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Ecologists are improving predictive capability using near-term ecological forecasts, in
which predictions are made iteratively and publically to increase transparency, rate of
learning, and maximize utility. Ongoing ecological forecasting efforts focus mostly on
long-term datasets of continuous variables, such as CO» fluxes, or more abrupt variables,
such as phenological events or algal blooms. Generally lacking from these forecasting
efforts is the integration of short-term, opportunistic data concurrent with developing
climate extremes such as drought. We posit that incorporating targeted experiments and
regional surveys, implemented rapidly during developing extreme events, into current
forecasting efforts will ultimately enhance our ability to forecast ecological responses
to climate extremes, which are projected to increase in both frequency and intensity.
We highlight a project, “chasing tree die-off,” in which we coupled an experiment with
regional-scale observational field surveys during a developing severe drought to test
and improve forecasts of tree die-off. General insights to consider in incorporating this
approach include: (1) tracking developing climate extremes in near-real time to efficiently
ramp up measurements rapidly and, if feasible, initiate an experiment quickly —including
funding and site selection challenges; (2) accepting uncertainty in projected extreme
climatic events and adjusting sampling design over-time as needed, especially given
the spatially heterogeneous nature of many ecological disturbances; and (3) producing
timely and iterative output. In summary, targeted experiments and regional surveys
implemented rapidly during developing extreme climatic events offer promise to efficiently
(both financially and logistically) improve our ability to forecast ecological responses to
climate extremes.

Keywords: ecological forecasting, adaptive monitoring, anticipatory science, disturbance, climate change, climate
extremes, extreme climatic event, drought
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INTRODUCTION

The frequency and severity of climate extremes such as drought,
floods, and heat waves are projected to increase with global
climate change (de Coninck et al., 2018; Hayhoe et al., 2018).
These climate extremes can trigger rapid ecosystem responses
(i.e., extreme climatic events; Smith, 2011), including widespread
tree die-off (Allen et al., 2010, 2015), algal blooms (Havens et al.,
2016), wildfires (Moritz et al., 2010), plant invasions (Sheppard
et al, 2012), and extensive soil erosion (Coppus and Imeson,
2002). This has created a need for rapid anticipatory science
and management to increase ecosystem resistance to and/or
recovery following extreme climate events (Ummenhofer and
Meehl, 2017; Bradford et al., 2018). Yet forecasting not only the
climate extremes, but also the ecological responses (Smith, 2011),
is a key prerequisite toward conducting anticipatory science
and management in the face of climate change (Dietze et al,
2018). Near-term ecological forecasting has been developed to
make iterative predictions of ecological responses to inform
management action and has the potential to transform our
ability to rapidly manage natural resources during and following
extreme climatic events (Clark et al., 2001; Dietze et al., 2018). In
this Perspective, we propose that near-term ecological forecasting
can be enhanced by targeted experiments and regional surveys
implemented rapidly during developing extreme climatic events
to improve our ability to forecast, and ultimately manage,
ecological responses to climate extremes.

Near-term ecological forecasting has already been used
to iteratively forecast wildfires (Chen et al, 2011), influenza
outbreaks (Shaman and Karspeck, 2012), algal blooms (Stumpf
et al., 2009), and more (see also Dietze, 2017; Dietze et al,,
2018) and can be coupled with adaptive management to further
improve predictions and guide anticipatory management
(Bradford et al, 2018). Successful near-term ecological
forecasting can be achieved by continually making predictions,
taking measurements, observing results of those predictions,
and integrating data with models (Kalnay, 2002; Dietze, 2017)—
in essence “learning by doing” (Shuman, 1989). These steps
can be further refined using the scientific method to propose
alternative models that test appropriate hypotheses by comparing
observations to specific, quantitative predictions rather than
the conventional null hypothesis. These improved models are
then used to forecast, observe, analyze, and refine hypotheses,
and the iterative forecast cycle continues (Dietze et al., 2018).
Coupled synchronously with this ongoing iterative forecast cycle
is the adaptive management cycle, wherein monitoring data can
be used not only to assess previous management decisions but
can also be assimilated into forecasts that explore alternative
management scenarios moving forward (Gregory et al., 2012;
Ketz et al., 2016). Performed in tandem, these two cycles will
accelerate our capacity to predict and respond to extreme
climatic events.

We see an opportunity to complement the near-term
ecological forecasting framework to more effectively address
rapidly developing, ecologically significant extreme climatic
events that are projected to increase with global climate
change. At present, most examples of near-term ecological
forecasting have generally relied on long-term data from a

single site (e.g., Hobbs et al, 2015), a network of sites
(e.g., Kuikka et al, 2014; Thomas et al., 2017), or near-real
time data through satellites (e.g., Stumpf et al, 2009). Yet
speedily implemented natural and manipulative experiments
provide a way to target transient and progressive spatially-
heterogeneous extreme climatic events (e.g., algal blooms, exotic
species invasions, disease and insect outbreaks, drought-induced
tree mortality and dieback) while simultaneously increasing
understanding of these events and harnessing the predictive
power of long-term datasets. As highlighted by recent efforts to
increase adaptive monitoring whereby monitoring efforts adjust
overtime to more efficiently capture spatiotemporal dynamic
ecological processes (e.g., Hooten et al., 2009; Krause et al., 2015),
we posit that targeting the event as it develops is an informative
way to study these phenomena. Manipulative experiments, a core
tool in ecology (Hairston, 1989; Peters, 1991; Sala et al., 2000;
Scheiner and Gurevitch, 2001; Weltzin and McPherson, 2003),
can identify the mechanisms underpinning responses and the
potential thresholds that are difficult to identify post-hoc, and
have successfully been used to improve ecological forecasting
(Jiang et al., 2018). Additionally, regional surveys and associated
summaries are effective for change detection associated with
extreme climatic events (Hughes et al., 2018; Ruthrof et al,,
2018; Fettig et al., 2019; Flake and Weisberg, 2019), and are
especially useful given the often spatially heterogeneous nature of
many ecological disturbances (e.g., Lybrand et al., 2018). There
are a range of remote sensing technologies that can be used to
augment regional field surveys and forecast changes at a broader
spatial scale. These include an array of satellite imagery, including
not only traditional multispectral imagery (Landsat, Sentinel-2,
MODIS, VIIRS), but also lidar (GEDI), thermal (ECOSTRESS),
radar (PALSAR, NISAR), microwave soil moisture (SMAP),
gravimetric (GRACE), high temporal resolution geostationary
imagery (GOES), and commercial cubesat constellations (e.g.,
Planet Labs). There are also emerging opportunities to leverage
airborne and drone technologies to augment field data and/or
satellite imagery and ultimately improve near-term ecological
forecasting. We propose that adding rapidly implemented
experimental and regional studies during developing extreme
climate events can complement existing near-term ecological
forecasting efforts to ultimately improve our capacity to forecast
ecological responses to climate extremes.

Below we: (1) provide a framework for expanding near-term
ecological forecasting by incorporating targeted experiments and
regional surveys implemented rapidly during developing extreme
climatic events; (2) illustrate our points with a case study,
“chasing tree die-oft”; and (3) provide examples of where this
approach can be used to improve our ability to forecast other
critical ecological processes.

EXPANDING NEAR-TERM ECOLOGICAL
FORECASTING TO OPPORTUNISTICALLY
EXPLOIT EXTREME EVENTS AS THEY ARE
DEVELOPING

A key aspect of near-term ecological forecasting to date is
that it is generally based on ongoing long-term measurements
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at a single site or across a network of sites at regional or
larger scales (Figure 1B). This is practical because there is
substantial effort needed to launch an iterative and highly
automated near-term ecological forecasting framework. The
advantages of such a framework are sound and can aid
management decisions (Dietze, 2017; Dietze et al, 2018).
However, ecological changes are increasingly being driven by
climate extremes, which are infrequent in time, variable in
space, and therefore require a rapid-response capacity to capture
observations or implement experiments. Some of these ecological
changes, such as vegetation and biogeochemical responses to
extreme drought (e.g., Ciais et al., 2005; Schlesinger et al.,
2016) can potentially be anticipated during the development
of the extreme event. Given the importance of extreme
climatic events, we propose that rapidly implemented studies
at local and regional scales can be a useful complement to
other approaches based on ongoing long-term data collection
(Figure 1A). A developing extreme climatic event can become
the focus of an experimental study implemented rapidly within
the impact location to increase return on investment, such
as by implementing water additions as treatments during a
developing drought (Jentsch et al., 2007). This type of effort
is most likely to provide rapid useful information on the
impacts of climate extremes, particularly concerning ecological
thresholds. Similarly, opportunistic surveys at a regional scale
can provide added insight on extreme event impacts. An
excellent example of this is the rapid monitoring of an emerging
influenza outbreak in 2009 to document and ultimately improve
forecasting of influenza spread (Ong et al.,, 2010). These targeted
regional surveys are especially useful in documenting spatially
heterogeneous disturbances. The rapid approach and long-term
approach are highly complementary: long-term monitoring sites
can be used to generate forecasts during developing extreme
events (e.g., Diffenbaugh et al., 2017) and insights learned from
the rapid approach can subsequently be used to improve forecasts
at these long-term monitoring sites.

Within this proposed expanded framework of near-term
ecological forecasting (Figure 1), there are pros and cons to
each spatiotemporal quadrant. In the simplest type of near-term
ecological forecast, ongoing long-term data at a site are used to
iteratively update predictions (Figure 1B, lower). This type of
approach is most feasible in terms of effort because it is focused
on a single site, allowing for intensive, detailed measurements,
and access to long-term time series, which makes the specific
timing of initiating the forecasting perhaps less critical (Dietze,
2017; Dietze et al., 2018). However, in this type of forecast, the
study site has a high probability of being located outside the
area impacted by an extreme climatic event and much data may
need to be collected before the timing and location of an extreme
event impact that site. Moving to a regional scale, with a network
of long-term ongoing data (Figure 1B, upper) the probability
of capturing an extreme climatic event within the network
increases, although this depends on network density. Networks
of sites are beneficial in that they are more spatially extensive
relative to a single-site but, in general, have less detailed data
due to the greater expense of maintaining multiple sites. Further,
there is still the issue, albeit of less concern relative to a single

A Rapid Approach
Focused on Location(s) of
Developing Extreme Event

B Long-term Approach
Focused on Long-Term
Measurement Location(s)

RAPID REGIONAL SURVEY NETWORK
E Greatest likelihood of Increased probability of
RS} capturing extreme events. capturing extreme event but
O | Observational and requires low probability the event will
= prior studies to inform occur in a given year. Resource
w predictions. intensive leading to less
3 detailed data.
%)
©
B
e RAPID TARGETED
EXPERIMENT
3 Difficult to implement quickly
2 but most targeted for event
= impacts. Experimental
component allows for more
robust inferences.

Short

Long

Temporal Scale

Complementary Framework Existing Framework
FIGURE 1 | Approaches used for near-term ecological forecasting that vary in
spatial and temporal scale. Rapid approaches (A) complement existing
long-term studies (B) to improve near-term ecological forecasting of ecological
events driven by extreme climate events. Blue text details the pros and cons of
each spatiotemporal quadrant for near-term ecological forecasting.

site, of potentially waiting a long time for an extreme climatic
event to occur at one of the sites within a network, particularly if
there is a low density of sites. By observing progressive conditions
for climate extremes such as a drought, efforts can potentially be
rapidly deployed at a specific location within the area forecasted
to be impacted by the extreme event (rapid targeted experiment;
Figure 1A, lower). Similarly, at regional scales, a survey following
an extreme climate event can document its impact (rapid regional
survey; Figure 1A, upper), but this type of approach often
relies on having preliminary data at a regional scale that can
be built upon. This survey can be done using observations
from on the ground field surveys and/or with remote sensing
technologies to document ecological responses (e.g., Miller et al.,
2006; Schepaschenko et al., 2019) and to also develop forecasts
(e.g., Liu et al,, 2019). These two types of efforts, can strongly
enhance our understanding of the ecological consequences of
extreme climate events and require less financial costs over-
time, but can be challenging to implement because funding,
site selection, experimental treatments (Figure 1A, lower only),
and monitoring all need to occur quickly. Importantly, the
rapid approach discussed here is most effective in climate
extremes like drought that develop on slower time-scales. In
summary, each of these four quadrats (Figure 1) can provide
useful information for near-term ecological forecasting, and each
has constraints. Furthermore, advances in statistical methods for
iterative forecasting, and data fusion approaches for informing
models with multiple data constraints, play a critical role when
trying to combine information from these four quadrats (Dietze,
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2017). We next illustrate how rapidly implemented local and
regional scale studies provide useful insights into the left-hand
column of the framework.

CHASING TREE DIE-OFF: A CASE STUDY

We began tracking predictive maps provided by the US Drought
Monitor (The National Drought Mitigation Center, 2019) and
local weather stations during the winter of 2017/2018. The
cumulative evidence predicted 2018 to be an exceptionally dry
year that could lead to regional tree mortality comparable to
2002-2003 (Breshears et al., 2005). We received funding from the
NSF-RAPID program to implement a two-part study integrating
an experiment and regional surveys into near-term ecological
forecasting to evaluate pifion pine (Pinus edulis) mortality during
a developing drought in the US Southwest during 2018. We
coupled a watering experiment at two sites (i.e., Figure 1A,
lower) with a regional survey (i.e., Figure 1A, upper) to forecast
mortality based on over a dozen published equations to predict
mortality at varying spatiotemporal scales (Breshears et al., 2018).

Rapid Target Experiment

In April 2018, two sites were established in a pifion-juniper
woodland separated by approximately 300 m in elevation. To
test previously published hypotheses on how tree size and age
affect mortality (e.g., Floyd et al., 2009; Meddens et al., 2015),
we identified 24 clusters of trees at each site that consisted
of one reproductively mature individual in close proximity to
a sapling and a seedling. We randomly assigned each cluster
of trees to one of three treatments: ambient (drought), small
watering, and large watering. Watering treatments were done
on May 21, 2018 by imposing an artificial rain event of two
magnitudes by slowly saturating either the top 10 or 30 cm of
soil. This was done in an effort to vary soil moisture across
trees to refine mortality thresholds. We tracked soil moisture
using a combination of handheld and permanent soil moisture
probes through the duration of the experiment. We sampled pre-
dawn water potential, stomatal conductance, and canopy percent
brown from late May to mid-September at ~2-week intervals to
assess water stress and tree mortality, and continued to sample
canopy percent brown monthly through mid-November, 2018 to
obtain final estimates of tree mortality. Mortality forecasts were
updated ~every two weeks during the duration of the experiment
based on our water stress measurements and compared to
mortality data.

Rapid Regional Survey

The regional survey of pifion pine mortality was stratified by
elevation and soil available water capacity across a 700 km
region of Colorado and New Mexico to target sites that were
anticipated to have variable levels of mortality. In October, 2018,
we measured the size, vigor, and survival of all trees at 32 sites.
Further, we recorded microsite conditions of all juvenile trees to
refine predictions of nursing effects on juvenile survival under
varying climate conditions (e.g., Redmond et al., 2015). The
landscape to regional-scale mortality predictions for pifion pine

focused on here can only be updated at an annual time-step
(Breshears et al., 2018) and thus forecasts were done at the end
of the study once all input climate data were available. Due to the
short duration of this study (1 year), we were only able to perform
iterative predictions for the finer spatiotemporal scale predictors
assessed in the experimental survey and we were unable to assess
whether mortality continued into the following growing season.
Collectively, these two approaches (manipulative experiment and
regional survey) allowed us to test previously published equations
used to predict pifion pine mortality at varying spatial scales and
refine future predictions.

Watering treatments in the rapid targeted experiment
successfully increased soil moisture levels initially, with the
small and large watering treatments resulting in a 4.7% and
11.6% increase in volumetric water content, respectively. This
subsequently resulted in a trend of decreased tree water stress
(i.e., less negative water potentials) at the low elevation site only.
Yet the effect of watering on soil moisture rapidly declined—
by 2 weeks soil moisture levels were equivalent between the
treatments and there were no differences in mortality between
treatments. The rapid target experiment was challenged by a
1,000-year rainfall event that occurred in July 2018 and resulted
in very little (<3%) subsequent overstory mortality, despite
predictions of high (>30%) mortality based on prior plant
water potential thresholds identified in Adams et al. (2017).
As a result, we documented the recovery of a population
affected by drought following a substantial rain event despite
exceeding previously established thresholds that closely linked
extreme plant water potentials to mortality. Forecasting mortality
based on data collected during the developing drought in
the rapid target experiment (i.e., Figure 1A, lower) allowed
us to refine previous predictions by providing data of where
mortality was expected to occur, but ultimately did not occur.
This highlights the importance of forecasting mortality during
droughts rather than post-hoc investigations following known
die-off events. Notably, the rapid regional survey (Figure 1A,
upper) allowed us to sample areas where the developing
drought continued to persist and ultimately lead to tree
mortality (Wion et al., unpublished). Given uncertainties of
forecasting climate extremes and the spatially heterogeneous
nature of ecological disturbances, this two-part study reveals
the benefit of integrating targeted experiments with regional
surveys during an emerging drought to further improve
ecological forecasting.

From our project, some of the more general insights that apply
toward conducting rapid studies during developing extreme
climate events (e.g., Figure 1A) include:

(1) The need to track developing events and their potential
timeline. This is more challenging for extreme climate events
that occur and end rapidly, such as heat waves, relative
to extreme climate events that develop over longer time
periods, such as drought.

(2) The ability to ramp up measurements rapidly and if
appropriate install and initiate an experiment quickly. This
includes challenges associated with quickly obtaining or
redirecting funding and selecting sites on a tight timeline.
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TABLE 1 | Examples of where near-term ecological forecasting can be enhanced by experiments and regional surveys implemented rapidly during emerging climate
extremes to improve our ability to forecast extreme ecological events and mitigate risk through early detection.

Climate Extreme

Extreme Ecological
Event

Forecasting Challenge

Opportunities for Rapid Approaches

Drought Insect Outbreaks & Tree Determining mortality thresholds under Experiment:
Mortality2P varying levels of insect densities and water » Experimental management interventions (e.g., insect
stress; efficacy of management options control techniques)
® Precipitation manipulation treatments
Survey:
e Pheromone traps to quantify insect population densities
e Tree mortality surveys (field and/or remote sensing based)
Extreme Coral Bleaching® Determining expulsion thresholds, spatial Experiment:
Temperature (Acute extents, and cascading effects e Mesocosms to manipulate abiotic conditions (temperature, pH)
Heat Wave) and biotic communities
Survey:
¢ Rapid implementation of surveys before, during, and after heat
events coupled with abiotic monitoring of currents, temperature,
and other abiotic conditions.
Extreme Permafrost thawing®®, Uncertainty in rate of thawing and drying; Experiment:
Temperature peatland & alpine high spatial heterogeneity requires e Manipulation of temperature, moisture, or solar input
(Sustained Heat) grassland drying extensive sampling Survey:

e Carbon stocks and fluxes and changes to organic
matter stoichiometry

e Surveys of changes in vegetation species richness and biomass
(field and/or remote sensing)

Extreme Infectious disease Waterborne transmission of viral, bacteria, Experiment:
Precipitation outbreaks?" and parasitic diseases leading to disease * Experimental management interventions (e.g., sterilization of
(Flooding) spread and high risk areas with flooding disease vectors)
* Mesocosm experiments to manipulate density and diversity
of hosts
Survey:
¢ Rapid response through population monitoring of vectors and
disease agents and tracking outbreaks with social media
Extreme Wind Windfall' Predicting changes in forest structure and Experiment:
(Hurricane) understory vegetation following high wind; e Experimental silvicultural treatments, nutrient additions to couple

managing to promote recovery

biogeochemical changes with understory vegetation responses
Survey:
e Tree mortality surveys to test forecasts across species and

size classes
e Biogeochemical and understory vegetation sampling

aAnderegg et al., 2015, PLiu et al., 2019, CLiu et al., 2018, ¥Schuur et al., 2015, ©Brouchkov and Fukuda, 2002, fGanjurjav et al., 2018, 9Hunter, 2003, "Wells et al., 2015, 'Cooper-Ellis

etal., 1999.

(3) Accepting uncertainty in projected climate extremes
and, when possible, altering the sampling design (ie.,
adaptive monitoring) as the event progresses, especially
given the spatially heterogeneous nature of many
ecological disturbances.

(4) Producing timely and iterative output under a short
time period.

EXAMPLE OPPORTUNITIES THAT CAN
RAPIDLY EXPLOIT DEVELOPING
DISTURBANCES

We highlight five disparate examples of how coupling rapid
experiments and/or regional surveys with near-term ecological
forecasting can allow for efficient and effective investigation of
extreme events (Table 1). These examples represent both aquatic
and terrestrial responses to shifting climate drivers and are not
an exhaustive list. We summarize some of the major challenges

related to predicting and understanding these ecological events,
while cataloging some of the opportunities available for future
study using our expanded framework (see Table 1).

CONCLUSIONS

Climate change is occurring at such a rapid pace that the
Anthropocene falls outside of the typical range of natural
variability (Smith et al., 2009), creating a need for iterative
near-term ecological forecasting (Dietze et al., 2018). Generally
lacking from these near-term ecological forecasting efforts is
the integration of shorter-term, opportunistic data associated
with developing extreme events such as targeted experiments
or regional surveys. In this Perspective, we propose that
studies implemented rapidly during developing extreme
events such as drought can provide useful complements
to near-term ecological forecasting. Implementing targeted
experiments and regional-scale surveys increase the
likelihood of capturing highly spatially heterogeneous
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ecological disturbances and ultimately improve our ability
to forecast the ecological responses to climate extremes. By
drawing on advancements in adaptive monitoring whereby
monitoring efforts adjust overtime to more efficiently capture
spatiotemporal dynamic ecological processes, we posit that
studies implemented rapidly during a developing extreme
climate event can ultimately enhance our ability to forecast
extreme ecological events. This approach has already been
successfully used to study influenza outbreaks (Ong et al,
2010) and tree die-off in response to drought. Notably, this
framework can be further expanded as near-term ecological
forecasting models continue to be developed to not only
target developing extreme climate events but to also use
ecological forecasting predictions to target sampling efforts to
test alternative hypotheses and ultimately refine hypotheses
and predictions.
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