EXPERIMENTAL METHODOLOGY AND RESULTS

Several benchmarks based on classification problems were used to measure the performance of
the NNs and estimate the energy savings obtained by approximating the multiplications. Training
and optimization of the neural networks was done in MATLAB on a 64-bit computer with Intel
Xeon E3 processor and 32GB RAM. First, we train an NN in MATLAB with the mean square error
cost function using the gradient descent method and check its accuracy on the test dataset. We
then estimate its energy consumption in classifying one sample with the Biased MTJ-SNG (BMS),
considering bitstreams of length 64. This energy includes those of the SNGs used for generating
both the network inputs and the weights. The energy consumption of each BMS in the networks
consists of three terms:

• The write energy, which varies with the SN being generated, and which is obtained from
the data corresponding to the green plot in Figure 4(b);

• The read energy; and
• The expected energy required to reset, which again depends on the generated SN. The larger

the SN, the higher its chances of requiring a reset (although, recall that using BMS means
we reset at most half of the times).

Note that the write, read, and reset energy values of the BMS were estimated jointly using the
characteristics Equations (4) through (8) and the MTJ HSPICE model [27]. And those of the FSM-
based tanh have been obtained from Reference [3]. For the input BMS, we considered the average
energy over all samples of the test dataset, since different samples would have different energy
requirements.

Next, we approximate the network using the optimization technique described in Section 4 for
different levels of error tolerance using CVX, a MATLAB-based software tool for solving convex
programs [14]. Finally, each of the newly obtained NNs with approximate multipliers were ana-
lyzed for their accuracy and their energy, again for bitstream length of 64. The input samples and
weights of the networks were thus rounded off to account for the reduced precision. The entire
process is repeated with the three types of regularization, and each of the four networks were
optimized using both types of error constraints—Absolute Value (AV) and Classification Specific
(CS). This is illustrated in Figure 8.

The results from the different datasets are summarized below:
1. MNIST digit recognition: The MNIST is a standard benchmark for classification problems

that categorizes handwritten digits, each of size 28 × 28 [32]. A simple 1-layer NN with 784 inputs
and 10 outputs was trained—first without and then with the three types of regularization.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:20 A. Mondal and A. Srivastava

Table 5. Variation of 1-layer Network Energy (in nJ) and
Classification Error Rate (in %) on the MNIST Test Dataset

with Different Values of Error Threshold ϕ with Both
AV and CS Types of Constraint

AV CS

Reg. ϕ − 0 0.05 0.10 0 0.02

None
Energy 355.8 282.5 226.1 200.9 204.2 191.2

Error 11.98 12.11 15.15 18.66 19.10 20.15

Type 1
Energy 349.4 276.8 225.6 202.9 197.4 187.4

Error 12.83 13.07 16.98 21.44 21.99 22.59

Type 2
Energy 342.9 272.8 216.0 192.0 192.0 181.7

Error 12.75 12.92 16.42 22.01 20.38 20.95

Type 3
Energy 349.8 276.4 215.0 187.8 193.6 180.7

Error 12.35 12.64 16.52 20.87 19.29 19.92

The 1st column of data corresponds to BMS without any weight

approximation.

Fig. 9. Energy vs classification error rate
curve for the MNIST dataset 1-layer NN.
The dots are for the AV constraint, whereas
the asterisks are for CS. Optimization was
done with 1K training samples.

Table 5 summarizes the benefits of approximating the weights of the NN for all types of penalty
functions and select values of error threshold ϕ. The first column shows the initial energy levels
before optimization (but with BMS in place). The ones with regularization are lesser than those
without, as the moving away of weights from 0 decreases the average energy of the BMS. This is
evident from the nature of the plot in Figure 4(b). It must be mentioned that the classification error
rate does not change with just the incorporation of BMS, as weight values remain exactly the same.
Significant energy savings were obtained even for ϕ = 0 owing to certain degree of redundancy in
some inputs. The entire data has been plotted in Figure 9. All accuracy and energy consumption
values (here and henceforth) are for 64-bit-long SNs; it varies linearly with the length. The BMS
that represented the 784 inputs had a constant share of 30.5 nJ (averaged over all test samples)
for all types of regularization and all values of ϕ, and the rest of the energy was from those of the
748 × 10 weights.

As can be seen, when AV constraint is employed, the trade-off with type 3 regularization is
comparable (or slightly better) to that without for somewhat large values of ϕ. However, with CS,
type 3 is markedly better than others, and also beats the AV. It must be noted, however, that the
CS constraint brings about a sharp reduction in energy accompanied by a significant increase in
classification inaccuracy with the smallest value of error threshold (ϕ = 0). However, AV provides
a more gradual trade-off with more control on the misclassification rate. This is due to the former
bounding network outputs from only one side, leading to a larger solution space.

The distribution of weights with and without regularization are shown in Figure 10. Without
any penalty on the weight values, the distribution looks roughly Gaussian (Figure 10(a)) with an
average magnitude w0 of about 0.05. With type 1 penalty function, there is a significant drop in
the number of weights in the range [−0.05, 0.05] whereas those beyond this range increase. Also,
the largest magnitude of weight β increases from 0.312 to 0.386. The type 2 function shows a good
concentration of weights just beyond w0 as expected (because only weights in [−w0,w0] incur
a penalty). That increases further with the third function, as weights with high magnitude are
severely penalized; β drops to 0.270.

Additionally, Table 6 shows the misclassification rates with different lengths of bitstreams of
the SNs. A length of ∞ refers to floating point double precision. The degradation in accuracy as
it goes down to 16 bits is less than 3% for all but type 1 of regularization. This shows that neural

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:21

Fig. 10. Histograms showing distribution of the weights in the 1-layer NN for different types of
regularization.

Table 6. Variation of Classification Error Rate (in %) for MNIST 1-layer NN with
Bit-stream Length of the SNs Both Before Weight Approximation (Represented

by a ‘–’ Under Threshold) and After (for ϕ = 0) with the AV Constraint

Regularization Threshold(ϕ) Length of Stochastic bitstreams
∞ 256 128 64 32 16

None
– 12.03 12.10 12.22 11.98 12.15 14.57
0 12.18 12.20 12.38 12.11 12.21 14.69

Type 1
– 12.71 12.70 12.66 12.83 13.89 16.63
0 12.96 12.96 12.88 13.07 14.15 16.85

Type 2
– 12.66 12.59 12.82 12.75 13.13 15.03
0 12.86 12.75 13.01 12.92 13.31 15.19

Type 3
– 12.27 12.25 12.27 12.35 12.59 15.04
0 12.59 12.58 12.57 12.64 12.91 15.37

computations are quite robust to such quantization; further, the weight optimization process does
not take this property away. The latency of inference is 8.21ns per bit of the SN (as in Section 3.3);
thus, a bitstream length of 64 would imply that the classification of 1 sample requires 0.525μs .

For the 2-layer NN, input images were scaled down to size 14 × 14 to reduce the time required
to solve the problem, and 25 neurons were used in the hidden layer. Characteristics of the network
before and after weight optimization are summarized in Table 7. In all energy values, input BMS
consumed 8.25 nJ ; remaining was distributed between hidden and output layer BMS roughly in
the ratio 18 : 1. The misclassification error rates with floating point double precision and without
any weight approximation are 6.69% without regularization and 7.33%, 6.98%, and 6.93% for types
1, 2, and 3, respectively. These are reasonably close to the corresponding values with 64-bit-long
SNs (first column of Table 7).

The energy-error trade-off with the Absolute Value constraint is depicted in Figure 11. For each
kind of regularization (including none), only the points that are pareto-optimal have been jotted
(that is to say, energy-error pairs having higher values of both than at least 1 other pair have been
skipped). Type 1 and type 3 of regularization do not exhibit lesser values of both energy and error
than the case with None. However, type 2 possesses similar or more optimal values for somewhat
high values of ϕW . A reduction of 40.5% in energy is observed with ϕW = 0.15 for a degradation
of about 1% in accuracy. With the CS constraint, although energy values show a significant dip
from those prior to optimization, the error that creeps in is much higher than that with AV. The
distribution of weights in both layers of this NN (as well as in the NNs of the next datasets) was
similar to those of the 1-layer counterpart.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:22 A. Mondal and A. Srivastava

Table 7. Results for the MNIST 2-layer Network for Select Values
of Error Threshold of the Outer Layer (ϕW)

AV CS

Reg. ϕW - 0 0.05 0.10 0.00 0.01

None
Energy 221.2 191.3 159.6 147.7 188.1 172.5

Error 6.97 6.79 7.08 7.32 8.18 8.13

Type 1
Energy 216.1 187.1 156.0 146.6 184.4 168.3

Error 7.43 7.45 7.83 7.85 8.75 8.86

Type 2
Energy 210.2 181.8 148.4 138.8 179.7 162.3

Error 7.09 7.08 7.21 7.41 8.02 8.17

Type 3
Energy 212.7 188.4 156.4 146.2 185.5 171.0

Error 7.13 7.13 7.35 7.45 7.99 8.05

Classification error and energy (in n J) are for 64-bit-long SNs.

Fig. 11. Plot of classification error
rate against energy for 2-layer NN of
MNIST dataset with AV constraint.

Fig. 12. Trade-off between network Energy and classification error rate for the Wine Quality test dataset.
For each curve in (a), the topmost point (one with the highest energy) corresponds to the values before
optimization. 0.46 nJ of energy was for the inputs; hidden and output layer weights’ consumption ratio was
roughly 2:1.

2. Wine Quality: This dataset (as well as the next one) was obtained form the UCI Machine
Learning Repository [39]. The goal here is to train a network to estimate the quality of samples
of red wine on the basis of results of physiochemical tests [7]. Only a 2-layer NN with 12 input
parameters and 20 hidden neurons was trained with 1, 249 samples and tested on 250 samples. The
number of misclassified samples before weight approximation and using floating-point precision
was 31, 34, 32, and 32 without and with the three types of regularization, respectively. Figure 12
plots the energy-error curve for both constraints. As is evident, the type 3 penalty function pro-
vides more optimal pairs of energy and error values than the others in both cases, with the CS
constraint surpassing the AV.

3. SONAR, Rocks vs Mines: This is about distinguishing between metal surfaces and rocks us-
ing sonar signals bounced off of them [13]. Both the training and test datasets contain 104 samples,
each having 60 inputs. Both a 1-layer NN and a 2-layer NN (with 15 hidden units) were trained.
The results are plotted in Figure 13. Before weight approximation, the number of misclassified
samples, with floating point double precision, were 20, 21, 24, and 18 for the 1-layer NN and 15,
14, 14, and 13 for the 2-layer NN for None, type 1, 2, and 3, respectively.

For the 1-layer NN, with both the AV and CS constraints (Figures 13(a) and (b)), type 3 works
the best, whereas types 1 and 2 are either similar or worse than None. The CS constraint is better
than the AV for all types except type 3, where they are comparable.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:23

Fig. 13. Energy vs inaccuracy in classification for the SONAR dataset. (a)–(b) 1-layer NN, and (c)–(d) 2-layer
NN. Input BMS required 2.29 nJ . Hidden and output weights in 2-layer NN used energy in ratio about 35 : 1.

Table 8. Execution Time (in seconds) for Training and Optimization of NNs

Dataset MNIST Wine SONAR
Network 1-layer 2-layer 2-layer 1-layer 2-layer

Training time 338–347 371–398 4 1 2

Optim Time
AV 2,478 1,633 442 4.1 31.7
CS 2,243 1,479 395 3.6 33.2

MNIST, Wine, and SONAR training typically required 250–300, 80, and 50 epochs, respectively.

The values of MNIST training time are in a range due to the slight variations from one type

of regularization to another.

In the 2-layer NN, types 1 and 3 outperform None when AV constraint is used (Figure 13(c)),
whereas type 2 is a bit worse. With the CS constraint (Figure 13(d)), only type 1 appears to be better
than None. Among the constraints, the latter provides better trade-off with no regularization and
type 1; but the two are comparable when types 2 and 3 are used.

7 DISCUSSION

In the previous section, we demonstrated the efficacy of our proposed weight-approximation tech-
nique by showing substantial reduction in energy consumption for only slight losses in output
quality. Also, the use of regularization during training and the Classification Specific error con-
straint in the optimization is more likely to give better trade-offs than not. Let us now discuss the
timing overhead and generality of our approach.

Table 8 lists the time required to train and run the convex optimization program for both types
of constraints, which vary widely due to the differences in the network and training set sizes.
Training on the MNIST and Wine datasets was stopped using the validation sets. The use of
penalty functions did not quite affect the training time, as the matrix-vector multiplications in the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

7:24 A. Mondal and A. Srivastava

network form the computational bottleneck. For the optimization, although the time requirement
is significant for large datasets, the procedure needs to run only once, and it is justified by the
obtained energy benefits. Optimization with CS was typically faster by a small margin due to a
lesser number of constraints.

Figure 10 revealed that a large number of weights are concentrated around 0. Such distribution
is pretty common and has also been observed in many other works for different datasets, such as
References [16, 29], indicating a wide relevance of our method.

Several works, such as References [11, 18, 24, 45], and many others, have proposed the use of
memristors, another emerging device technology, for the design of neuromorphic systems and
random number generators for hardware security applications. Memristors exhibit a stochastic
switching behavior, very similar to that of MTJs, which has been leveraged for such purposes. The
biased SNG technique proposed by us can also be used in the context of memristors whenever they
need to be used as SNGs, and our optimization algorithm would then be applicable for improving
energy efficiency. Switching characteristics of memristors as well as MTJs depends a lot on de-
vice dimensions and material. From the experimental results reported by these works, memristive
switching energy for a 50% probability was calculated to be in a wide range (15 pJ to 0.75 μJ).

There are several works that have looked into the implementation of NN in the SC paradigm.
Few of these are theoretical in nature; for instance, the work in Reference [6] introduces the notion
of Extended Stochastic Logic (ESL) to go beyond the range of standard SC and cover all real num-
bers, and design computational blocks for several arithmetic functions. Ardakani et al. [3] develop
the concept of Integral SC in the same year for the same purpose and also design necessary logic
blocks. Some works optimize or improvise the activation function unit [29, 37, 40] or the addition
unit [30, 35, 53]. Yet other works have proposed tweaking standard computations in CNNs [37]
or other smart techniques such as early decision termination [29]. The latter work [29] has some
similarity with our work in one aspect—it, too, advocates removing near-zero weights, but the
intention is to reduce random errors from the XNOR gate (the multiplier).

In our work, we focus only on optimizing the SNG part of the entire SC circuit, leaving the mul-
tipliers, adders, and activation units untouched. Our BMS exploits the probabilistic character of
the MTJ (something that could exist only in an analog devices) and the resultant energy consump-
tion pattern. And our weight approximation procedure is an entirely software-based optimization
approach; that is, it does not ask for any modifications in the SC circuits.

8 CONCLUSION

This article proposes the use of Magnetic Tunnel Junctions as Stochastic Number Generators in
an SC-based hardware implementation of Neural Networks. We design an energy-efficient version
of an MTJ-SNG (named BMS) that significantly reduces the average energy per bit of a stochastic
stream and propose its use in an SC-based NN. We go on to develop an algorithm based on convex
optimization that aims to adjust the weights in such an NN in a way that brings about a reduction
in the energy consumption. This approximation leverages the error resilient nature of applications
of NNs. The algorithm would be applicable to not only feed-forward networks, but also other more
complicated architectures (such as Convolutional and Recurrent NNs), since the basis of achieving
energy efficiency remains the same.

Further, we propose three types of penalty functions to be used for weight regularization during
training of the NNs, keeping in mind the kind of weight distribution that leads to lower energy.
Last, we suggest a small modification to constraints in the optimization procedure that caters to
classification-based problems by taking advantage of a certain redundancy in their outputs. To give
a perspective of the benefits brought about by our approach, the proposed algorithm brings about
a 40% reduction in energy consumption with less than 1% accuracy loss on the 2-layer MNIST

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:25

network. Future work could propose other optimization methods that can better work around the
non-convexity of NNs and approach the problem in a wholesome way. Also, more efficient ways
of using the MTJ as an SNG could be developed.

REFERENCES

[1] National Institute of Standards and Technology. 2017. The NIST Statistical Test Suite. Retrieved from: https://github.

com/arcetri/sts.

[2] Armin Alaghi and John P. Hayes. 2013. Survey of stochastic computing. ACM Trans. Embedd. Comput. Syst. 12, 2s

(2013), 92.

[3] Arash Ardakani, François Leduc-Primeau, Naoya Onizawa, Takahiro Hanyu, and Warren J. Gross. 2016. VLSI im-

plementation of deep neural networks using integral stochastic computing. In Proceedings of the 9th International

Symposium on Turbo Codes and Iterative Information Processing (ISTC’16). IEEE, 216–220.

[4] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.

[5] Bradley D. Brown and Howard C. Card. 2001. Stochastic neural computation. I. Computational elements. IEEE Trans.

Comput. 50, 9 (2001), 891–905.

[6] Vincent Canals, Antoni Morro, Antoni Oliver, Miquel L. Alomar, and Josep L. Rosselló. 2016. A new stochastic com-

puting methodology for efficient neural network implementation. IEEE Trans. Neural Netw. Learn. Syst. 27, 3 (2016),

551–564.

[7] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. 2009. Modeling wine preferences

by data mining from physicochemical properties. Dec. Supp. Syst. 47, 4 (2009), 547–553. DOI:https://doi.org/10.1016/

j.dss.2009.05.016.

[8] Lirida Alves de Barros Naviner, Hao Cai, You Wang, Weisheng Zhao, and Arwa Ben Dhia. 2015. Stochastic compu-

tation with spin torque transfer magnetic tunnel junction. In Proceedings of the IEEE 13th International New Circuits

and Systems Conference (NEWCAS’15). IEEE, 1–4.

[9] Zhitao Diao, Zhanjie Li, Shengyuang Wang, Yunfei Ding, Alex Panchula, Eugene Chen, Lien-Chang Wang, and

Yiming Huai. 2007. Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random

access memory. J. Phys.: Cond. Matt. 19, 16 (2007), 165209.

[10] Akio Fukushima, Takayuki Seki, Kay Yakushiji, Hitoshi Kubota, Hiroshi Imamura, Shinji Yuasa, and Koji Ando. 2014.

Spin dice: A scalable truly random number generator based on spintronics. Appl. Phys. Exp. 7, 8 (2014), 083001.

[11] Siddharth Gaba, Patrick Sheridan, Jiantao Zhou, Shinhyun Choi, and Wei Lu. 2013. Stochastic memristive devices for

computing and neuromorphic applications. Nanoscale 5, 13 (2013), 5872–5878.

[12] Brian R. Gaines. 1969. Stochastic computing systems. In Advances in Information Systems Science. Springer, 37–172.

[13] R. Paul Gorman and Terrence J. Sejnowski. 1988. Analysis of hidden units in a layered network trained to classify

sonar targets. Neural Netw. 1 (1988), 75.

[14] Michael Grant and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined Convex Programming, version 2.1.

Retrieved from: http://cvxr.com/cvx.

[15] Jie Han and Michael Orshansky. 2013. Approximate computing: An emerging paradigm for energy-efficient design.

In Proceedings of the 18th IEEE European Test Symposium. IEEE, 1–6.

[16] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights and connections for efficient neural

network. In Proceedings of the Conference on Advances in Neural Information Processing Systems. 1135–1143.

[17] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M. Grafals, Noraica Davila, Catherine Graves, Sity Lam,

Ning Ge, Jianhua Joshua Yang, and R. Stanley Williams. 2016. Dot-product engine for neuromorphic computing:

Programming 1T1M crossbar to accelerate matrix-vector multiplication. In Proceedings of the 53rd Design Automation

Conference (DAC’16). IEEE, 1–6.

[18] Miao Hu, Yu Wang, Qinru Qiu, Yiran Chen, and Hai Li. 2014. The stochastic modeling of TiO 2 memristor and its

usage in neuromorphic system design. In Proceedings of the 19th Asia and South Pacific Design Automation Conference

(ASP-DAC’14). IEEE, 831–836.

[19] Ruofei Hu, Binren Tian, Shouyi Yin, and Shaojun Wei. 2018. Optimization of softmax layer in deep neural network

using integral stochastic computation. J. Low Pow. Electron. 14, 4 (2018), 475–480.

[20] Yiming Huai. 2008. Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects. AAPPS Bull. 18 (2008),

33–40.

[21] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. L. Kanai, J. Hayakawa, F. Matsukura, and

H. Ohno. 2010. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mat. 9, 9 (2010), 721.

[22] Xiaotao Jia, Jianlei Yang, Pengcheng Dai, Runze Liu, Yiran Chen, and Weisheng Zhao. 2019. SPINBIS: Spintronics

based Bayesian inference system with stochastic computing. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. (2019).

DOI:10.1109/TCAD.2019.2897631

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

https://github.com/arcetri/sts
https://github.com/arcetri/sts
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1016/j.dss.2009.05.016
http://cvxr.com/cvx
https://doi.org/10.1109/TCAD.2019.2897631

7:26 A. Mondal and A. Srivastava

[23] Xiaotao Jia, Jianlei Yang, Zhaohao Wang, Yiran Chen, Hai Helen Li, and Weisheng Zhao. 2018. Spintronics based

stochastic computing for efficient Bayesian inference system. In Proceedings of the 23rd Asia and South Pacific Design

Automation Conference (ASP-DAC’18). IEEE, 580–585.

[24] Hao Jiang, Daniel Belkin, Sergey E. Savel’ev, Siyan Lin, Zhongrui Wang, Yunning Li, Saumil Joshi, Rivu Midya, Can

Li, Mingyi Rao, et al. 2017. A novel true random number generator based on a stochastic diffusive memristor. Nat.

Commun. 8, 1 (2017), 882.

[25] Wang Kang, Tingting Pang, Bi Wu, Weifeng Lv, Youguang Zhang, Guanyu Sun, and Weisheng Zhao. 2016. PDS:

Pseudo-differential sensing scheme for STT-MRAM. In Proceedings of the 53rd Design Automation Conference. ACM,

120.

[26] Nickvash Kani, Shaloo Rakheja, and Azad Naeemi. 2016. A probability-density function approach to capture the

stochastic dynamics of the nanomagnet and impact on circuit performance. IEEE Trans. Elect. Dev. 63, 10 (2016),

4119–4126.

[27] Jongyeon Kim, An Chen, Behtash Behin-Aein, Saurabh Kumar, Jian-Ping Wang, and Chris H. Kim. 2015. A

technology-agnostic MTJ SPICE model with user-defined dimensions for STT-MRAM scalability studies. In Proceed-

ings of the Custom Integrated Circuits Conference (CICC’15). IEEE, 1–4.

[28] Jongyeon Kim, Ayan Paul, Paul A. Crowell, Steven J. Koester, Sachin S. Sapatnekar, Jian-Ping Wang, and Chris H. Kim.

2015. Spin-based computing: Device concepts, current status, and a case study on a high-performance microprocessor.

Proc. IEEE 103, 1 (2015), 106–130.

[29] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun Lee, and Kiyoung Choi. 2016. Dynamic energy-

accuracy trade-off using stochastic computing in deep neural networks. In Proceedings of the Design Automation

Conference. ACM, 124.

[30] Kyounghoon Kim, Jongeun Lee, and Kiyoung Choi. 2015. Approximate de-randomizer for stochastic circuits. In Pro-

ceedings of the International SoC Design Conference (ISOCC’15). IEEE, 123–124.

[31] Phil Knag, Wei Lu, and Zhengya Zhang. 2014. A native stochastic computing architecture enabled by memristors.

IEEE Trans. Nanotechnol. 13, 2 (2014), 283–293.

[32] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. 1998. The MNIST database of handwritten digits. Retrieved

from http://yann.lecun.com/exdb/mnist.

[33] Hochul Lee, Juan G. Alzate, Richard Dorrance, Xue Qing Cai, Dejan Marković, Pedram Khalili Amiri, et al. 2015.

Design of a fast and low-power sense amplifier and writing circuit for high-speed MRAM. IEEE Trans. Magnet. 51, 5

(2015), 1–7.

[34] Bingzhe Li, M. Hassan Najafi, and David J. Lilja. 2019. Low-cost stochastic hybrid multiplier for quantized neural

networks. ACM J. Emerg. Technol. Comput. Syst. 15, 2 (2019), 18.

[35] Bingzhe Li, Yaobin Qin, Bo Yuan, and David J. Lilja. 2019. Neural network classifiers using a hardware-based ap-

proximate activation function with a hybrid stochastic multiplier. ACM J. Emerg. Technol. Comput. Syst. 15, 1 (2019),

12.

[36] Ji Li, Zihao Yuan, Zhe Li, Caiwen Ding, Ao Ren, Qinru Qiu, Jeffrey Draper, and Yanzhi Wang. 2017. Hardware-

driven nonlinear activation for stochastic computing based deep convolutional neural networks. In Proceedings of the

International Joint Conference on Neural Networks (IJCNN’17). IEEE, 1230–1236.

[37] Zhe Li, Ao Ren, Ji Li, Qinru Qiu, Yanzhi Wang, and Bo Yuan. 2016. DSCNN: Hardware-oriented optimization for sto-

chastic computing based deep convolutional neural networks. In Proceedings of the IEEE 34th International Conference

on Computer Design (ICCD’16). IEEE, 678–681.

[38] Z. Li and Shufeng Zhang. 2003. Magnetization dynamics with a spin-transfer torque. Phys. Rev. B (2003).

[39] M. Lichman. 2013. UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/ml.

[40] Yidong Liu, Yanzhi Wang, Fabrizio Lombardi, and Jie Han. 2018. An energy-efficient stochastic computational deep

belief network. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE’18). IEEE,

1175–1178.

[41] Tao Luo, Shaoli Liu, Ling Li, Yuqing Wang, Shijin Zhang, Tianshi Chen, Zhiwei Xu, Olivier Temam, and Yunji Chen.

2017. Dadiannao: A neural network supercomputer. IEEE Trans. Comput. 66, 1 (2017), 73–88.

[42] Ankit Mondal and Ankur Srivastava. 2017. Power optimizations in MTJ-based neural networks through stochastic

computing. In Proceedings of the IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED’17).

IEEE, 1–6.

[43] Bert Moons and Marian Verhelst. 2014. Energy-efficiency and accuracy of stochastic computing circuits in emerging

technologies. IEEE J. Emerg. Select. Top. Circ. Syst. 4, 4 (2014), 475–486.

[44] Vojtech Mrazek, Syed Shakib Sarwar, Lukas Sekanina, Zdenek Vasicek, and Kaushik Roy. 2016. Design of power-

efficient approximate multipliers for approximate artificial neural networks. In Proceedings of the International Con-

ference on Computer Aided Design. 7.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

http://yann.lecun.com/exdb/mnist
http://archive.ics.uci.edu/ml

Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing 7:27

[45] Rawan Naous, Maruan AlShedivat, Emre Neftci, Gert Cauwenberghs, and Khaled Nabil Salama. 2016. Memristor-

based neural networks: Synaptic versus neuronal stochasticity. AIP Adv. 6, 11 (2016), 111304.

[46] W. J. Poppelbaum. 1976. Statistical processors. Adv. Comput. 14 (1976), 187–230.

[47] W. J. Poppelbaum, Apostolos Dollas, J. B. Glickman, and C. O’Toole. 1987. Unary processing. In Advances in Computers.

Vol. 26. Elsevier, 47–92.

[48] Weikang Qian, Xin Li, Marc D. Riedel, Kia Bazargan, and David J. Lilja. 2011. An architecture for fault-tolerant com-

putation with stochastic logic. IEEE Trans. Comput. 60, 1 (2011), 93–105.

[49] Nikhil Rangarajan, Arun Parthasarathy, Nickvash Kani, and Shaloo Rakheja. 2017. Energy-efficient computing with

probabilistic magnetic bits—Performance modeling and comparison against probabilistic CMOS logic. IEEE Trans.

Magnet. 53, 11 (2017), 1–10.

[50] Sandhya Samarasinghe. 2016. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex

Pattern Recognition. CRC Press.

[51] Gopalakrishnan Srinivasan, Abhronil Sengupta, and Kaushik Roy. 2017. Magnetic tunnel junction enabled all-spin

stochastic spiking neural network. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition

(DATE’17). IEEE, 530–535.

[52] M. S. Tarkov. 2015. Mapping weight matrix of a neural network’s layer onto memristor crossbar. Optic. Mem. Neural

Netw. 24, 2 (2015), 109–115.

[53] Pai-Shun Ting and John Patrick Hayes. 2014. Stochastic logic realization of matrix operations. In Proceedings of the

17th Euromicro Conference on Digital System Design (DSD’14). IEEE, 356–364.

[54] Hiroyuki Tomita, Takayuki Nozaki, Takeshi Seki, Toshihiko Nagase, K. Nishiyama, E. Kitagawa, M. Yoshikawa,

T. Daibou, M. Nagamine, T. Kishi, et al. 2011. High-speed spin-transfer switching in GMR nano-pillars with per-

pendicular anisotropy. IEEE Trans. Magnet. 47, 6 (2011), 1599–1602.

[55] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. 2014. AxNN: Energy-efficient neu-

romorphic systems using approximate computing. In Proceedings of the International Symposium on Low Power Elec-

tronics and Design (ISLPED’14). ACM, 27–32.

[56] Rangharajan Venkatesan, Swagath Venkataramani, Xuanyao Fong, Kaushik Roy, and Anand Raghunathan. 2015.

Spintastic: Spin-based stochastic logic for energy-efficient computing. In Proceedings of the Design, Automation &

Test in Europe Conference & Exhibition (DATE’15). IEEE, 1575–1578.

[57] K. L. Wang, J. G. Alzate, and P. Khalili Amiri. 2013. Low-power non-volatile spintronic memory: STT-RAM and

beyond. J. Phys. D: Appl. Phys. 46, 7 (2013), 074003.

[58] You Wang, Hao Cai, Lirida A. B. Naviner, Jacques-Olivier Klein, Jianlei Yang, and Weisheng Zhao. 2016. A novel

circuit design of true random number generator using magnetic tunnel junction. In Proceedings of the IEEE/ACM

International Symposium on Nanoscale Architectures (NANOARCH’16). IEEE, 123–128.

[59] Yandan Wang, Wei Wen, Linghao Song, and Hai Helen Li. 2017. Classification accuracy improvement for neuromor-

phic computing systems with one-level precision synapses. In Proceedings of the 22nd Asia and South Pacific Design

Automation Conference (ASP-DAC’17). IEEE, 776–781.

[60] Deming Zhang, Lang Zeng, Youguang Zhang, Weisheng Zhao, and Jacques Olivier Klein. 2016. Stochastic spintronic

device based synapses and spiking neurons for neuromorphic computation. In Proceedings of the IEEE/ACM Interna-

tional Symposium on Nanoscale Architectures (NANOARCH’16). IEEE, 173–178.

[61] Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and Qiang Xu. 2015. ApproxANN: An approximate computing frame-

work for artificial neural network. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition.

EDA Consortium, 701–706.

[62] Yaojun Zhang, Xiaobin Wang, Yong Li, Alex K. Jones, and Yiran Chen. 2012. Asymmetry of MTJ switching and its

implication to STT-RAM designs. In Proceedings of the Conference on Design, Automation and Test in Europe. EDA

Consortium, 1313–1318.

[63] Yue Zhang, WeiSheng Zhao, Jacques-Olivier Klein, Wang Kang, Damien Querlioz, Claude Chappert, and Dafiné

Ravelosona. 2013. Multi-level cell spin transfer torque MRAM based on stochastic switching. In Proceedings of the

13th IEEE Conference on Nanotechnology (IEEE-NANO’13). IEEE, 233–236.

[64] Jian-Gang, Jimmy Zhu, and Chando Park. 2006. Magnetic tunnel junctions. Mat. Tod. 9, 11 (2006), 36–45.

Received July 2018; revised June 2019; accepted August 2019

ACM Journal on Emerging Technologies in Computing Systems, Vol. 16, No. 1, Article 7. Pub. date: October 2019.

