
Online Learning from Capricious Data Streams: A Generative Approach

Yi He1 , Baijun Wu1 , Di Wu2 , Ege Beyazit1 , Sheng Chen1 and Xindong Wu1

1School of Computing and Informatics, University of Louisiana at Lafayette, USA
2Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, China

{yi.he1, bj.wu, exb6143, chen, xwu}@louisiana.edu, wudi@cigit.ac.cn

Abstract

Learning with streaming data has received exten-
sive attentions during the past few years. Exist-
ing approaches assume the feature space is fixed
or changes by following explicit regularities, lim-
iting their applicability in dynamic environments
where the data streams are described by an ar-
bitrarily varying feature space. To handle such
capricious data streams, we in this paper develop
a novel algorithm, named OCDS, which does not
make any assumption on feature space dynamics.
OCDS trains a learner on a universal feature space
that establishes the relationship between old and
new features, so that the patterns learned in the
old feature space can be used in the new feature
space. Specifically, the universal feature space is
constructed by leveraging the relatednesses among
features. We propose a generative graphical model
to model the construction process, and show that
learning from the universal feature space can ef-
fectively improve the performance with theoretical
analysis. The experimental results demonstrate that
OCDS achieves conspicuous performance on both
synthetic and real datasets.

1 Introduction

To date, many online learning approaches have been devel-
oped to handle streaming data [Zinkevich, 2003; Crammer et
al., 2006; Nguyen et al., 2017]. Most of them assume that the
data stream with a fixed feature space. Only a few recent stud-
ies have explored to learn from a dynamic feature space, yet
they all make strong assumptions on the feature space dynam-
ics, such as monotonically increasing, where later data in-
stances should including increasingly more features [Zhang et
al., 2016a], or batchly evolving, where a few consecutive data
instances must include all possible features from the feature
space [Hou et al., 2017]. Unfortunately, these assumptions
do not always hold in real applications. For example, in a
smart healthcare platform [Baig and Gholamhosseini, 2013],
features describing the symptoms of patients vary across IoT
devices (thermometers, pulse monitors, respiratory sensors,
etc.) and service providers (hospitals, labs, insurance com-
panies, etc.). This means that the patient data are streaming

Iteration 3

Iteration 2

Iteration 1 f1

w1

f1

w1

f1 w1w1

f2 w2f3 w3

w2 w3f1 f4 f5 w4 w5

.

Feature Space of the
Arriving Instances

Hypothesis Set
of the Learner

Figure 1: Naı̈ve way of learning from a varying feature space. The
weight coefficient wi (marked in dark gray) of the corresponding
new feature is initialized as zero.

with an arbitrarily varying feature space. We refer to such
data streams as capricious data streams.

At the first glance, one may think to adapt existing algo-
rithms, such as Online Convex Optimization (OCO) [Zinke-
vich, 2003], for handling capricious data streams. Figure 1
depicts such a learning paradigm. The learner is trained on
an observable feature space which comprises the features car-
ried by an arriving instance at the tth iteration. Alas, this ap-
proach does not work well and is limited in two aspects. First,
although the new features (e.g., features 2 and 3 at the second
iteration in Figure 1) enlarge the dimension of the learner’s
hypothesis set, they may not be described by sufficient num-
ber of instances, leading to the curse of dimensionality [Duda
et al., 2012]. Second, when the features that have been ob-
served by the learner become unavailable in latter iterations,
the learned patterns regarding these features are ignored [Hou
et al., 2017]. As a result, the learner does not exert its full
power to achieve the best prediction performance.

To overcome these limitations, we in this paper propose the
Online learning with Capricious Data Streams (OCDS) algo-
rithm by training a learner based on a universal feature space
that includes the features appeared at each iteration. Intro-
ducing a universal feature space provides several advantages
over an observable feature space. In the training phase, since
the newly appeared features at the tth iteration are maintained
in the universal feature space in all following iterations, the
learner could benefit from being continuously provided in-
formation from them. In the predicting phase, the universal
feature space is wider than the observable one, conveying ad-

ditional information, so that the learner’s prediction perfor-
mance is improved.

The question, then, is how to obtain the universal feature
space. On capricious data streams, an instance may not carry
some features that are already included in the universal fea-
ture space. Taking the second iteration in Figure 1 as an ex-
ample, the universal feature 1 is missing in the arriving in-
stance. We call such missing features unobservable features,
and the problem of obtaining the universal feature space is
thus recast as reconstructing them.

We build upon a key insight that enables OCDS to in-
fer unobservable features from observable ones: in practice
there exist relatednesses among features [Zhang et al., 2013;
Zhang et al., 2016b; Chen et al., 2005]. Specifically, OCDS
uses a graph to capture feature relatednesses. Each vertex in
the graph denotes a feature in the universal feature space, and
all out-edges of a vertex together represent the relationship
between the corresponding feature and the others. We embed
the graph learning process into the online learning task. The
effectiveness of OCDS is validated in three scenarios: trape-
zoidal data streams [Zhang et al., 2016a], feature evolvable
streams [Hou et al., 2017], and capricious data streams.

Specific contributions in this paper:

1. This is the first work to learn with capricious data
streams where data come with an arbitrarily varying fea-
ture space. We want to emphasize that our learning task
does not make any assumption on the feature space dy-
namics, which is different from existing studies.

2. We introduce a generative graphical model, which takes
the observable feature space as the input and outputs a
universal feature space. We prove that the obtained uni-
versal feature space can effectively improve the learning
performance of OCDS.

3. We analyze the performance bound of OCDS.

Due to the page limitation, we present the detailed proofs
(derivations), time complexity analysis, and complete experi-
mental results in the supplementary material [He et al., 2019].

2 Related Work

In this paper, we focus on learning data streams from a vary-
ing feature space. It is worthy pointing out that though
concept-drift happens in streaming data where the underly-
ing data distribution keeps changing [Gama and Rodrigues,
2009], the number of features carried by each instance is fixed
in concept-drift, which is different from our learning task.

The studies related to our learning task include online
learning from a fixed feature space [Zinkevich, 2003; Nguyen
et al., 2017], from an incremental feature space [Zhou et al.,
2012; Zhang et al., 2016a; Beyazit et al., 2018], and from
an evolvable feature space [Masud et al., 2013; Hou et al.,
2017]. Those approaches tackling the streaming data prob-
lem under different settings, however, rely on the assumptions
that the feature space is fixed or changes by following explicit
regularities. Thus, they cannot handle an arbitrarily varying
feature space.

The key idea of OCDS is to learn a reconstructive mapping
by exploiting feature relatednesses. In this regard, our work

is also related to the feature space reconstruction-based ap-
proaches [Li et al., 2017; Huang et al., 2018]. However, most
of them focus on feature selection and extraction and to our
best knowledge, none of them consider the varying of feature
space during the learning process.

The most related work is [Beyazit et al., 2019], an online
algorithm to handle varying feature spaces. The authors as-
sume that there are overlapping features among arriving in-
stances, while we do not. Thus, the technical challenges and
solutions are different.

3 Preliminaries

We focus on binary classification in this paper. Multiclass
problems could be decomposed to multiple binary classifica-
tion subproblems, using One vs Rest [Xu, 2011] or One vs
One [Sáez et al., 2014] strategies.

Learning Task Setup. Let {(xt, yt)|t = 1, 2, . . . , T} de-
note a sequence of arriving instances with labels, where
xt = [x1, x2, . . . , xdt]

⊤ ∈ R
dt is a dt-dimension vector and

yt ∈ {−1,+1} represents the class label. At tth iteration, the
learner observes the instance xt and then returns its predic-
tion. The true label yt is revealed thereafter, and the learner
suffers an instantaneous loss reflecting the discrepancy be-
tween the prediction and the groundtruth.

We define feature space as a set of features. Let Ut =
{Rd1 ∪ R

d2 ∪ . . . ∪ R
dt} denote the universal feature space

at the tth iteration where the features of x1,x2, . . . ,xt are in-
cluded. We in this paper restrict the discussion to a linear
classifier wt based on a vector of weight coefficients, which
is a common setting in online learning. If new features ap-
pear in xt, their corresponding weight coefficients in wt are
initialized as zeros. As a result, the dimension of wt matches
that of Ut, namely wt ∈ R

|Ut|.

Generative Graphical Model. A generative graph is to em-
bed a reconstructive mapping ψ: R

dt 7→ Ut. Let G denote
the graph whose vertices represent the features in Ut. The
weight of each edge in G encodes a feature-wise relatedness.
We define vertex approximator Φi as a vector containing the
weights of all out-edges of a vertex i. The graph G thus can
be represented by a matrix that comprises a set of vertex ap-

proximators, namely G = [Φ1, . . . ,Φ|Ut|]
⊤ ∈ R

|Ut|×|Ut|.

We define the desired reconstruction of xt in the univer-
sal feature space as ut = [x1, . . . , xdt , x̃dt+1, . . . , x̃|Ut|]

⊤ ∈
R

|Ut|, where xi and x̃j represent an original observable fea-
ture and a reconstructed unobservable feature, respectively.
We infer ut by maximizing a log-likelihood function:

Q =

dt
∑

i=1

log P(ut|xi,Φi). (1)

The features in Ut are inferred independently by given a
vertex i and the corresponding Φi:

P(ut|xi,Φi) =

|Ut|
∏

j=1

P(uj |xi,Φi), (2)

where uj denotes the jth feature in ut.

Without loss of generality, we let P(uj |xi,Φi) follow a

Laplacian distribution [Liu et al., 2014; Park and Lee, 2005]:

P(uj |xi,Φi) =
1

2σ
exp

(

− |uj − E(uj)|
σ

)

, (3)

where σ is a fixed variance [Gerven et al., 2009], and
E(uj) is approximated based on ψ given xi and Φi (see Sec-
tion 4.1).

4 Our Proposed Approach

The objective function of OCDS takes the form:

min
wt,ψ

1

T

T
∑

t=1

(

L
(

yt,w
⊤
tψ(xt)

)

+ α H+ λ penalty
)

, (4)

where the first term as a supervised loss function is mini-
mized for classification purpose. The second term, a recon-
struction error function, indicates the approximation between
the desired ut and the reconstructed ψ(xt). The parameter α
is introduced to absorb the different scales between the first
two terms. The third term bounds the maximal dimension of
the learning model by penalizing its complexity, with a regu-
larization parameter λ.

In the rest of this section, we first present the building
blockings of OCDS by elaborating the components in the ob-
jective function (4). The updating rules are derived thereafter.
We finally discuss the prediction strategy in OCDS.

4.1 Learning from Reconstruction Error

In capricious data streams, the feature spaces between any
two consecutive instances could be different, leading to a
highly dynamic environment. Learning a complex recon-
structive mapping based on existing methods [Pan et al.,
2010; Sun, 2013] is thus unrealistic. We restrict our inter-
est in finding a linear mapping relationship between two fea-
tures. Specifically, we define E(uj) = Gi,jxi in (3), where
Gi,j represents the weight of the out-edge from vertex i to j.
Accordingly, maximizing (1) is equivalent to minimizing the
following optimization problem w.r.t. G:

minH = ‖ut −
1

dt
Gr

⊤
xt‖22

= ‖xt −
1

dt
Π

Rdt (Gr
⊤
xt)‖22, (5)

where Gr = ItG. It ∈ R
dt×|Ut| is an indicator matrix

that represents which features in Ut are carried by xt. ‖ · ‖2
is an ℓ2-norm, and ΠRdt (·) is an operator that orthogonally

projects ut and Gr
⊤
xt onto the R

dt feature space. Surpris-
ingly, we can observe that the reconstruction error is min-
imized by (5) if the reconstructive mapping is defined as

ψ(xt) = (1/dt)(Gr
⊤
xt). In Algorithm 1, we show how

Gr is retrieved for solving (5), such that ψ(xt) is obtained.
The main procedure of our retrieval strategy is to update G

at each iteration. To improve the learning performance and
save the computational cost, we reuse Φi of xi if xi has al-
ready been observed before. For any new feature xj carried
by xt, we first build the out-edges between xj and the others,
representing the relatednesses among features. The weights
of these edges are then randomly initialized, comprising Φj .

Algorithm 1: Retrieval Strategy

Input: An arriving instance xt, It, and G

1 foreach feature xi ∈ xt do
2 if Φi exists in G then
3 foreach feature fj ∈ Ut do
4 if xj ∈ xt and Gi,j not exists then
5 Gi,j ← a random number r;

6 else if Φi not exists in G then
7 Initialize Φi = [];
8 while |Φi| < |Ut| do
9 Φi.append (a random number r);

10 G.append (Φi);

11 return Gr← ItG;

4.2 Learning from Supervised Loss

The accuracy of the universal feature space recovered by min-
imizing (5) may be affected when xt does not convey suffi-
cient information, for example, xt only carries new features
or the number of features in xt is few. To address this issue,
we utilize the class label, an abstract representation of the re-
constructed features, to provide extra supervised information
for learning a better mapping ψ.

We train the learner by minimizing the supervised loss
jointly along with the reconstruction error. With ψ(xt) =

(1/dt)(Gr
⊤
xt), the supervised loss function is:

L
(

yt,w
⊤
tψ(xt)

)

=
(

yt −
1

dt
w
⊤
tGr

⊤
xt

)2
. (6)

Model penalty. The dimension of wt will go infinite as the
data keep streaming with new features. To bound the max-
imum dimension, penalizing the classifier with an ℓ1-norm
regularizer is a common choice. This is because it encourages
a sparse solution of wt in which the values of many weight
coefficients are forced to be small or even zero. The dimen-
sion of wt could thus be bounded by truncating the smallest
weight coefficients, with a ratio of γ.

The drawback of using the ℓ1-norm regularizer is that,
since the feature space of capricious data streams varies ar-
bitrarily, the generated solution becomes sensitive to the se-
quence of arriving instances. To obtain a robust solution, we
take the structure of graph G, which represents the relation-
ship between different features, into consideration. When a
pair of features show strong dependency, the weight of the
edge between them, i.e., Gi,j , is large, and their feature co-
efficients, i.e., wi and wj , should be similar. To achieve this,
we add a graph regularizer onto ℓ1-norm. The formulation
is:

β‖wt‖1 + (1− β)
|Ut|
∑

i=1

|Ut|
∑

j=1

Gi,j(wi − wj)
2

=β‖wt‖1 + 2(1− β) Tr(w⊤
tLwt), (7)

where L is the graph Laplacian of G and β is a tradeoff pa-
rameter.

4.3 Updating Rules

By plugging (5), (6), and (7) into (4), our learning task is
reduced to solve the Empirical Risk Minimization problem as

below:

argmin
G,wt

1

T

T
∑

t=1

(

(

yt −w
⊤
tψ(xt)

)2
+ α‖xt −Π

Rdtψ(xt)‖22

+β1‖wt‖1 + β2 Tr(w
⊤
t Lwt)

)

, (8)

where ψ(xt) = (1/dt)((ItG)⊤xt), β1 = λβ, and β2 =
2λ(1− β).

We prove that the main function (denoted by F) in (8) is
bi-convex, providing a theoretical guarantee for convergence.
To solve (8), we follow the common steps of solving a bi-
convex optimization problem: (i) We divide (8) into two con-
vex optimization subproblems, which are with respect to wt

and G, respectively. (ii) The two subproblems are simultane-
ously solved at each iteration.

In this paper, we use Coordinate Gradient Descend [Tseng
and Yun, 2009] as the optimizer for the subproblems. The
updating rules for wt and G are defined accordingly: wt+1 =

wt − τ∇wt
F and G = G − τ∇GF , where τ =

√

1/t is a
varied step size. In the updating rules, the partial derivatives
(gradients) of F w.r.t. wt and G are calculated as below.

∇wt
F = −2

(

yt −w
⊤
tψ(xt)

)

ψ(xt)

+ β1∂‖wt‖1 + β2(L+ L
⊤)wt (9)

∇GF = (−2/dt)
(

yt −w
⊤
tψ(xt)

)

I
⊤
t xtw

⊤
t

− (2α/dt)I
⊤
t xt

(

xt −Π
Rdtψ(xt)

)⊤
It, (10)

where ∂‖ · ‖1 denotes an entry-wise subdifferential operator.

4.4 Ensemble Prediction

Given ψ(xt) and the corresponding learner wt, conven-
tionally the prediction is defined in an inner product form,
namely 〈wt, ψ(xt)〉. To further improve the prediction per-
formance, we can combine two base predictions based on xt,
which contains the original observable features, and x̃t =
[x̃dt+1, . . . , x̃|Ut|]

⊤ ∈ R
|Ut|−dt , which contains the recon-

structed unobservable features:

ŷt = p〈w̄t,xt〉+ (1− p)〈w̃t, x̃t〉, (11)

where w̄t and w̃t, together forming wt, are the weight coef-
ficients of xt and x̃t, respectively. The value of p decides the
significance of xt and x̃t in making predictions. Such an en-
semble prediction can eliminate the prediction errors caused
by potential noises in the reconstructed observable features,
which is likely to happen in the initial iterations when few
data instances have been seen.

The prediction loss function ℓ(·) is convex in its first ar-
gument. In the implementation, we choose logistic loss
for classification task, namely ℓ(y, ŷ) = (1/ ln 2) ln(1 +

exp(−yŷ)). Let Lobs
T =

∑T

t=1
ℓ(yt, 〈w̄t,xt〉) and Lrec

T =
∑T

t=1
ℓ(yt, 〈w̃t, x̃t〉) denote the cumulative losses suffered

by making predictions on xt and x̃t over T iterations, re-
spectively. At the iteration T + 1, we update the parameter
p in (11) based on exponential of the cumulative loss [Cesa-

Bianchi and Lugosi, 2006]. Intuitively, when Lobs
T (or Lrec

T) is
larger than the other term, the impact of xt (or x̃t) is nega-
tively rewarded by our learning system.

p =
exp(−ηLobs

T)

exp(−ηLobs
T) + exp(−ηLrec

T)
, (12)

Algorithm 2: The OCDS algorithm

Initialize: w1 = [0, . . . , 0]⊤ ∈ R
d1 , Ut = ∅, G = ∅

p = 0.5, and Lobs
T = Lrec

T = 0.

1 for t = 1, . . . , T do

2 Receive instance xt, and Ut = Ut−1 ∪ R
dt ;

3 Retrieve Gr using Algorithm 1;
4 Predict the label as sign(ŷt) using (11);

5 Lobs
T += ℓ(yt, 〈w̄t,xt〉), Lrec

T += ℓ(yt, 〈w̃t, x̃t〉);
6 Reweight the parameter p using (12) where η = 8

√

1/ lnT ;
7 Update wt+1 and G using (9) and (10), respectively;
8 Truncate wt+1 based on γ;

where η is a tuned parameter and its value assignment is
discussed in Section 5.

The details of OCDS are presented in Algorithm 2. The
running time complexity of OCDS is O(d2t × |Ut|). To fully
capture the feature relatednesses without being affected by
the data scale, we in the implementation update Gr since G

can be easily restored based on it.

5 Theoretical Analysis

In this section, we borrow the the regret from online learning
to measure the performance of OCDS. We derive a cumu-
lative loss bound and show that the recovered feature space
effectively enhances the performance. For the sake of sound-
ness, the proofs of this section are provided in Section 3 of
supplementary material.

Theorem 1. Denoted byLT =
∑T

t=1
ℓ(yt, ŷt) the overall cu-

mulative loss of OCDS over T iterations. LT with parameter

η = 8
√

1/ lnT satisfies:

LT ≤ min{Lobs
T , Lrec

T }+
T√
lnT

+
ln 2

8

√
lnT .

Let ∆ = T/
√
lnT + (ln 2/8)

√
lnT , which is linearly

bounded by the number of iterations. Theorem 1 indicates
that LT is comparable to the minimum of Lobs

T and Lrec
T . Fur-

thermore, we have the following theorem.

Theorem 2. If w̄t is better than w̃t over T iterations, then
LT is bounded as:

LT < Lobs
T + C,

where C is a constant, and C ≪ ∆.

Theorem 1 and 2 offer our learning algorithm a nice prop-
erty as follows.

Corollary 1. The learning performance is improved by mak-
ing use of the recovered universal feature space.

Proof. On the one hand, when w̄t is better than w̃t over T
iterations, Theorem 2 tells that the cumulative loss LT of
OCDS is comparable to Lobs

T and is bounded to a constant.
On the other hand, when w̃t is better than w̄t over T iter-
ations, it is obvious that the recovered unobservable feature
space is helpful. Furthermore, if w̃t is better than w̄t to cer-
tain degree, satisfying Lobs

T − Lrec
T > ∆, it is easy to verify

that LT < Lobs
T . To conclude, the learner with the assistance

from the universal feature space achieves better performance
than that without the assistance.

Table 1: Characteristics of the studied datasets.

Dataset #Inst. #Feat. Dataset #Inst. #Feat.

wpbc 198 33 german 1,000 20
ionosphere 351 34 svmguide3 1,284 21
wdbc 569 30 splice 3,190 60
australian 690 14 kr-vs-kp 3,196 36
credit-a 690 15 HAPT 10,929 561
wbc 699 9 magic04 19,020 10
diabetes 768 8 IMDB 25,000 7,500
dna 949 180 a8a 32,560 123

6 Experiments

We use 15 UCI datasets [Dua and Karra Taniskidou, 2017]

and 1 real-world IMDB dataset [Maas et al., 2011] to evalu-
ate the performance of OCDS. The task in IMDB dataset is
to classify the movie reviews into positive and negative sen-
timents. Each individual word in the reviews is considered as
a feature. Since the words used in each and every user review
could be different, we formulate the task as learning from an
arbitrarily varying feature space. In UCI datasets, we simu-
late capricious data streams by randomly removing features
from each arriving instance xt. The ratio of the maximal re-
moved features is denoted as VI . For example, VI = 0.5
means that at most 50% of features in xt are randomly re-
moved. The default value of VI is 0.5 in our experiments.
The details of the used datasets are provided in Table 1.

To find the best settings of the parameters α, β1 and β2,
we use grid searches ranging from 10−5 to 1. For memory
and running time efficiency, we let |Ut| ≤ 150 by setting γ in
different datasets.

6.1 Comparisons with State-of-the-arts

Table 2 presents the results of performance comparison in
terms of classification accuracy. Three baseline algorithms,
OLSF [Zhang et al., 2016a], FESL [Hou et al., 2017], and
OCO [Zinkevich, 2003], as well as the proposed OCDS algo-
rithm are evaluated in this section. In particular, OLSF can
only handle trapezoidal data streams where the feature space
monotonically augments as data flow in, while FESL can only
handle feature evolvable streams where feature space batchly
evolves by following an explicit pattern – both new and old
features exist in an overlapping time period. The trapezoidal
and feature evolvable data streams are the special cases of
capricious data streams, and we simulate these two kinds of
data streams by following the methods provided in the re-
spective work. We compare OCDS with OLSF and FESL
on trapezoidal data streams and feature evolvable streams, re-
spectively. On capricious data streams, OCDS is compared
with OCO, which, as mentioned in Section 1, is a naı̈ve on-
line learning algorithm that makes prediction based on the
observable feature space only.

On trapezoidal data streams, the average accuracy of
OCDS and OLSF are 86.69% and 75.40%, respectively, and
OCDS statistically achieves better results on 13 out of 16
datasets. Moreover, on 12 out of 16 datasets, the classifi-
cation variances of OCDS are smaller than those of OLSF.
The main reason is that OCDS considers the feature related-
nesses in model penalty while OLSF does not, and therefore
the classification accuracy of OCDS is more robust.

On feature evolvable streams, OCDS and FESL achieve
87.98% and 77.12% accuracy on average, respectively, and
OCDS outperforms FESL on 11 datasets. This is because
FESL trains a learner mainly with the help of the time period
in which old and new features exist simultaneously, while
OCDS can keep updating the learned reconstructive mapping
over all iterations. The way that OCDS learns the mapping
suggests that the classification accuracy could be improved
when a large number of instances flow in, and the results sup-
port it. For example, we observe that the average accuracy
of OCDS is 19.78% higher than that of FESL on large scale
datasets such as splice and HAPT.

On capricious data streams, the average accuracy of OCDS
is 91.02%, while that of OCO is only 65.44%. In addition,
OCDS wins over OCO on 15 datasets. We also find out that
the classification result of OCDS is stable across different
datasets. The results indicate that OCDS could effectively
handle arbitrarily varying feature spaces.

6.2 Impact of Universal Feature Space

In this section, we compare OCDS with three approaches.
One is OCO, which could work on capricious data streams, as
a baseline algorithm. The other two are the variants of OCDS,
named OCDS-o(bservable) and OCDS-r(econstructed), re-
spectively. The difference between them is that, when mak-
ing prediction, OCDS-o uses the observable features while
OCDS-r uses the reconstructed features. To investigate the
impact of universal feature space, we aim to answer the fol-
lowing two questions:

Q1. How effectively can the universal feature space capture
feature relatednesses?

The smaller reconstruction error the universal feature space
has, the better the feature relatednesses are captured. In ad-
dition, due to the bi-convexity of our objective optimization
function (8), the reconstruction error is positively correlated
to the prediction loss. Therefore, the prediction loss could be
used in turn to measure the accuracy of the captured feature
relatednesses.

Here we present the trend of average cumulative loss (acl)
in Figure 2. At the iteration T , acl = LT /T . Based on the re-
sults, we find that although the curve of OCDS-r may increase
during the beginning iterations, it decreases as more data flow
in and eventually converges. This intuitively makes sense be-
cause the more arriving instances the learner receives, the bet-
ter the feature relatednesses are learned, reducing the value of
acl. Moreover, the average cumulative losses of OCDS and
OCDS-r both drop to small values after convergence. Thus,
the reconstruction error in general is small, which suggests
that the feature relatednesses are captured accurately.

Q2. Can the universal feature space help improve learning
performance?

From Figure 2, we make the following observations. (i)
After convergence, the average cumulative loss of OCDS is
significantly smaller than that of OCO, especially on large
datasets. OCDS enjoys better performance because the uni-
versal feature space can provide more information. (ii) OCO
may surpass OCDS-o when the number of instances is small,
but the average cumulative loss of OCDS-o becomes smaller

References

[Baig and Gholamhosseini, 2013] Mirza Mansoor Baig and
Hamid Gholamhosseini. Smart health monitoring systems:
an overview of design and modeling. Journal of medical
systems, 37(2):9898, 2013.

[Beyazit et al., 2018] Ege Beyazit, Matin Hosseini, Anthony
Maida, and Xindong Wu. Learning simplified decision
boundaries from trapezoidal data streams. In ICANN,
pages 508–517. Springer, 2018.

[Beyazit et al., 2019] Ege Beyazit, Jeevithan Alagurajah,
and Xindong Wu. Online learning with feature space adap-
tive constraints. In AAAI, 2019.

[Cesa-Bianchi and Lugosi, 2006] Nicolo Cesa-Bianchi and
Gábor Lugosi. Prediction, learning, and games. Cam-
bridge university press, 2006.

[Chen et al., 2005] Jinxiu Chen, Donghong Ji, Chew Lim
Tan, and Zhengyu Niu. Unsupervised feature selection for
relation extraction. In CVPR, 2005.

[Crammer et al., 2006] Koby Crammer, Ofer Dekel, Joseph
Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online
passive-aggressive algorithms. Journal of Machine Learn-
ing Research, 7(Mar):551–585, 2006.

[Dua and Karra Taniskidou, 2017] Dheeru Dua and Efi
Karra Taniskidou. UCI machine learning repository, 2017.

[Duda et al., 2012] Richard O Duda, Peter E Hart, and
David G Stork. Pattern classification. John Wiley & Sons,
2012.

[Gama and Rodrigues, 2009] João Gama and Pedro Pereira
Rodrigues. An overview on mining data streams. In Foun-
dations of Computational, IntelligenceVolume 6, pages
29–45. Springer, 2009.

[Gerven et al., 2009] Marcel V Gerven, Botond Cseke,
Robert Oostenveld, and Tom Heskes. Bayesian source lo-
calization with the multivariate laplace prior. In NeurIPS,
pages 1901–1909, 2009.

[He et al., 2019] Yi He, Baijun Wu, Di Wu, Ege Beyazit,
Sheng Chen, and Xindong Wu. https://drive.google.com/
open?id=1LBDobBBcc2 w-tO0TUV9-KgjZiUH-J f,
2019. [Online; accessed May 29, 2019].

[Hou et al., 2017] Bo-Jian Hou, Lijun Zhang, and Zhi-Hua
Zhou. Learning with feature evolvable streams. In
NeurIPS, pages 1417–1427, 2017.

[Huang et al., 2018] Sheng-Jun Huang, Miao Xu, Ming-Kun
Xie, Masashi Sugiyama, Gang Niu, and Songcan Chen.
Active feature acquisition with supervised matrix comple-
tion. SIGKDD, 2018.

[Li et al., 2017] Jundong Li, Jiliang Tang, and Huan Liu.
Reconstruction-based unsupervised feature selection: an
embedded approach. In IJCAI, 2017.

[Liu et al., 2014] Lingqiao Liu, Chunhua Shen, Lei Wang,
Anton Van Den Hengel, and Chao Wang. Encoding high
dimensional local features by sparse coding based fisher
vectors. In NeurIPS, pages 1143–1151, 2014.

[Maas et al., 2011] Andrew L. Maas, Raymond E. Daly, Pe-
ter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In
ACL, pages 142–150, Portland, Oregon, USA, June 2011.

[Masud et al., 2013] Mohammad M Masud, Qing Chen, Lat-
ifur Khan, Charu C Aggarwal, Jing Gao, Jiawei Han,
Ashok Srivastava, and Nikunj C Oza. Classification and
adaptive novel class detection of feature-evolving data
streams. IEEE Transactions on Knowledge and Data En-
gineering, 25(7):1484–1497, 2013.

[Nguyen et al., 2017] Tu Dinh Nguyen, Trung Le, Hung Bui,
and Dinh Q Phung. Large-scale online kernel learning with
random feature reparameterization. In IJCAI, pages 2543–
2549, 2017.

[Pan et al., 2010] Sinno Jialin Pan, Qiang Yang, et al. A sur-
vey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2010.

[Park and Lee, 2005] Hyun J Park and Te W Lee. Modeling
nonlinear dependencies in natural images using mixture
of laplacian distribution. In NeurIPS, pages 1041–1048,
2005.

[Sáez et al., 2014] José A Sáez, Mikel Galar, Julián Luengo,
and Francisco Herrera. Analyzing the presence of noise
in multi-class problems: alleviating its influence with the
one-vs-one decomposition. Knowledge and information
systems, 38(1):179–206, 2014.

[Sun, 2013] Shiliang Sun. A survey of multi-view ma-
chine learning. Neural Computing and Applications, 23(7-
8):2031–2038, 2013.

[Tseng and Yun, 2009] Paul Tseng and Sangwoon Yun. A
coordinate gradient descent method for nonsmooth sepa-
rable minimization. Mathematical Programming, 117(1-
2):387–423, 2009.

[Xu, 2011] Jianhua Xu. An extended one-versus-rest support
vector machine for multi-label classification. Neurocom-
puting, 74(17):3114–3124, 2011.

[Zhang et al., 2013] Wei Zhang, Wei Feng, and Jianyong
Wang. Integrating semantic relatedness and words’ in-
trinsic features for keyword extraction. In IJCAI, pages
2225–2231, 2013.

[Zhang et al., 2016a] Qin Zhang, Peng Zhang, Guodong
Long, Wei Ding, Chengqi Zhang, and Xindong Wu. On-
line learning from trapezoidal data streams. IEEE Transac-
tions on Knowledge and Data Engineering, 28(10):2709–
2723, 2016.

[Zhang et al., 2016b] Xianchao Zhang, Xiaotong Zhang, and
Han Liu. Self-adapted multi-task clustering. In IJCAI,
pages 2357–2363, 2016.

[Zhou et al., 2012] Guanyu Zhou, Kihyuk Sohn, and
Honglak Lee. Online incremental feature learning with
denoising autoencoders. In AISTATS, pages 1453–1461,
2012.

[Zinkevich, 2003] Martin Zinkevich. Online convex pro-
gramming and generalized infinitesimal gradient ascent. In
ICML, pages 928–936, 2003.

