
Efficient Counter-factual Type Error Debugging*

Sheng Chen and Baijun Wu

The Center for Advanced Computer Studies, UL Lafayette

Lafayette, USA

{chen, bj.wu}@louisiana.edu

Abstract—Type inference is an important part of functional
programming languages and has been increasingly adopted to
imperative programming. However, providing effective error
messages in response to type inference failures (due to type
errors in programs) continues to be a challenge. Type error
messages generated by compilers and existing error debugging
approaches often point to bogus error locations or lack sufficient
information for removing the type error, making error debugging
ineffective. Counter-factual typing (CFT) addressed this problem
by generating comprehensive error messages with each message
includes a rich set of information. However, CFT has a large
response time, making it too slow for interactive use. In par-
ticular, our recent study shows that programmers usually have
to go through multiple iterations of updating and recompiling
programs to remove a type error. Interestingly, our study also
reveals that program updates are minor in each iteration during
type error debugging. We exploit this fact and develop eCFT, an
efficient version of CFT, which doesn’t recompute all error fixes
from scratch for each updated program but only recomputes
error fixes that are changed in response to the update. Our key
observation is that minor program changes lead to minor error
suggestion changes. eCFT is based on principal typing, a typing
scheme more amenable to reuse previous typing results. We have
evaluated our approach and found it is about 12.4× faster than
CFT in updating error fixes.

I. INTRODUCTION

Type inference allows programs to be statically typed,

even without the presence of type annotations. A well-known

problem in type inference is that it is very hard to locate

the real error cause and generate informative feedback once

type inference fails. Practical compilers pay little attention to

address this problem. They usually report the place where

type inference first fails as the error cause and often report

errors in their internal jargon. As a result, understanding type

error messages is a main challenge in learning functional

programming [29].

This problem has also been intensively studied over the last

three decades from different directions. One direction aims to

find the most likely error causes [10], [15], [17], [21], [31].

As an example, consider the following ill-typed expression.1

rank = λx.(x ’1’, x True)

Haskell compilers like GHC 8.0.2 and Helium [16] blame

True as the error cause. While changing True may remove

*This work is supported by the NSF grant CCF-1750886.
1This paper uses notations from functional programming, which, for

example, supports higher-order functions and uses spaces to denote function
applications. We will also use constant values and functions, such as True,
succ, not, and odd, that have self-explanatory meanings.

the type error, this is not the only possible fix. In fact, changing

any of x (either occurrence), ’1’, or True may remove the

type error. We lack enough context to justify True is more

likely the error source than other locations.

This example demonstrates the value of type error slic-

ing [13], [26], which returns all program locations that may

contribute to the type error and excludes those don’t. However,

a problem with this approach is that programmers still have

to decide the real error cause among the returned slice, which

could be comparable to the original program in size [3], [17].

Recently, Pavlinovic et al. [24] improved this by finding all

possible error causes and suggesting one location at a time.

Like error slicing, counter-factual typing (CFT) [3] also

finds all possible error locations in the leaves and their combi-

nations of the program AST. However, unlike them, CFT also

comes with a change suggestion for each identified location.

This suggestion includes the type the identified location has

in the original program, the type the identified location ought

to have to remove the type error, and the result type of the

changed expression if the suggestion is applied. Since some

locations are more likely to be the error source than others

in most common cases, CFT ranks all fixes with a list of

heuristics and presents them iteratively. The evaluation result

showed that CFT achieved better precision than state-of-the-

art approaches when considering the first suggestions and per-

formed even better when considering also later suggestions [3].

One problem with CFT, however, is the long response time.

To find all possible error locations and change suggestions,

CFT requires intensive computations. Although CFT uses vari-

ational typing [6] to reuse typing results, it still takes dozens

of seconds to deliver the first error message for the programs

within 100 LOC. This makes CFT slow for interactive use. In

particular, our recent study of mining a program database [7],

[14], [30] shows that in average students take about 29 steps

to fix a type error with a maximum of 359 steps.

Fortunately, an accompanying finding of the study is that,

during error debugging, the change between two consecutive

versions is minor. In more than 80% cases, the change is within

10% of the old program. This result suggests to compute error

fixes incrementally rather than recompute all error fixes from

scratch as programs are updated.

In this work, we develop eCFT, an efficient version of CFT.

Specifically, let Pi be the ith version of a program used in

compilation, Fi be the set of all error fixes for Pi, ∆Pij
be

the difference between Pi and Pj , and ∆Fij
be the difference

between Fi and Fj , CFT recomputes all error fixes for Fj

from Pj while eCFT computes ∆Fij
based on ∆Pij

and then

merges ∆Fij
into Fi to get Fj .

In Summary, this paper makes the following contributions

after we present the background in Section II.

1) eCFT relies on variational typing (Section II) to find all

error fixes. However, previous presentations of variational

typing itself [5], [6] and its applications [3], [4] are very

operational, making the type systems hard to understand

and prove. In Section III, we present our first technical

innovation of a declarative specification of variational

typing in the presence of type errors, which simplifies

the type system of eCFT and further applications of

variational typing.

2) We present the typing rules of eCFT in Section IV. A

subtle issue in the type system is about dealing with

unbound variables, which we handle nicely with the

above contribution.

3) We present three different strategies of reusing previous

results to compute error fixes under program updates

in Section V. Among them one relies on incremental

variational unification (Section VI), our second technical

innovation in this paper.

4) We have extensively evaluated the performance of eCFT.

The result shows that in more than 80% cases eCFT

is 12.4× faster than CFT of computing error fixes in

response to program updates.

.

II. VARIATIONAL TYPING AND PRINCIPAL TYPING

Variational Typing As already mentioned in Section I, both

CFT and eCFT rely on variational typing [6] to compute

informative error messages for all possible error locations.

This section presents variational typing and principal typing.

Variational expressions are obtained by extending normal

expressions (plain expressions) with named choices [12].

For example, the expression e = succ A〈1,’a’〉 contains a

choice A with two alternatives: 1 and ’a’. We use d to range

over choice names. In this paper, we use only binary choices.

An important notion in variation representations is selectors

that have the form d.i, where d is a choice name and i is an

alternative index. Choices can be eliminated through a process

called selection, which takes in an expression e and a selector

d.i and replaces each occurrence of the choice d in e with

its ith alternative. We call a set of selectors a decision and

use δ to range over decisions. Selection extends naturally to

decisions by iteratively selecting with all of the selectors in the

decision. We write ⌊e⌋d.i and ⌊e⌋δ for selections. For example,

⌊succ A〈1,’a’〉⌋A.1 yields succ 1.

The notions and definitions of variational expressions carry

over naturally to variational types. We use τ and φ to range

over plain types and variational types, respectively.

Note that a variational program usually has thousands of

independent choices [6], and the number of plain programs

is exponential in the number of different choices. Therefore,

it is impractical to individually type all the plain programs

generated from a variational program. A more scalable way

is variational typing, which types variational programs once

without generating plain programs. The key idea of variational

typing is reuse, and we identified three opportunities in [6] for

reusing typing information.

In variational typing, one challenge is putting choice types

together. For example, the expression odd A〈1,2〉 seems to

be ill typed at first since the argument type Int is not

equal to the type of the argument A〈Int, Int〉. However,

we can check that both plain expressions from the variational

expression are well typed. Thus, it is reasonable to require odd

A〈1,2〉 itself to be well typed. We satisfied this requirement by

relaxing the equality relation in standard typing rules [25] to an

equivalence relation [6]. Intuitively, two types are equivalent if

they generate the same set of plain types. Thus, it is obvious

that Int is equivalent to A〈Int, Int〉. We use φ1 ≡ φ2 to

denote that φ1 and φ2 are equivalent. We defer a full discussion

of type equivalence to [6]. With this relation, the expression

odd A〈1,2〉 has the type Int.

Variational typing assigns types to expressions that generate

only well-typed plain expressions. For example, it fails to

assign a type to the expression odd A〈1,True〉 since the

plain expression odd True is ill typed. In practice, it’s very

useful for variational typing to assign types to the well-typed

variants of a variational program even type errors exist in other

variants. We addressed this problem by designing an error-

tolerant type system [5], where type errors are represented

explicitly by ⊥ and variants that contain type errors receive

this type [5]. For example, odd A〈1,True〉 has the type

A〈Bool,⊥〉, indicating that odd 1 has the type Bool and

odd True is ill typed.

The typing rule for function applications was very compli-

cated [5] since applications can introduce type errors in many

ways. In particular, the rule has to propagate type errors from

both the function and argument types and generate errors when

the argument type fails to match the type of the argument

exactly. Unlike standard typing rules [25] that are declarative,

the rule in [6] is operational, relying on three operations that

decompose type structures and introduce error types explicitly.

In Section III, we propose a declarative formulation of error-

tolerant type systems.

Principal Typing In the Hindley-Milner type system (HM)

and its implementation, the algorithm W [22], type environ-

ment is an input. The type environment stores type information

for free variables, and is updated accordingly as the inference

algorithm traverses the program AST. As a result, type infer-

ence of the later part of the AST always depends on that of the

earlier part. This bias hinders incremental type inference since

even a small change in the left subtree will require almost the

full type inference to be redone.

In contrast, principal typing [18] doesn’t suffer from this

bias. Type inference in principal typing is done bottom-up.

At each variable reference, the variable is assumed to have a

fresh type. The assumptions are refined as the inference gets

closer to the root and are made consistent at the corresponding

abstraction. Principal typing is more amenable to incremental

typing. If there is a change in a leaf, then there is no need

to perform type inference for the whole tree but only for the

nodes along the path from the updated leaf to the root. We

will design eCFT based on principal typing, which has already

been used in incremental type checking [2], [11], [18], [27].

III. COMPUTE ALL FIXES WITH VARIATIONAL TYPING

Declarative Error-Tolerant Variational Typing Early work

of variational typing [3]–[5] dealt with type errors by explicitly

representing and propagating them, making the understanding

and proving of relevant type systems difficult. We address this

issue by using typing patterns to indicate which variants of

the typing result are correct and which are incorrect. A typing

pattern π consists of ⊥ for ill-typed variants, ⊤ for well-typed

variants, and choice patterns for variational expressions. For

example, A〈⊤,⊥〉 means that the result for the alternative A.1
is correct while that for A.2 is incorrect, and A〈B〈⊥,⊤〉,⊤〉
means that the result in the variant {A.1, B.1} is incorrect and

those in other variants are correct.

With π, the type judgments have the form π; Γ ⊢ e : φ,

meaning that e has the type φ under Γ with the validity

restriction π. Intuitively, π specifies that only the variants

where π contains ⊤s are valid (type correct) and those that

π contains ⊥s are invalid (type incorrect). When we later use

the typing result, we should ignore the variants whose patterns

are ⊥s. For example, we have ⊤; Γ ⊢ 1 : Int, saying that 1

has the type Int. Similarly, we have ⊥; Γ ⊢ 1 : Bool, which

says that the typing result 1 has the type Bool. However, the

pattern ⊥ in the judgment indicates that we should ignore this

typing result.

With the extended judgment form, the rule for typing

function applications can be formalized as follows.

π ::= ⊥ | ⊤ | d〈π, π〉
∀δ : ⌊π⌋δ = ⊤ ⇒ ⌊φ1⌋δ ≡ ⌊φ2⌋δ

φ1 ≡π φ2

π; Γ ⊢ e1 : φ1 π; Γ ⊢ e2 : φ2 φ1 ≡π φ2 → φ

π; Γ ⊢ e1 e2 : φ

The typing rule is declarative and simple. It makes only two

extensions to any standard typing rules for applications [25]:

the type equivalence relation (introduced in Section II) and the

typing pattern constrained judgments (introduced above). The

rule can be read as: if the function e1 has the type φ1, the

argument e2 has the type φ2, and φ1 is equivalent to φ2 → φ,

all under the validity restriction π, then the application e1 e2
has the type φ under the same π. The pattern π in φ1 ≡π φ2

means that φ1 and φ2 are required to be equivalent only in the

variants that π has ⊤s. Based on this new rule, we can type

A〈succ, odd〉 B〈1, True〉 as follows, where π = B〈⊤,⊥〉.

π;∅ ⊢ A〈succ,odd〉 : Int→ A〈Int, Bool〉

π;∅ ⊢ B〈1,True〉 : Int

Int→ A〈Int, Bool〉 ≡π Int→ A〈Int, Bool〉

π;∅ ⊢ A〈succ, odd〉 B〈1, True〉 : A〈Int, Bool〉

Expressions e ::= c | x | λx.e | e e
Monotypes τ ::= γ | α | τ → τ
Variational types φ ::= τ | d〈φ, φ〉 | φ→ φ

Type assumption sets A ::= ∅ | A, (x, φ, d)
Substitutions θ ::= ∅ | θ, α 7→ φ
Choice environments ∆ ::= ∅ | ∆, (l, d〈φ, φ〉)

Fig. 1: Syntax of expressions, types, and environments

Finding All Error Fixes with Variational Typing When

an expression is ill typed, we generally ask two questions:

Which subexpression caused the type error and how should

we change the subexpression to remove the type error? Con-

ceptually, eCFT addresses these problems in following steps:

(1) assuming that all subexpressions may be the error causes,

(2) computing the types that subexpression ought to have

to remove the type error, and (3) finding real error causes

by filtering out subexpressions the types they have differing

from those they ought to have. However, implementing this

idea directly seems to be very complex: for each of all

subexpressions and their possible combinations, we have to

perform type inference of the expression to find out the type

the subexpression ought to have.

To combat with this high complexity, eCFT employs varia-

tional typing to reuse computations. Specifically, it creates at

AST leaf a variational type, where the first alternative is the

type of the leaf under normal type inference and the second

alternative is the type the leaf ought to have to remove the

type error in the whole expression. Our previous work [3]

explained why CFT considered changing leaves only and how

it achieved high precision. After variational typing finishes,

we derive error messages from variants whose patterns are

⊤s. Note as we said earlier, we should ignore variants whose

patterns are ⊥s. We then use a list of heuristics to rank all error

fixes and present most likely fixes to the user iteratively [3].

IV. TYPE SYSTEM

In this section, we present the type system for producing

a complete set of error fixes. The syntax is given in Sec-

tion IV-A, basic typing rules are discussed in Section IV-B,

and the top-level rule, which also handles unbound variables,

is given in Section IV-C.

A. Syntax

The syntax for types, expressions, and meta environments

is given in Figure 1. We use c to denote constants and x to

denote variables. We stratify the type definition into two layers.

First, monotypes, ranged over by τ , include constant types

(γ), type variables (α), and function types. In addition to α,

we use β to denote fresh type variables used for representing

function application results and use κ to denote fresh type

variables generated during unification. Variational types extend

monotypes with choice types. We also deal with polymorphism

and conditionals, but omit their presentations in this paper due

to space limitations. They could be found in [7].

We use o to denote a sequence of objects o1, . . . , on for

any object o. We use θ(φ) to denote the application of a

CON
c is of type γ ∃ d

π;∅ ⊢ c : d〈γ, φ〉|{(ℓ(c), d〈γ, φ〉)}

VAR
∃ d

π; {(x, φ)} ⊢ x : d〈φ, φ1〉|{(ℓ(x), d〈φ, φ1〉)}

ABS
π;A ⊢ e : φ|∆ ∀φi ∈ A

T (x) : φ1 ≡π φi

π;A \ x ⊢ λx.e : φ1 → φ|∆

APP

π;A1 ⊢ e1 : φ1|∆1 π;A2 ⊢ e2 : φ2|∆2 φ1 ≡π φ2 → φ

π;A1 ∪ A2 ⊢ e1 e2 : φ|∆1 ∪∆2

Fig. 2: Basic typing rules

type substitution. It replaces free type variables in φ by the

corresponding images in θ. Its definition is standard except for

choice types, where substitution applies to both alternatives.

An assumption set A maps expression variables to vari-

ational types. Moreover, A stores the corresponding choice

name of each variable reference. We write AT (x) and AD(x)
to get the set of types and choice names that x maps to in A,

respectively. We use l to represent program locations and use

the function ℓe(f) to return the location of f in e. We may

omit the subscript e when the context is clear. We assume

f uniquely determines the location. The exact definition of

ℓ(·) doesn’t matter. The choice environment ∆ associates each

leaf l with a choice type d〈φ1, α2〉 during the typing process.

Note that φ1 is the type under normal type inference for the

subexpression at l and φ2 is the alternative type for the same

subexpression to remove the type error.

B. Basic Typing Rules

We present the typing rules in Figure 2. The typing judge-

ment has the form π;A ⊢ e : φ|∆, meaning that the expression

e has the type φ with the assumption set A, the validity

restriction π, and the change information ∆.

The conditions ∃ d in rules CON and VAR are always satisfied

since we have an unlimited supply of choice names. The rule

CON says that if c is of the type γ, then in our type system

it has the type d〈γ, φ〉 to indicate that we can change c to

any type φ to remove the type error. No assumption is made

for typing c, and thus the A component is empty. The choice

environment records the change as {(ℓ(c), d〈γ, φ〉)}. For this

rule, we can use any π since the typing of the constant is

always valid.

The rule VAR for variables is similar to the rule CON. The

only difference is that the variable may have any type φ
and the assumption is recorded in A. At variable references,

we always assume variables are bound. Therefore the typing

pattern component can be any value. We deal with unbound

variables in Section IV-C.

Given an abstraction λx.e, we first type the body e, which

may contain multiple assumptions for the parameter x. These

assumptions need to be consistent for the abstraction to be

well typed. The second premise in the ABS rule ensures that all

assumptions are equivalent to each other with the restriction π.

The assumptions for the abstraction is the assumptions for its

body minus those for the parameter x. The choice environment

of the abstraction is the same as that for its body.

The APP rule is very similar to the application rule discussed

in Section III. The only difference is that here we have

to merge assumption sets from the subexpressions and also

change environments from them.

C. Handling Unbound Variables

In rule VAR, we assume that all variables are bound.

However, this is not always the case. We can determine if

an expression contains unbound variables by checking A. If

A is empty, then the expression does not contain unbound

variables. Otherwise, it does. For unbound variables, we want

to say what are the expected types for them to remove the type

error in the expressions, rather than simply reporting them as

unbound.

To achieve this goal, we need to handle them in typing.

Specifically, what does it mean if (x, φ, d) still belongs to A
after typing the expression e with π;A ⊢ e : φ|∆? This means

that the access to x should be incorrect but when typing e we

assumed it was correct under the VAR rule. We can address

this problem by adjusting the validity restriction π. In fact,

(x, φ, d) still belongs to A means that the typing result is

invalid in d.1. Thus, we need to worsen π by d〈⊥,⊤〉 to keep

the typing result valid.

In fact, there is a simpler way to address this problem. The

key observation here is that if the typing pattern π is already

worse than d〈⊥,⊤〉 , then we don’t need to worsen it anymore.

Before presenting the typing rule based on this idea, we first

formalize the notion that a typing pattern (π1) is worse than

the other one (π2), written as π1 ≤ π2.

π ≤ ⊤ ⊥ ≤ π
π1 ≤ π2 π2 ≤ π3

π1 ≤ π3

π1 ≡ π2

π1 ≤ π2

π1 ≤ π3 π2 ≤ π4

d〈π1, π2〉 ≤ d〈π3, π4〉

Intuitively, π1 ≤ π2 expresses that, for any variant, if π2

contains a ⊥ then so does π1. The first two rules say that

all typing patterns are worse than ⊤ and better than ⊥. The

third rule states that the relation is transitive. In the fourth rule,

we reuse the machinery of type equivalence by interpreting ⊥
and ⊤ as two constant types. The rule then says that two

equivalent patterns satisfy the ≤ relation. The last rule states

that two choice patterns satisfy ≤ if both their corresponding

alternatives satisfy ≤.

With ≤, we can formalize the rule for unbound variables

declaratively as follows.

UNBOUND
π;A ⊢ e : φ|∆ ∀(x, φ, d) ∈ A : π ≤ d〈⊥,⊤〉

π ⊢M e : φ|∆

(1a) infer1(x) =
φ← d〈α1, α2〉 {- d, α1, and α2 fresh-}
return (⊤, {(x, α1, d)}, φ, {(ℓ(x), φ)})

(1b) infer1(e1 e2) =
(π1,A1, φ1,∆1)← infer1(e1)
(π2,A2, φ2,∆2)← infer1(e2)
(π, θ)← vunify(φ1, φ2 → β) {-β fresh-}
return (π ⊗ π1 ⊗ π2, θ(A1 ∪A2), θ(β), θ(∆1 ∪∆2))

Fig. 3: An inference algorithm that recomputes all error fixes

We can see that A in the premise disappears in the conclusion.

Intuitively, the rule says that if π is worse enough, then the

residual assumptions can simply be forgotten.

The subscript M indicates that this is the main rule on top

of all other typing rules. Given any expression, we should use

this rule to compute error fixes.

Although our type system is based on principal typing, it

generates the same set of error fixes as CFT does, as captured

in the following theorem.

Theorem 1 (CFT equivalence). π;∅ ⊢ e : φ|∆⇔ ∅ ⊢CFT e :
φ⊥|∆⊥ such that φ ≡π φ⊥, ∆ ≡π ∆⊥, and ∀δ : ⌊φ⊥⌋δ 6=
⊥ ⇔ ⌊π⌋δ 6= ⊥.

In the theorem, we use ⊢CFT to denote the typing relation of

CFT. The superscript ⊥ in φ⊥ and ∆⊥ reflects that errors

types are embedded in the type syntax in CFT. The relation

∆ ≡π ∆⊥ is defined as ∀l ∈ dom(∆): ∆(l) ≡π ∆⊥(l). We

can prove this theorem by showing that both CFT and this

type system are equivalent to the type-update system [3, §4.3]

through inductions over typing relations.

V. THREE DIFFERENT TYPE INFERENCE STRATEGIES

We present three inference algorithms in this section: an

algorithm that recomputes all type error fixes as programs are

updated, a coarse incremental inference algorithm that reuses

results so that only nodes that are affected by the change

are retyped, and a refined incremental inference algorithm on

top of incremental variational unification. We use Figure 4 to

illustrate the differences among them, where subfigures (b) to

(d) respectively visualize the behavior of these algorithms for

updating not ’1’ to not 1.

Recompute All Error Fixes The algorithm infer1 in Figure 3

provides a unification-based implementation of the typing

rules from Figure 2. The function infer1 has the type e →
π ×A× φ×∆, that is, it takes in an expression and returns

a typing pattern indicating which alternatives of the inference

result are valid, an assumption set A, a result type, and a

choice environment storing type change information of leaves.

We only present the algorithm for two cases, and a detailed

version of infer1 can be found in the longer version of this

paper [7].

We now briefly go through infer1. The case (1a) deals with

variable references. As mentioned earlier, we always assume

variables are bound at variable references. Therefore, infer1

returns ⊤ for π, indicating no errors have occurred. Note that

Fig. 4: A comparison of different methods for computing error

fixes under program updates. The underlined typing relations

are reused. To simplify our discussion, we assume not is a

constant having the type Bool → Bool. In the figure, the

value of τ is Bool→ Bool.

we need two fresh type variables α1 and α2 in (1a), where α1

denotes that the variable can be mapped to any type based on

its uses and α2 denotes that the variable can be changed to

something of type α2 to remove the type error if the variable is

an error cause. The main difference between them is that α1 is

recorded in A and will be later unified with other assumptions

for the same variable.

Case (1b) deals with function applications. It first computes

the results for the function and the argument independently

and then unifies the function type and the argument type with

vunify, a variational unification algorithm from [6]. We now

have three tying patterns, π1 and π2 from typing e1 and e2,

respectively, and π from vunify. They will be merged together

through the ⊗ operation, defined as follows.

⊥⊗π = ⊥ ⊤⊗π = π d〈π1, π2〉⊗π = d〈π1⊗π, π2⊗π〉

The result of ⊗ is ⊤ only if both operands are ⊤. Intuitively, ⊗
can be understood as the logical and operation if we interpret

⊤and ⊥ as the truth values true and false, respectively. Based

on this operation, infer1 returns π ⊗ π1 ⊗ π2, meaning that

e1 e2 is well typed only in the alternatives that both e1 and e2
are correct and the argument type of e1 unifies with the type

of e2.

infer1 is sound and complete with respect to the typing

relation from Section IV. We defer a detailed discussion of

the properties to [7].

Coarse Incremental Type Inference The type of infer1,

e→ π×A×φ×∆, indicates that the expression e decides the

type and the assumption set of e. This immediately shows that

if a subexpression hasn’t been changed, then there is no need

to perform type inference for that subexpression. In particular,

when a node is changed, the type information for only the

path from that node to the root needs to be recomputed. For

example, if we change True in rank to 1, we need to update

the type information for the path from the right-most node to

the root. This allows us to recompute type information for four

nodes only, rather than eight nodes if we recompute everything

infer3 : e→ π ×A× φ×∆

(3a) infer3(x) =
φ← d◦〈α◦

1, α
◦

2〉 {- reuse fresh names -}
return (⊤, {(x, α◦

1, d
◦)}, φ, {(ℓ(x), φ)})

(3b) infer3(e1 e2) =
(π1,A1, φ1,∆1)← infer3(e1)
(π2,A2, φ2,∆2)← infer3(e2)
if φ◦

1 = φ1 and φ◦

2 = φ2

return (π◦⊗π1⊗π2, θ
◦(A1∪A2), φ

◦

r , θ
◦(∆1∪∆2))

(π, θ)← incrVU(φ1 ≡
? φ2 → β◦, U◦, (π◦, θ◦))

return (π ⊗ π1 ⊗ π2, θ(A1 ∪A2), θ(β), θ(∆1 ∪∆2))

Fig. 5: A refined incremental inference algorithm.

from scratch.

We use two other tricks to save more computations for

updating error fixes. The first trick is to reuse fresh variables

generated for nodes. For example, in Figure 4(c), we use

the same variable α2 for the second alternative in choice B,

the same as in Figure 4(a). This idea helps us to, in some

situations, inferred the same type for a subexpression even it

is changed, effectively quarantining the effects of changes.

The second trick is reordering the process of unifying

all assumptions for the same variable, required in the type

inference for abstractions, where all the assumptions for the

same variable have to be unified. We could unify them in

a linear ordering, but earlier unification results affect later

unifications, causing a dependency. Instead, we first unify

the first type with each of the rest types, yielding a list of

substitutions that are combined into one substitution through

the technique of substitution composition [20, §6]. We defer

to [7] to a detailed exposition of these ideas.

We refer to the inference algorithm implementing these

ideas infer2. We will omit its presentation since it is very

similar to infer3 in Figure 5. In particular, infer2 can be

obtained from Figure 5 by replacing all occurrences of infer3

with infer2 and replacing calls of the form incrVU(φ1 ≡
?

φ2, U
′, (π′, θ′)) with calls of the form vunify(φ1, φ2).

Refined Incremental Type Inference Coarse incremental

type inference tries to maximize the reuse of typing infor-

mation, but once a type is changed, the unification problems

involving that type has to be resolved, even the change is

minor. Observing that type unification is a main part of type

inference and needs intensive computations, our main idea

of refined incremental type inference is to solve variational

unification problems incrementally. The algorithm infer3 in

Figure 5 implements this idea, where incrVU is an incremental

variational unification algorithm developed in Section VI.

In the figure, we use the notation o◦ to denote the saved

copy of o from the last run of infer3. If there is no saved

value, then a meaningful value is returned. For example, in

case (3a), we use d◦ to return the choice name generated last

time. However, if no fresh choice name was generated and

saved, then d◦ just generates a new fresh choice name and

returns it. If U◦ doesn’t exist, then the corresponding call of

incrVU will call vunify instead.

We now briefly go through each case. Case (3a) is very

similar to (1a). The only difference is that we try to reuse fresh

names as much as possible. Case (3b) types applications. It

first checks if both the function type and the argument type

are the same as saved copies. If so, then the saved π◦ and θ◦

are used without unifying the function type and the argument

type. Otherwise, it uses the incremental variational unification

algorithm to solve the new unification problem.

VI. INCREMENTAL VARIATIONAL UNIFICATION

The general idea of incremental variational unification is

that we first compute the difference between two unification

problems, yielding a delta unification problem, which is then

solved and the result is merged into the original result to get a

unifier for the new unification problem. Given two unification

problems U : φl ≡
? φr and U ′ : φ′

l ≡
? φ′

r and the result (π, θ)
for U , we take the following steps to solve U ′.

Compute differences To compute the difference between two

unification problems, we first need to compute that between

two types. We use the function D(φ1, φ2) to compute the

difference between φ1 and φ2. The result is a set of decisions,

where each decision δ satisfies that ⌊φ1⌋δ 6≡ ⌊φ2⌋δ . The

function D(φ1, φ2) is defined as follows. The case for function

types considering their respective argument types and return

types and is omitted.

D(τ, τ) = {}

D(τ1, τ2) = {{}}

D(d〈φ1, φ2〉, d〈φ3, φ4〉) = {d.1: δ | δ ∈ D(φ1, φ3)}∪

{d.2: δ | δ ∈ D(φ2, φ4)}

D(d〈φ1, φ2〉, φ) = D(d〈φ1, φ2〉, d〈⌊φ⌋d.1, ⌊φ⌋d.2〉)

D(φ, d〈φ1, φ2〉) = D(d〈φ1, φ2〉, φ)

When two types are the same, as in the first case, the result

is an empty set, meaning that there is no decision such that

selecting them with the decision results in different types.

In the second case, the two types are completely different.

The result set in this case has one member, which is itself

an empty set. Remember that selecting a type with an empty

decision gives that type back. To compute the difference of two

choice types with the same choice name d, D first computes

the difference of the first alternatives of the choices and then

adds d.1 to each decision. Similar, D does this for the right

alternatives and extends the results with d.2. The cases that

one argument is a choice type and the other is not are reduced

to the first case.

Here are two examples of applying D.

D(Int, Char) = {{}} D(A〈Int, Char〉, Char) = {{A.1}}

The result of the second example indicates that two arguments

differ in only one decision, the first alternative of A. The first

argument has Int while the second argument has Char in that

decision.

We overload D to compute difference between two unifica-

tion problems and define D(U,U ′) as D(φl, φ
′

l) ∪ D(φr, φ
′

r).

With this definition, we have D(U2, U1) = {{B.1}}, where

U1 and U2 are from Figure 4.

Resolve subproblems Each decision δ in D(U,U ′) represents

a unification problem ⌊U ′⌋δ to be resolved. We can again

use vunify to solve these problems. However, to simplify the

operation of the next step, we use vunify′, a variant of vunify.

The main difference lies in the way they represent unifica-

tion results. Given a unification problem φ1 ≡
? φ2, vunify

returns (π, θ) while vunify′ returns {(δ, π, θ)}, a set of triples.

Each triple (δ, π, θ) satisfies that (1) vunify(⌊φ1⌋δ, ⌊φ2⌋δ) =
(π, θ) and (2) vunify(⌊φ1⌋δ, ⌊φ2⌋δ) doesn’t need to decom-

pose any choice. Consider, for example, the unification

problem A〈Int, α〉 ≡?
Int. While vunify returns (⊤, {α 7→

A〈κ, Int〉}), vunify′ returns {({A.2},⊤, {α 7→ Int})}. The

definition of vunify′ differs from vunify in how it returns results

only, and we will not present the definition in detail.

Based on vunify′, we define R(U,U ′) to solve all the

unification subproblems and collect all the results as follows,

where δ ranges over D(U,U ′).

R(U,U ′) =
⋃
{(δ∪δ′, π, θ) | (δ′, π, θ) ∈ vunify′(⌊φ′

l⌋δ, ⌊φ
′

r⌋δ)}

As an example, the result of R(U2, U1) is

{({A.1, B.1},⊥, {}), ({A.2, B.1},⊤, {α1 7→ Int→ β1})}

Merge results Given each {(δ′, π′, θ′)} from R(U,U ′) and

(π, θ) for U , we can merge them together to get the result for

solving U ′. First, let’s try to merge π′ into π with the decision

δ′. Essentially, merging means that we need to change ⌊π⌋δ′

to π′and don’t change any other ⌊π⌋δ′′ if δ′ 6⊆ δ′′ ∧ δ′′ 6⊆
δ′. We use the function comp from [6, §7.2] to perform this

task. Given δ, φ′, φ, comp(δ, φ′, φ) replaces the type at δ in

φ with φ′ and leaves other parts unchanged. As we have done

in Section IV-C, we can simply interpret ⊥ and ⊤ as two

constant types and use comp(δ, π′, π) to merge π′ into π. We

can merge θ′ into θ with δ′ similarly. For each α′ 7→ φ′ in θ′,
we merge φ′ into θ(α′) with δ′. If α′ /∈ dom(θ), we simply add

α′ 7→ comp(δ′, φ′, κ) to θ, where κ is a fresh type variable.

Now we can merge R(U2, U1) into θ1 (from Section III),

yielding (A〈B〈⊥,⊤〉,⊤〉, θ2), where

θ2 = {α1 7→ A〈κ5, B〈Int, κ2〉 → κ4〉,

α2 7→ A〈B〈κ1, Bool〉, κ2〉, β1 7→ A〈B〈κ3, Bool〉, κ4〉}

Based on these three steps, we can define the function incrVU

to solve U ′ based on the result (π, θ) for U , whereM denotes

the merging process described in the third step.

incrVU(U,U ′, (π, θ)) =M(R(U,U ′), (π, θ))

VII. EVALUATION

To test the feasibility of eCFT, we have developed a

prototype that implements the ideas from this paper in Haskell.

The prototype supports all three inference algorithms infer1

through infer3 from Section V, which we will refer to as

recomputing, coarse, and refined, respectively. In addition to

the constructors presented in Figure 1, our prototype also deals

with other features, including conditionals, polymorphism [7],

0

5

10

15

20

25

1 4 7 10 13 16

CFT

Recomputing

Coarse

Refined

R
u

n
n

in
g

 t
im

e
 (

s)

Step indices

Fig. 6: Running times of different inference algorithms of

eCFT on a student program sequence.

data types, and case expressions. The prototype supports

predefined (library) functions by resolving unbound variables

left in A in the predefined type environment and introducing

errors when the resolution fails.

Section IV shows that eCFT and CFT produce the same set

of error fixes for any given expression. We have experimentally

confirmed this by running both eCFT and CFT prototypes over

the benchmark we collected before [3]. For this reason, our

evaluation focuses on performance.

Our first performance test used 60 program sequences from

the student program databases [14], [30]. The initial sizes of

these sequences range from 47 to 136 LOC and the numbers

of steps range from 5 to 42. The results of these sequences

exhibit quite similar patterns. For this reason, we present the

result for a representative sequence (whose initial LOC is 125

and the number of updates is 15) in more detail only. The ratios

of the differences between two consecutive program versions

over the old versions range from 0.01 to 0.1 for this sequence

(except for the step 8 where the ratio is 0.14). Figure 6 presents

the running time of CFT and the three inference algorithms of

eCFT for this sequence. The times are measured on a laptop

with a processor having four 2.4GHz dual-cores and 8GB

RAM running 64-bit Ubuntu 16.04 LTS and GHC 8.0.2.

The response time (the time delay to display the first error

message) of CFT is about 22.3s in average for the presented

program sequence. eCFT is up to 3× faster with coarse and

13× faster with refined. With refined, the response time ranges

from 1.7s to 2.4s except for the step 8, where the response

time is 4.0s. The reason is that the change ratio is 0.14, much

higher those at other steps. The fact that refined is much faster

than coarse reflects that unification problems are getting more

and more complex as type inference moving up in the AST,

although the change in each unification problem may be minor.

This demonstrates the value of refined.

For other tested sequences, the speedup of refined over CFT

ranges from 4.2× to 19.1× and is more than 12.4× in 80%

cases. For coarse, the speedup over CFT ranges from 1.2× to

5.3× and is more than 2.6× in 80% cases.

In the second test, we are interested in knowing how eCFT

behaves in general. For this reason, we have conducted another

test, where we chose another 60 student programs of 71 to 142

LOC [14]. For each of the change ratios from 0.01 to 0.1 with

an interval of 0.01 and from 0.1 to 0.3 with an interval of 0.05,

we randomly generated changes to each original program. For

each ratio, we generated 50 unique and well-formed programs

by filtering out ill-formed or repetitive generated programs.

In this test, we observed that when the change ratio is less

than 0.1, relative performance of refined, coarse, and CFT

exhibits the same pattern as in the previous test. We defer

further details to [7] due to the space constraint. Combined

with the fact that the change ratios are less than 0.1 for more

than 80% of changes [7] during type error debugging, we

conclude that refined (eCFT) is practical for interactive use,

especially as programs are updated for fixing type errors.

VIII. RELATED WORK

In [3], we have discussed the relation of CFT with much

previous work, such as sum types [23], Seminal [19], and

Chameleon [28]. These discussions also apply here and thus

in this paper we mainly discuss the relation with other work.

Chitil [8] suggested that the main difficulty of understanding

why a program is ill typed lies in knowing why subexpressions

get certain types. Based on this observation, he developed

a compositional error explanation approach using principal

typing. His approach allows the user to navigate through the

explanation graph and inspect the type of each node. While our

approach focuses on each potential erroneous expression once

a time and provides a detailed error message, his approach

doesn’t provide change suggestions but allow the user to have

a big-picture about why errors have occurred. In this sense,

these approaches are complementary to each other.

Helium [17] is designed to provide good quality type error

messages for Haskell beginners. Helium uses a constraint-

based type inference algorithm to generate a set of type

constraints, and then uses a solver to handle all the constraints

globally. When the constraints are unsatisfiable, it uses a set

of heuristics to find the most suspicious constraint [15], [17],

from which a few most likely error sources are identified.

Haack and Wells [13] computed program slices that identify all

program locations contributing to type errors. The underlying

type system T [9] used in the approach to generate type

constraints can be viewed as a variant of principal typing [18].

Frameworks for general incremental computing are devel-

oped by Acar et al. [1]. Unfortunately, such frameworks

usually impose high overhead [11], and they don’t support

domain-specific optimizations, such as the tricks discussed in

coarse incremental type inference. Therefore, we propose our

own incremental algorithm. Erdweg et al. [11] developed a

method deriving incremental type checkers with bottom-up

typing flow. Their approach resolves the whole constraint once

it is updated while our approach resolves only part of the

constraint (Section VI).

IX. CONCLUSIONS

We have presented eCFT, a method to improve the perfor-

mance of the highly effective type error debugging method

CFT by exploiting old versions of programs. While CFT is

quite effective in locating type errors and providing change

suggestions, it has a long response time. To address this

problem, we redesigned the type system and used principal

typing to compute all error fixes. We have also developed two

methods for efficiently updating error fixes as programs are

changed. Our evaluation result shows that in average eCFT is

12.4× faster than CFT in 80% cases. The response time drops

from about 22.3s in CFT to about 1.7s in eCFT for programs

with about 125 LOC in our evaluation.

REFERENCES

[1] U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and K. Tangwongsan.
An experimental analysis of self-adjusting computation. TOPLAS, 2009.

[2] S. Aditya and R. S. Nikhil. Incremental polymorphism. In FPCA, pages
379–405, 1991.

[3] S. Chen and M. Erwig. Counter-Factual Typing for Debugging Type
Errors. In POPL, pages 583–594, 2014.

[4] S. Chen and M. Erwig. Principal type inference for gadts. In POPL,
pages 416–428, 2016.

[5] S. Chen, M. Erwig, and E. Walkingshaw. An Error-Tolerant Type System
for Variational Lambda Calculus. In ICFP, 2012.

[6] S. Chen, M. Erwig, and E. Walkingshaw. Extending Type Inference to
Variational Programs. TOPLAS, 2014.

[7] S. Chen and B. Wu. Efficient Type Error De-
bugging (Tech Report). 2019. Available at
http://www.ucs.louisiana.edu/ sxc2311/ws/techreport/incrcft.pdf.

[8] O. Chitil. Compositional explanation of types and algorithmic debugging
of type errors. In ICFP, 2001.

[9] L. Damas. Type Assignment in Programming Languages. PhD thesis,
1985.

[10] H. Eo, O. Lee, and K. Yi. Proofs of a set of hybrid let-polymorphic type
inference algorithms. New Generation Computing, 22(1):1–36, 2004.

[11] S. Erdweg, O. Bračevac, E. Kuci, M. Krebs, and M. Mezini. A co-
contextual formulation of type rules and its application to incremental
type checking. In OOPSLA.

[12] M. Erwig and E. Walkingshaw. The Choice Calculus: A Representation
for Software Variation. TOSEM, 21(1):6:1–6:27, 2011.

[13] C. Haack and J. B. Wells. Type error slicing in implicitly typed higher-
order languages. In ESOP, pages 284–301, 2003.

[14] J. Hage. Helium benchmark programs, (2002-2005). Private communi-
cation, 2013.

[15] J. Hage and B. Heeren. Heuristics for type error discovery and recovery.
In IFL, volume 4449 of LNCS, pages 199–216. 2007.

[16] B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for learning
haskell. In Haskell, pages 62–71, 2003.

[17] B. J. Heeren. Top Quality Type Error Messages. PhD thesis, Universiteit
Utrecht, The Netherlands, 2005.

[18] T. Jim. What are principal typings and what are they good for? In
POPL, pages 42–53, 1996.

[19] B. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching for
type-error messages. In PLDI, pages 425–434, 2007.

[20] C.-k. Lin. Practical Type Inference for the GADT Type System. PhD
thesis, Portland State University, 2010.

[21] B. J. McAdam. Repairing type errors in functional programs. PhD
thesis, University of Edinburgh, 2002.

[22] R. Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17:348–375, 1978.
[23] M. Neubauer and P. Thiemann. Discriminative sum types locate the

source of type errors. In ICFP, pages 15–26, 2003.
[24] Z. Pavlinovic, T. King, and T. Wies. Practical smt-based type error

localization. In ICFP, pages 412–423, 2015.
[25] B. C. Pierce. Types and programming languages. MIT Press, 2002.
[26] T. Schilling. Constraint-free type error slicing. In TFP, pages 1–16.

Springer, 2012.
[27] Z. Shao and A. W. Appel. Smartest recompilation. In POPL, pages

439–450, 1993.
[28] P. J. Stuckey, M. Sulzmann, and J. Wazny. Improving type error

diagnosis. In Haskell, pages 80–91, 2004.
[29] V. Tirronen, S. Uusi-mäkelä, and V. Isomöttönen. Understanding

beginners’ mistakes with haskell. JFP, 25:1–31, 2015.
[30] P. van Keeken. Analyzing helium programs obtained through logging.

Master’s thesis, Utrecht University, October 2006.
[31] D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-Jones. Diagnosing

type errors with class. In PLDI, pages 12–21, 2015.

