Efficient Counter-factual Type Error Debugging™

Sheng Chen and Baijun Wu
The Center for Advanced Computer Studies, UL Lafayette
Lafayette, USA
{chen, bj.wu}@louisiana.edu

Abstract—Type inference is an important part of functional
programming languages and has been increasingly adopted to
imperative programming. However, providing effective error
messages in response to type inference failures (due to type
errors in programs) continues to be a challenge. Type error
messages generated by compilers and existing error debugging
approaches often point to bogus error locations or lack sufficient
information for removing the type error, making error debugging
ineffective. Counter-factual typing (CFT) addressed this problem
by generating comprehensive error messages with each message
includes a rich set of information. However, CFT has a large
response time, making it too slow for interactive use. In par-
ticular, our recent study shows that programmers usually have
to go through multiple iterations of updating and recompiling
programs to remove a type error. Interestingly, our study also
reveals that program updates are minor in each iteration during
type error debugging. We exploit this fact and develop eCFT, an
efficient version of CFT, which doesn’t recompute all error fixes
from scratch for each updated program but only recomputes
error fixes that are changed in response to the update. Our key
observation is that minor program changes lead to minor error
suggestion changes. eCFT is based on principal typing, a typing
scheme more amenable to reuse previous typing results. We have
evaluated our approach and found it is about 12.4x faster than
CFT in updating error fixes.

I. INTRODUCTION

Type inference allows programs to be statically typed,
even without the presence of type annotations. A well-known
problem in type inference is that it is very hard to locate
the real error cause and generate informative feedback once
type inference fails. Practical compilers pay little attention to
address this problem. They usually report the place where
type inference first fails as the error cause and often report
errors in their internal jargon. As a result, understanding type
error messages is a main challenge in learning functional
programming [29].

This problem has also been intensively studied over the last
three decades from different directions. One direction aims to
find the most likely error causes [10], [15], [17], [21], [31].
As an example, consider the following ill-typed expression.!

rank = Az.(z '1’',z True)

Haskell compilers like GHC 8.0.2 and Helium [16] blame
True as the error cause. While changing True may remove

*This work is supported by the NSF grant CCF-1750886.

IThis paper uses notations from functional programming, which, for
example, supports higher-order functions and uses spaces to denote function
applications. We will also use constant values and functions, such as True,
succ, not, and odd, that have self-explanatory meanings.

the type error, this is not the only possible fix. In fact, changing
any of x (either occurrence), /17, or True may remove the
type error. We lack enough context to justify True is more
likely the error source than other locations.

This example demonstrates the value of type error slic-
ing [13], [26], which returns all program locations that may
contribute to the type error and excludes those don’t. However,
a problem with this approach is that programmers still have
to decide the real error cause among the returned slice, which
could be comparable to the original program in size [3], [17].
Recently, Pavlinovic et al. [24] improved this by finding all
possible error causes and suggesting one location at a time.

Like error slicing, counter-factual typing (CFT) [3] also
finds all possible error locations in the leaves and their combi-
nations of the program AST. However, unlike them, CFT also
comes with a change suggestion for each identified location.
This suggestion includes the type the identified location has
in the original program, the type the identified location ought
to have to remove the type error, and the result type of the
changed expression if the suggestion is applied. Since some
locations are more likely to be the error source than others
in most common cases, CFT ranks all fixes with a list of
heuristics and presents them iteratively. The evaluation result
showed that CFT achieved better precision than state-of-the-
art approaches when considering the first suggestions and per-
formed even better when considering also later suggestions [3].

One problem with CFT, however, is the long response time.
To find all possible error locations and change suggestions,
CFT requires intensive computations. Although CFT uses vari-
ational typing [6] to reuse typing results, it still takes dozens
of seconds to deliver the first error message for the programs
within 100 LOC. This makes CFT slow for interactive use. In
particular, our recent study of mining a program database [7],
[14], [30] shows that in average students take about 29 steps
to fix a type error with a maximum of 359 steps.

Fortunately, an accompanying finding of the study is that,
during error debugging, the change between two consecutive
versions is minor. In more than 80% cases, the change is within
10% of the old program. This result suggests to compute error
fixes incrementally rather than recompute all error fixes from
scratch as programs are updated.

In this work, we develop eCFT, an efficient version of CFT.
Specifically, let P; be the ¢th version of a program used in
compilation, F; be the set of all error fixes for P;, A p,; be
the difference between P; and P;, and A Fij be the difference
between F; and F;, CFT recomputes all error fixes for Fj

from P; while eCFT computes A, based on Ap,; and then
merges Ap, into F; to get Fj.

In Summary, this paper makes the following contributions
after we present the background in Section II.

1) eCFT relies on variational typing (Section II) to find all
error fixes. However, previous presentations of variational
typing itself [5], [6] and its applications [3], [4] are very
operational, making the type systems hard to understand
and prove. In Section III, we present our first technical
innovation of a declarative specification of variational
typing in the presence of type errors, which simplifies
the type system of eCFT and further applications of
variational typing.

2) We present the typing rules of eCFT in Section IV. A
subtle issue in the type system is about dealing with
unbound variables, which we handle nicely with the
above contribution.

3) We present three different strategies of reusing previous
results to compute error fixes under program updates
in Section V. Among them one relies on incremental
variational unification (Section VI), our second technical
innovation in this paper.

4) We have extensively evaluated the performance of eCFT.
The result shows that in more than 80% cases eCFT
is 12.4x faster than CFT of computing error fixes in
response to program updates.

II. VARIATIONAL TYPING AND PRINCIPAL TYPING

Variational Typing As already mentioned in Section I, both
CFT and eCFT rely on variational typing [6] to compute
informative error messages for all possible error locations.
This section presents variational typing and principal typing.

Variational expressions are obtained by extending normal
expressions (plain expressions) with named choices [12].
For example, the expression e = succ A(1,’a’) contains a
choice A with two alternatives: 1 and ' a’. We use d to range
over choice names. In this paper, we use only binary choices.

An important notion in variation representations is selectors
that have the form d.i, where d is a choice name and 7 is an
alternative index. Choices can be eliminated through a process
called selection, which takes in an expression e and a selector
d.i and replaces each occurrence of the choice d in e with
its ith alternative. We call a set of selectors a decision and
use J to range over decisions. Selection extends naturally to
decisions by iteratively selecting with all of the selectors in the
decision. We write |e|4,; and | e|s for selections. For example,
|succ A(1,"a’)]a1 yields succ 1.

The notions and definitions of variational expressions carry
over naturally to variational types. We use 7 and ¢ to range
over plain types and variational types, respectively.

Note that a variational program usually has thousands of
independent choices [6], and the number of plain programs
is exponential in the number of different choices. Therefore,
it is impractical to individually type all the plain programs

generated from a variational program. A more scalable way
is variational typing, which types variational programs once
without generating plain programs. The key idea of variational
typing is reuse, and we identified three opportunities in [6] for
reusing typing information.

In variational typing, one challenge is putting choice types
together. For example, the expression odd A(1,2) seems to
be ill typed at first since the argument type Int is not
equal to the type of the argument A(Int,Int). However,
we can check that both plain expressions from the variational
expression are well typed. Thus, it is reasonable to require odd
A(1, 2) itself to be well typed. We satisfied this requirement by
relaxing the equality relation in standard typing rules [25] to an
equivalence relation [6]. Intuitively, two types are equivalent if
they generate the same set of plain types. Thus, it is obvious
that Int is equivalent to A(Int,Int). We use ¢ = ¢y to
denote that ¢; and ¢5 are equivalent. We defer a full discussion
of type equivalence to [6]. With this relation, the expression
odd A(1,2) has the type Int.

Variational typing assigns types to expressions that generate
only well-typed plain expressions. For example, it fails to
assign a type to the expression odd A(l,True) since the
plain expression odd True is ill typed. In practice, it’s very
useful for variational typing to assign types to the well-typed
variants of a variational program even type errors exist in other
variants. We addressed this problem by designing an error-
tolerant type system [5], where type errors are represented
explicitly by | and variants that contain type errors receive
this type [5]. For example, odd A(1,True) has the type
A(Bool, 1), indicating that odd 1 has the type Bool and
odd True is ill typed.

The typing rule for function applications was very compli-
cated [5] since applications can introduce type errors in many
ways. In particular, the rule has to propagate type errors from
both the function and argument types and generate errors when
the argument type fails to match the type of the argument
exactly. Unlike standard typing rules [25] that are declarative,
the rule in [6] is operational, relying on three operations that
decompose type structures and introduce error types explicitly.
In Section III, we propose a declarative formulation of error-
tolerant type systems.

Principal Typing In the Hindley-Milner type system (HM)
and its implementation, the algorithm W [22], type environ-
ment is an input. The type environment stores type information
for free variables, and is updated accordingly as the inference
algorithm traverses the program AST. As a result, type infer-
ence of the later part of the AST always depends on that of the
earlier part. This bias hinders incremental type inference since
even a small change in the left subtree will require almost the
full type inference to be redone.

In contrast, principal typing [18] doesn’t suffer from this
bias. Type inference in principal typing is done bottom-up.
At each variable reference, the variable is assumed to have a
fresh type. The assumptions are refined as the inference gets
closer to the root and are made consistent at the corresponding
abstraction. Principal typing is more amenable to incremental

typing. If there is a change in a leaf, then there is no need
to perform type inference for the whole tree but only for the
nodes along the path from the updated leaf to the root. We
will design eCFT based on principal typing, which has already
been used in incremental type checking [2], [11], [18], [27].

III. COMPUTE ALL FIXES WITH VARIATIONAL TYPING

Declarative Error-Tolerant Variational Typing Early work
of variational typing [3]—[5] dealt with type errors by explicitly
representing and propagating them, making the understanding
and proving of relevant type systems difficult. We address this
issue by using typing patterns to indicate which variants of
the typing result are correct and which are incorrect. A typing
pattern 7 consists of L for ill-typed variants, T for well-typed
variants, and choice patterns for variational expressions. For
example, A(T, L) means that the result for the alternative A.1
is correct while that for A.2 is incorrect, and A(B(L, T), T)
means that the result in the variant {A.1, B.1} is incorrect and
those in other variants are correct.

With 7, the type judgments have the form m;I'Fe: ¢,
meaning that e has the type ¢ under I' with the validity
restriction 7. Intuitively, 7 specifies that only the variants
where 7 contains Ts are valid (type correct) and those that
m contains s are invalid (type incorrect). When we later use
the typing result, we should ignore the variants whose patterns
are Ls. For example, we have T;I' -1 : Int, saying that 1
has the type Int. Similarly, we have 1;I"F 1 : Bool, which
says that the typing result 1 has the type Bool. However, the
pattern L in the judgment indicates that we should ignore this
typing result.

With the extended judgment form, the rule for
function applications can be formalized as follows.

Vo |_7TJ5 =T = WIJS
b1 =x 02

typing

l#2]s

mu=L1|T|dmm)

m D Fep: ¢ m Il Fes: ¢

m ke ex:

The typing rule is declarative and simple. It makes only two
extensions to any standard typing rules for applications [25]:
the type equivalence relation (introduced in Section II) and the
typing pattern constrained judgments (introduced above). The
rule can be read as: if the function e; has the type ¢, the
argument e, has the type ¢-, and ¢; is equivalent to ¢o — ¢,
all under the validity restriction 7, then the application e; es
has the type ¢ under the same 7. The pattern 7 in ¢ =, @2
means that ¢; and ¢4 are required to be equivalent only in the
variants that 7 has Ts. Based on this new rule, we can type
A(succ,odd) B(1,True) as follows, where 7 = B(T, L).

¢157r¢2_>¢

;@ F A(succ, odd) : Int — A(Int,Bool)
7w, @ F B(1, True) :

Int = A(Int,Bool) =, Int — A(Int,Bool)
m; @ F A(succ,odd) B(1,True) : A(Int,Bool)

Int

Expressions e u= claz|Ixel|ee
Monotypes T o= yla|lT—oT
Variational types o = T|dl,d) | d— P
Type assumption sets A = & | A, (z,,d)
Substitutions 0 == o|0a—d
Choice environments A == & | A (l,d(,d))

Fig. 1: Syntax of expressions, types, and environments

Finding All Error Fixes with Variational Typing When
an expression is ill typed, we generally ask two questions:
Which subexpression caused the type error and how should
we change the subexpression to remove the type error? Con-
ceptually, eCFT addresses these problems in following steps:
(1) assuming that all subexpressions may be the error causes,
(2) computing the types that subexpression ought to have
to remove the type error, and (3) finding real error causes
by filtering out subexpressions the types they have differing
from those they ought to have. However, implementing this
idea directly seems to be very complex: for each of all
subexpressions and their possible combinations, we have to
perform type inference of the expression to find out the type
the subexpression ought to have.

To combat with this high complexity, ¢CFT employs varia-
tional typing to reuse computations. Specifically, it creates at
AST leaf a variational type, where the first alternative is the
type of the leaf under normal type inference and the second
alternative is the type the leaf ought to have to remove the
type error in the whole expression. Our previous work [3]
explained why CFT considered changing leaves only and how
it achieved high precision. After variational typing finishes,
we derive error messages from variants whose patterns are
Ts. Note as we said earlier, we should ignore variants whose
patterns are Ls. We then use a list of heuristics to rank all error
fixes and present most likely fixes to the user iteratively [3].

IV. TYPE SYSTEM

In this section, we present the type system for producing
a complete set of error fixes. The syntax is given in Sec-
tion IV-A, basic typing rules are discussed in Section IV-B,
and the top-level rule, which also handles unbound variables,
is given in Section IV-C.

A. Syntax

The syntax for types, expressions, and meta environments
is given in Figure 1. We use c to denote constants and x to
denote variables. We stratify the type definition into two layers.
First, monotypes, ranged over by 7, include constant types
(7), type variables («), and function types. In addition to «,
we use [to denote fresh type variables used for representing
function application results and use s to denote fresh type
variables generated during unification. Variational types extend
monotypes with choice types. We also deal with polymorphism
and conditionals, but omit their presentations in this paper due
to space limitations. They could be found in [7].

We use 0 to denote a sequence of objects o1,...,0, for
any object 0. We use 0(¢) to denote the application of a

c is of type v dd
m @ ke dy, ¢){((c),dly,9))}

CoON

Jd
Y @) F 2 dio, o) | {(E@), dér 61))]
mAFe:glA Vo, € AT(2): b1 =1 i
> m A\ Ax.e: 91 — P|A
APP

mAL e d1|Ar mAsbFer: 9a|Ay P = P2 = &
7T;A1U¢42|_61 622¢)‘A1UA2

Fig. 2: Basic typing rules

type substitution. It replaces free type variables in ¢ by the
corresponding images in 6. Its definition is standard except for
choice types, where substitution applies to both alternatives.

An assumption set .4 maps expression variables to vari-
ational types. Moreover, A stores the corresponding choice
name of each variable reference. We write A7 (z) and AP ()
to get the set of types and choice names that = maps to in A4,
respectively. We use [to represent program locations and use
the function ¢.(f) to return the location of f in e. We may
omit the subscript e when the context is clear. We assume
f uniquely determines the location. The exact definition of
£(-) doesn’t matter. The choice environment A associates each
leaf [with a choice type d{¢1, as) during the typing process.
Note that ¢, is the type under normal type inference for the
subexpression at [and ¢- is the alternative type for the same
subexpression to remove the type error.

B. Basic Typing Rules

We present the typing rules in Figure 2. The typing judge-
ment has the form 7; A F e : ¢|A, meaning that the expression
e has the type ¢ with the assumption set A, the validity
restriction 7, and the change information A.

The conditions 3 d in rules CON and VAR are always satisfied
since we have an unlimited supply of choice names. The rule
CoN says that if ¢ is of the type +, then in our type system
it has the type d(v,¢) to indicate that we can change ¢ to
any type ¢ to remove the type error. No assumption is made
for typing ¢, and thus the A component is empty. The choice
environment records the change as {(¢(c),d(vy, ¢))}. For this
rule, we can use any 7 since the typing of the constant is
always valid.

The rule VAR for variables is similar to the rule Con. The
only difference is that the variable may have any type ¢
and the assumption is recorded in A. At variable references,
we always assume variables are bound. Therefore the typing
pattern component can be any value. We deal with unbound
variables in Section IV-C.

Given an abstraction A\z.e, we first type the body e, which
may contain multiple assumptions for the parameter x. These
assumptions need to be consistent for the abstraction to be

well typed. The second premise in the ABs rule ensures that all
assumptions are equivalent to each other with the restriction 7.
The assumptions for the abstraction is the assumptions for its
body minus those for the parameter z. The choice environment
of the abstraction is the same as that for its body.

The App rule is very similar to the application rule discussed
in Section III. The only difference is that here we have
to merge assumption sets from the subexpressions and also
change environments from them.

C. Handling Unbound Variables

In rule VAR, we assume that all variables are bound.
However, this is not always the case. We can determine if
an expression contains unbound variables by checking A. If
A is empty, then the expression does not contain unbound
variables. Otherwise, it does. For unbound variables, we want
to say what are the expected types for them to remove the type
error in the expressions, rather than simply reporting them as
unbound.

To achieve this goal, we need to handle them in typing.
Specifically, what does it mean if (x, ¢, d) still belongs to A
after typing the expression e with 7; A - e : ¢|A? This means
that the access to = should be incorrect but when typing e we
assumed it was correct under the VAR rule. We can address
this problem by adjusting the validity restriction 7. In fact,
(z,¢,d) still belongs to A means that the typing result is
invalid in d.1. Thus, we need to worsen 7 by d(_L, T) to keep
the typing result valid.

In fact, there is a simpler way to address this problem. The
key observation here is that if the typing pattern 7 is already
worse than d(_L, T) , then we don’t need to worsen it anymore.
Before presenting the typing rule based on this idea, we first
formalize the notion that a typing pattern () is worse than
the other one (73), written as m; < mo.

m < o T < T3 T = T2
T<T 1<
m <73 m < o
m <73 mo < Ty

d(my,ma) < d{ms, m4)

Intuitively, m; < w9 expresses that, for any variant, if
contains a | then so does ;. The first two rules say that
all typing patterns are worse than T and better than L. The
third rule states that the relation is transitive. In the fourth rule,
we reuse the machinery of type equivalence by interpreting L
and T as two constant types. The rule then says that two
equivalent patterns satisfy the < relation. The last rule states
that two choice patterns satisfy < if both their corresponding
alternatives satisfy <.
With <, we can formalize the rule for unbound variables
declaratively as follows.
m Al e: g|A V(z,¢,d) € A:m < d(L,T)

UNBOUND
mha e dlA

(la) inferl(x) =
¢+ d{ag, as) {- d, a1, and s fresh-}
return (Ta {((L‘, ai, d)}’ b, {(€($)7 ¢)})
(1b) inferl(ey e3) =
(m1, A1, 1, A1) < inferl(er)
(7T27 .A2, ¢27 AQ) < infer](eg)

(m,0) < vunify(¢1, p2 — B) {-8 fresh-}
retum (& 1 @ 73, 0(A U A), 0(8), 6(21 U Ag))

Fig. 3: An inference algorithm that recomputes all error fixes

We can see that 4 in the premise disappears in the conclusion.
Intuitively, the rule says that if 7 is worse enough, then the
residual assumptions can simply be forgotten.

The subscript M indicates that this is the main rule on top
of all other typing rules. Given any expression, we should use
this rule to compute error fixes.

Although our type system is based on principal typing, it
generates the same set of error fixes as CFT does, as captured
in the following theorem.

Theorem 1 (CFT equivalence). m; S Fe: ¢p|A < S bepre:
¢ |AL such that ¢ =, ¢, A =, AL, and V5 : | ¢t |5 #
1 & |_7TJ5 3& 1.

In the theorem, we use Fcpr to denote the typing relation of
CFT. The superscript | in ¢ and AL reflects that errors
types are embedded in the type syntax in CFT. The relation
A =, At is defined as VI € dom(A): A(l) =, AL(l). We
can prove this theorem by showing that both CFT and this
type system are equivalent to the type-update system [3, §4.3]
through inductions over typing relations.

V. THREE DIFFERENT TYPE INFERENCE STRATEGIES

We present three inference algorithms in this section: an
algorithm that recomputes all type error fixes as programs are
updated, a coarse incremental inference algorithm that reuses
results so that only nodes that are affected by the change
are retyped, and a refined incremental inference algorithm on
top of incremental variational unification. We use Figure 4 to
illustrate the differences among them, where subfigures (b) to
(d) respectively visualize the behavior of these algorithms for
updating not ‘1’ to not 1.

Recompute All Error Fixes The algorithm infer! in Figure 3
provides a unification-based implementation of the typing
rules from Figure 2. The function inferl has the type e —
™ x A X ¢ x A, that is, it takes in an expression and returns
a typing pattern indicating which alternatives of the inference
result are valid, an assumption set .4, a result type, and a
choice environment storing type change information of leaves.
We only present the algorithm for two cases, and a detailed
version of inferl can be found in the longer version of this
paper [7].

We now briefly go through inferl. The case (1a) deals with
variable references. As mentioned earlier, we always assume
variables are bound at variable references. Therefore, inferl
returns T for 7, indicating no errors have occurred. Note that

(m2,02) = vunify(Uz)
not : 51

(m1,61) = vunify(Uy)
not_’1’ : 3

1: B(Int,as)
not : A<Bool — Bool,(n>
Uy : Alr,on) =" B{Int, as) — B

(b) Recompute whole result

’1’ : B(Char, as)
not : A(Bool — Bool,)
Uy : A(t,ay) =" B(Char, as) — B4
(a) Original result

(m2,02) = vunify(Us)
not 1: [0

(m2,02) = incrVU(Uy, Uy, (11,61))
not 1: [

1: B(Int,as)
not : A(Bool — Bool, a)

1: B(Int, o)
not : A<Bool — Bool,ay)

(c) Reuse results at nodes (d) Reuse results from unification

Fig. 4: A comparison of different methods for computing error
fixes under program updates. The underlined typing relations
are reused. To simplify our discussion, we assume not is a
constant having the type Bool — Bool. In the figure, the
value of 7 is Bool — Bool.

we need two fresh type variables oy and as in (1a), where o
denotes that the variable can be mapped to any type based on
its uses and ay denotes that the variable can be changed to
something of type ay to remove the type error if the variable is
an error cause. The main difference between them is that o is
recorded in A and will be later unified with other assumptions
for the same variable.

Case (1b) deals with function applications. It first computes
the results for the function and the argument independently
and then unifies the function type and the argument type with
vunify, a variational unification algorithm from [6]. We now
have three tying patterns, 7m; and 7o from typing e; and e,
respectively, and 7 from vunify. They will be merged together
through the ® operation, defined as follows.

lor=1 T@r = d(my, m2)Rm = d{mQT, o)

The result of @ is T only if both operands are T. Intuitively, ®
can be understood as the logical and operation if we interpret
Tand L as the truth values true and false, respectively. Based
on this operation, inferl returns ™ ® m; ® M2, meaning that
e1 eq is well typed only in the alternatives that both e; and es
are correct and the argument type of e; unifies with the type
of €9.

inferl is sound and complete with respect to the typing
relation from Section IV. We defer a detailed discussion of
the properties to [7].

Coarse Incremental Type Inference The type of inferl,
e — mx Ax¢xA, indicates that the expression e decides the
type and the assumption set of e. This immediately shows that
if a subexpression hasn’t been changed, then there is no need
to perform type inference for that subexpression. In particular,
when a node is changed, the type information for only the
path from that node to the root needs to be recomputed. For
example, if we change True in rank to 1, we need to update
the type information for the path from the right-most node to
the root. This allows us to recompute type information for four
nodes only, rather than eight nodes if we recompute everything

infer3:e >mx AxX ¢ x A

(3a) infer3(x) =
¢+ d°(a3,a3) {- reuse fresh names -}
return (T, {(z,a3,d%)}, ¢, {(¢(z), ¢)})
(3b) infer3(ey e2) =
(7'(17 Al, (72517 Al) < infer3(61)
(7T2, AQ, ¢2, AQ) < infer3(62)
if ¢7 = ¢1 and @3 = b2
return (7°®@m g, 0°(A1UA3), ¢9,0°(A1UAL))
(7,0) < incrVU(¢y =7 ¢ — °,U°, (7°,6°))
return (7T X T K T2, 9(./41 U .AQ), 0(,3), 9(A1 U Ag))

Fig. 5: A refined incremental inference algorithm.

from scratch.

We use two other tricks to save more computations for
updating error fixes. The first trick is to reuse fresh variables
generated for nodes. For example, in Figure 4(c), we use
the same variable a for the second alternative in choice B,
the same as in Figure 4(a). This idea helps us to, in some
situations, inferred the same type for a subexpression even it
is changed, effectively quarantining the effects of changes.

The second trick is reordering the process of unifying
all assumptions for the same variable, required in the type
inference for abstractions, where all the assumptions for the
same variable have to be unified. We could unify them in
a linear ordering, but earlier unification results affect later
unifications, causing a dependency. Instead, we first unify
the first type with each of the rest types, yielding a list of
substitutions that are combined into one substitution through
the technique of substitution composition [20, §6]. We defer
to [7] to a detailed exposition of these ideas.

We refer to the inference algorithm implementing these
ideas infer2. We will omit its presentation since it is very
similar to infer3 in Figure 5. In particular, infer2 can be
obtained from Figure 5 by replacing all occurrences of infer3
with infer2 and replacing calls of the form incrVU(¢; =*
¢2,U’, (n',0")) with calls of the form vunify(¢1, ¢2).

Refined Incremental Type Inference Coarse incremental
type inference tries to maximize the reuse of typing infor-
mation, but once a type is changed, the unification problems
involving that type has to be resolved, even the change is
minor. Observing that type unification is a main part of type
inference and needs intensive computations, our main idea
of refined incremental type inference is to solve variational
unification problems incrementally. The algorithm infer3 in
Figure 5 implements this idea, where incrVU is an incremental
variational unification algorithm developed in Section VI.

In the figure, we use the notation o° to denote the saved
copy of o from the last run of infer3. If there is no saved
value, then a meaningful value is returned. For example, in
case (3a), we use d° to return the choice name generated last
time. However, if no fresh choice name was generated and
saved, then d° just generates a new fresh choice name and
returns it. If U° doesn’t exist, then the corresponding call of
incrVU will call vunify instead.

We now briefly go through each case. Case (3a) is very
similar to (1a). The only difference is that we try to reuse fresh
names as much as possible. Case (3b) types applications. It
first checks if both the function type and the argument type
are the same as saved copies. If so, then the saved 7° and 6°
are used without unifying the function type and the argument
type. Otherwise, it uses the incremental variational unification
algorithm to solve the new unification problem.

VI. INCREMENTAL VARIATIONAL UNIFICATION

The general idea of incremental variational unification is
that we first compute the difference between two unification
problems, yielding a delta unification problem, which is then
solved and the result is merged into the original result to get a
unifier for the new unification problem. Given two unification
problems U: ¢; =7 ¢, and U’: ¢} =7 ¢/, and the result (7, 0)
for U, we take the following steps to solve U’.

Compute differences To compute the difference between two
unification problems, we first need to compute that between
two types. We use the function D(¢1,¢2) to compute the
difference between ¢1 and ¢5. The result is a set of decisions,
where each decision ¢ satisfies that |¢1]s Z |¢2]s. The
function D(¢1, ¢2) is defined as follows. The case for function
types considering their respective argument types and return
types and is omitted.

D(r,7) ={}
D(ri,m2) = {{}}
D(d(¢1,), d{$3, ¢a)) = {d.1: 6 | 6 € D(¢1, ¢3)}U
{d.2: 6| 0 € D(g2,¢4)}

D(d(¢1, p2),¢) = D(d(¢1, ¢2),d{|d]a.1, |}la.2))
D(¢,d(¢1,¢2)) = D(d(¢1, $2), })

When two types are the same, as in the first case, the result
is an empty set, meaning that there is no decision such that
selecting them with the decision results in different types.
In the second case, the two types are completely different.
The result set in this case has one member, which is itself
an empty set. Remember that selecting a type with an empty
decision gives that type back. To compute the difference of two
choice types with the same choice name d, D first computes
the difference of the first alternatives of the choices and then
adds d.1 to each decision. Similar, D does this for the right
alternatives and extends the results with d.2. The cases that
one argument is a choice type and the other is not are reduced
to the first case.
Here are two examples of applying D.

D(int,char) = {{}} D(A(Int,Char),char) = {{A.1}}

The result of the second example indicates that two arguments
differ in only one decision, the first alternative of A. The first
argument has Int while the second argument has Char in that
decision.

We overload D to compute difference between two unifica-
tion problems and define D(U,U’) as D(¢y, ¢;) U D(¢py, ¢L.).

With this definition, we have D(Uz,Uy) = {{B.1}}, where
Uy and U are from Figure 4.

Resolve subproblems Each decision § in D(U, U’) represents
a unification problem |U’|s to be resolved. We can again
use vunify to solve these problems. However, to simplify the
operation of the next step, we use vunify’, a variant of vunify.
The main difference lies in the way they represent unifica-
tion results. Given a unification problem ¢ =’ ¢o, vunify
returns (7, 6) while vunify’ returns {(8,7,6)}, a set of triples.
Each triple (6,7, 0) satisfies that (1) vunify(|¢1]s, [d2]s) =
(m,0) and (2) vunify(|¢1]s, |P2)s) doesn’t need to decom-
pose any choice. Consider, for example, the unification
problem A(int,a) =" nt. While vunify returns (T, {a +
Alk, 1nt)}), vunify’ returns {({A.2}, T,{a > 1nt})}. The
definition of vunify’ differs from vunify in how it returns results
only, and we will not present the definition in detail.

Based on vunify’, we define R(U,U’) to solve all the
unification subproblems and collect all the results as follows,
where § ranges over D(U,U’).

R(U’ U/) = U{(6U5/77T79) ‘ (6/’ 7T79) € Vui’llﬁ//(_(b”[s, _¢H5)}
As an example, the result of R(Us,Uy) is
{{41,B.1}, 1,{}),{A4.2,B1}, T,{a; = Int — B })}

Merge results Given each {(¢',7',60")} from R(U,U’) and
(m,0) for U, we can merge them together to get the result for
solving U’. First, let’s try to merge 7’ into 7 with the decision
¢’. Essentially, merging means that we need to change |7 |
to 7’and don’t change any other |7]|s/ if &' € 6" A 6" &
d’. We use the function comp from [6, §7.2] to perform this
task. Given ¢, ¢, &, comp(6,¢’, ¢) replaces the type at § in
¢ with ¢ and leaves other parts unchanged. As we have done
in Section IV-C, we can simply interpret L and T as two
constant types and use comp(J, 7,) to merge 7’ into . We
can merge 0’ into 6 with §’ similarly. For each o’ — ¢’ in ¢’,
we merge ¢’ into 6(a’) with 6. If o ¢ dom(0), we simply add
o' — comp(d’, ¢, k) to 6, where & is a fresh type variable.

Now we can merge R(Uz,U;) into #; (from Section III),
yielding (A(B{(L,T), T),02), where

0y = {041 — A<H5,B<Int,/€2> — KZ4>,
g — A<B</€1, Bool), H2>, b1 +— A<B</€3, Bool), l€4>}

Based on these three steps, we can define the function incrVU
to solve U’ based on the result (7, 6) for U, where M denotes
the merging process described in the third step.

incrVU(U, U, (7,0)) = M(R(U,U"), (r,0))
VII. EVALUATION

To test the feasibility of eCFT, we have developed a
prototype that implements the ideas from this paper in Haskell.
The prototype supports all three inference algorithms inferl
through infer3 from Section V, which we will refer to as
recomputing, coarse, and refined, respectively. In addition to
the constructors presented in Figure 1, our prototype also deals
with other features, including conditionals, polymorphism [7],

25

20
CFT

Recomputing
Coarse
Refined

15

10

Running time (s)

10 13 16
Step indices
Fig. 6: Running times of different inference algorithms of
eCFT on a student program sequence.

data types, and case expressions. The prototype supports
predefined (library) functions by resolving unbound variables
left in A in the predefined type environment and introducing
errors when the resolution fails.

Section IV shows that eCFT and CFT produce the same set
of error fixes for any given expression. We have experimentally
confirmed this by running both eCFT and CFT prototypes over
the benchmark we collected before [3]. For this reason, our
evaluation focuses on performance.

Our first performance test used 60 program sequences from
the student program databases [14], [30]. The initial sizes of
these sequences range from 47 to 136 LOC and the numbers
of steps range from 5 to 42. The results of these sequences
exhibit quite similar patterns. For this reason, we present the
result for a representative sequence (whose initial LOC is 125
and the number of updates is 15) in more detail only. The ratios
of the differences between two consecutive program versions
over the old versions range from 0.01 to 0.1 for this sequence
(except for the step 8 where the ratio is 0.14). Figure 6 presents
the running time of CFT and the three inference algorithms of
eCFT for this sequence. The times are measured on a laptop
with a processor having four 2.4GHz dual-cores and 8GB
RAM running 64-bit Ubuntu 16.04 LTS and GHC 8.0.2.

The response time (the time delay to display the first error
message) of CFT is about 22.3s in average for the presented
program sequence. ¢CFT is up to 3x faster with coarse and
13x faster with refined. With refined, the response time ranges
from 1.7s to 2.4s except for the step 8, where the response
time is 4.0s. The reason is that the change ratio is 0.14, much
higher those at other steps. The fact that refined is much faster
than coarse reflects that unification problems are getting more
and more complex as type inference moving up in the AST,
although the change in each unification problem may be minor.
This demonstrates the value of refined.

For other tested sequences, the speedup of refined over CFT
ranges from 4.2x to 19.1x and is more than 12.4x in 80%
cases. For coarse, the speedup over CFT ranges from 1.2x to
5.3x and is more than 2.6x in 80% cases.

In the second test, we are interested in knowing how eCFT
behaves in general. For this reason, we have conducted another
test, where we chose another 60 student programs of 71 to 142
LOC [14]. For each of the change ratios from 0.01 to 0.1 with
an interval of 0.01 and from 0.1 to 0.3 with an interval of 0.05,
we randomly generated changes to each original program. For

each ratio, we generated 50 unique and well-formed programs
by filtering out ill-formed or repetitive generated programs.
In this test, we observed that when the change ratio is less
than 0.1, relative performance of refined, coarse, and CFT
exhibits the same pattern as in the previous test. We defer
further details to [7] due to the space constraint. Combined
with the fact that the change ratios are less than 0.1 for more
than 80% of changes [7] during type error debugging, we
conclude that refined (eCFT) is practical for interactive use,
especially as programs are updated for fixing type errors.

VIII. RELATED WORK

In [3], we have discussed the relation of CFT with much
previous work, such as sum types [23], Seminal [19], and
Chameleon [28]. These discussions also apply here and thus
in this paper we mainly discuss the relation with other work.

Chitil [8] suggested that the main difficulty of understanding
why a program is ill typed lies in knowing why subexpressions
get certain types. Based on this observation, he developed
a compositional error explanation approach using principal
typing. His approach allows the user to navigate through the
explanation graph and inspect the type of each node. While our
approach focuses on each potential erroneous expression once
a time and provides a detailed error message, his approach
doesn’t provide change suggestions but allow the user to have
a big-picture about why errors have occurred. In this sense,
these approaches are complementary to each other.

Helium [17] is designed to provide good quality type error
messages for Haskell beginners. Helium uses a constraint-
based type inference algorithm to generate a set of type
constraints, and then uses a solver to handle all the constraints
globally. When the constraints are unsatisfiable, it uses a set
of heuristics to find the most suspicious constraint [15], [17],
from which a few most likely error sources are identified.
Haack and Wells [13] computed program slices that identify all
program locations contributing to type errors. The underlying
type system T [9] used in the approach to generate type
constraints can be viewed as a variant of principal typing [18].

Frameworks for general incremental computing are devel-
oped by Acar et al. [1]. Unfortunately, such frameworks
usually impose high overhead [11], and they don’t support
domain-specific optimizations, such as the tricks discussed in
coarse incremental type inference. Therefore, we propose our
own incremental algorithm. Erdweg et al. [11] developed a
method deriving incremental type checkers with bottom-up
typing flow. Their approach resolves the whole constraint once
it is updated while our approach resolves only part of the
constraint (Section VI).

IX. CONCLUSIONS

We have presented eCFT, a method to improve the perfor-
mance of the highly effective type error debugging method
CFT by exploiting old versions of programs. While CFT is
quite effective in locating type errors and providing change
suggestions, it has a long response time. To address this
problem, we redesigned the type system and used principal

typing to compute all error fixes. We have also developed two
methods for efficiently updating error fixes as programs are
changed. Our evaluation result shows that in average eCFT is
12.4x faster than CFT in 80% cases. The response time drops
from about 22.3s in CFT to about 1.7s in eCFT for programs
with about 125 LOC in our evaluation.

REFERENCES

[1] U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and K. Tangwongsan.
An experimental analysis of self-adjusting computation. TOPLAS, 2009.

[2] S. Aditya and R. S. Nikhil. Incremental polymorphism. In FPCA, pages
379-405, 1991.

[3] S. Chen and M. Erwig. Counter-Factual Typing for Debugging Type
Errors. In POPL, pages 583-594, 2014.

[4] S. Chen and M. Erwig. Principal type inference for gadts. In POPL,
pages 416428, 2016.

[5] S. Chen, M. Erwig, and E. Walkingshaw. An Error-Tolerant Type System
for Variational Lambda Calculus. In ICFP, 2012.

[6] S. Chen, M. Erwig, and E. Walkingshaw. Extending Type Inference to
Variational Programs. TOPLAS, 2014.

[71 S. Chen and B. Wu. Efficient Error De-
bugging (Tech Report). 2019. Available at
http://www.ucs.louisiana.edu/ sxc2311/ws/techreport/incrcft.pdf.

[8] O. Chitil. Compositional explanation of types and algorithmic debugging
of type errors. In ICFP, 2001.

[9] L. Damas. Type Assignment in Programming Languages. PhD thesis,
1985.

[10] H. Eo, O. Lee, and K. Yi. Proofs of a set of hybrid let-polymorphic type
inference algorithms. New Generation Computing, 22(1):1-36, 2004.

[11] S. Erdweg, O. Bracevac, E. Kuci, M. Krebs, and M. Mezini. A co-
contextual formulation of type rules and its application to incremental
type checking. In OOPSLA.

[12] M. Erwig and E. Walkingshaw. The Choice Calculus: A Representation
for Software Variation. TOSEM, 21(1):6:1-6:27, 2011.

[13] C. Haack and J. B. Wells. Type error slicing in implicitly typed higher-
order languages. In ESOP, pages 284-301, 2003.

[14] J. Hage. Helium benchmark programs, (2002-2005). Private communi-
cation, 2013.

[15] J. Hage and B. Heeren. Heuristics for type error discovery and recovery.
In IFL, volume 4449 of LNCS, pages 199-216. 2007.

[16] B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning
haskell. In Haskell, pages 62-71, 2003.

[17] B.J. Heeren. Top Quality Type Error Messages. PhD thesis, Universiteit
Utrecht, The Netherlands, 2005.

[18] T. Jim. What are principal typings and what are they good for? In
POPL, pages 42-53, 1996.

[19] B. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching for
type-error messages. In PLDI, pages 425-434, 2007.

[20] C.-k. Lin. Practical Type Inference for the GADT Type System. PhD
thesis, Portland State University, 2010.

[21] B. J. McAdam. Repairing type errors in functional programs. PhD
thesis, University of Edinburgh, 2002.

[22] R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348-375, 1978.

[23] M. Neubauer and P. Thiemann. Discriminative sum types locate the
source of type errors. In ICFP, pages 15-26, 2003.

[24] Z. Pavlinovic, T. King, and T. Wies. Practical smt-based type error
localization. In ICFP, pages 412423, 2015.

[25] B. C. Pierce. Types and programming languages. MIT Press, 2002.

[26] T. Schilling. Constraint-free type error slicing. In TFP, pages 1-16.
Springer, 2012.

[27] Z. Shao and A. W. Appel. Smartest recompilation. In POPL, pages
439-450, 1993.

[28] P. J. Stuckey, M. Sulzmann, and J. Wazny.
diagnosis. In Haskell, pages 80-91, 2004.

[29] V. Tirronen, S. Uusi-mikeld, and V. Isomottonen.
beginners’ mistakes with haskell. JFP, 25:1-31, 2015.

[30] P. van Keeken. Analyzing helium programs obtained through logging.
Master’s thesis, Utrecht University, October 2006.

[31] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-Jones. Diagnosing
type errors with class. In PLDI, pages 12-21, 2015.

Type

Improving type error

Understanding

