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ABSTRACT
The existence of spatiotemporal correlations in traffic behavior across links in a transportation
network can be incredibly useful. However, travel speeds are often strongly correlated simply
due to natural variations in travel demand patterns. Such temporal trends might obstruct more
meaningful relationships in link performance caused by the physics of traffic. To alleviate this5

problem, the present paper proposes a non-parametric, moving-average detrending method that
can be used to remove these background trends, even during non-stationary periods in which traffic
states are changing with time. Cross-correlations performed on the detrended data can then be used
to identify more meaningful trends. The proposed method can also account for temporal lags in
traffic performance, which account for the time it takes for information to travel. Links that exhibit10

strong correlations after detrending can then grouped into communities that behave together using
graph theory methods. The proposed methodology is applied to a case study network using real-
time link travel speeds obtained from probe vehicles. The results reveal that the 40 links in the
network can be grouped into 8 to 12 communities, depending on the day of the week. This suggests
that only a handful of links may need to be monitored to estimate travel speeds across the entire15

network. Furthermore, the significant overlap in the community structure across these days reveals
that the network structure plays a large role in spatiotemporal correlations in link travel speeds in
a network. This community structure can be leveraged to improve speed prediction algorithms.



INTRODUCTION
The rapid development of communications and vehicular technologies has provided new data
sources that can be used to improve our ability to monitor transportation networks and forecast
traffic conditions (1, 2, 3, 4). The availability of large amounts of accurate traffic data is essential
to obtain travel times and traffic states to inform Advanced Traveler Information Systems (ATIS)5

and provide routing guidance to drivers (and soon automated vehicles). However, even with these
newly available sources, traffic data often suffers from numerous deficiencies that must be ad-
dressed. For example, most data-sets are not entirely accurate or complete; they may contain
missing or incorrect values, duplicate data, and incorrect data linkages. Cleaning or filtering these
data to identify only the most useful pieces of information is costly and time consuming. One10

study estimates that bad data costs the United States $3 Trillion Per Year (5). Furthermore, the
cost associated with obtaining and storing these data in real-time (often using cloud computing
and storage methods) can be large.

Instead of trying to filter through as much data as possible, another strategy is to identify
network-specific relationships that can be leveraged to reduce the amount of data that needs to15

be collected and maintained. For example, if traffic performance on several links share the same
general spatiotemporal patterns, it might be possible to gain an accurate depiction of current traffic
states throughout the network by monitoring only a subset of these connected links. In this way, the
number of observations that are needed can be reduced significantly, which can decrease the cost
associated with data collection and analysis. Correlations in traffic performance across individual20

links is one method that can be used to identify the most important links and reduce data require-
ments. Previous studies have leveraged correlations between traffic metrics over time and space
in transportation networks to improve forecasting, route choice and other transportation problems.
For example, Gao and Chabini showed that route choice models become more realistic when link
correlations over time and space are included (6). Leveraging correlations between volumes have25

also been shown to improve predictions of average annual daily traffic (AADT) on roadway links
(7).

Many recent studies have examined spatiotemporal correlations in traffic metrics across
transportation networks. The earliest works focused on correlations across adjacent links. These
studies found that—perhaps unsurprisingly—traffic conditions on adjacent links are often highly30

correlated (8, 9, 10, 11). More recent studies have focused on correlations on links that are not
adjacently connected. One class of studies focused on “lth-order neighbors”, which are those that
are located l links away in the transportation network (12, 13). Others have found that all links
on a network exhibit positive correlations in traffic performance, even those located far from each
other. For example, Sun et al. analyzed correlation coefficients of traffic metrics on a grid network35

containing 31 traffic links and found positive and distance-independent correlations (14).
However, traffic patterns generally follow the same temporal trends due to peaks in travel

demands that are independent of the spatial configuration of a traffic network. On a given day, traf-
fic volumes on all links are generally low in the morning, peak during the AM rush, flatten during
the middle of the day, peak during the PM rush and fall during the evening. Similar patterns occur40

during individual days of the week and throughout the year. Failure to account for these naturally
occurring trends might yield correlations that inflate the relationship between traffic performance
on arbitrary links in a network or lead to identification of relationships that are not physically
meaningful.

To alleviate this concern, Ermagun et al. examined correlations after detrending traffic data45
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(15). Detrending is a method used to remove the naturally occurring fluctuations in traffic metrics
(e.g., flows) by first identifying and removing the temporal trend and then assessing correlations
of the fluctuations around these trends (i.e., the residuals), which might better represent how per-
formance of individual links may be correlated. While this presents a step in the right direction,
(15) employed an autoregressive (AR) detrending model applied to data over a single hour of the5

day for a 1-year period. Unfortunately, AR models rely on the existence of stationary conditions
in which traffic is relatively stable throughout the analysis period. In general, traffic patterns are
highly variable and can change significantly (e.g., from freely flowing to congested conditions)
even over the course of an hour. Furthermore, the AR model cannot accommodate non-linear
trends in traffic data. Lastly, the authors only considered correlations between data observed at the10

same time and did not consider the impacts of temporal lags. Such lags are important as it takes
information time to travel across links in a network; failure to account for these temporal shifts can
underestimate correlations between link performance.

In light of this, this paper proposes the use of more sophisticated detrending methods to
study spatiotemporal travel patterns. A non-parametric, non-linear moving-average method is pro-15

posed that can more accurately describe traffic data, especially during the transition states that
might occur throughout a day, compared to linear or parametric models. Seasonality effects can
also be accounted for to adjust for the use of a fixed-time window in the moving-average method.
Once the data are detrended, cross-correlation values can then be computed using different po-
tential time lags, which accounts for the time it takes information to travel across links. The20

proposed method is applied to a case study example using probe vehicle speeds from several links
in downtown Philadelphia, Pennsylvania. The results are used to identify communities of links
that share similar spatiotemporal patterns using graph theory methods (16, 17). These commu-
nities are shown to be remarkably consistent across the days in a week—and even throughout a
day—suggesting that they represent relationships due to the underlying traffic network structure.25

These communities can be used to improve traffic state estimation and forecasting with lower data
requirements since only data from one link within each community is necessary, instead of data
from each link in the network. To demonstrate the usefulness of this approach, the communities are
leveraged to improve a simple prediction model of link travel speeds. Specifically, we demonstrate
that prediction accuracy increases when input data for the prediction comes only from a link’s30

community as opposed to from all links in the network.
The remainder of this paper is organized as follows. First, the proposed detrending and

cross-correlation methodology is explained. Then, the methods are applied to a case study example
to demonstrate how they can be used to identify communities of links that behave similarly. Next,
an example of how the community structure can improve speed predictions is presented. Finally,35

some concluding remarks are provided.

METHODOLOGY
This paper proposes a generic detrending method to remove natural correlation between traffic
variables (specifically, link travel speeds) that occur due to temporal fluctuations in travel demand.
For example, travel speeds on across any network will be highly correlated throughout a day as40

speeds generally decrease in a similar pattern due to peak rush hour periods. Detrending removes
these temporal variations to more accurately capture meaningful spatiotemporal correlations be-
tween link-level data. Many detrending methods exist in the data mining literature. With respect to
detrending applied to traffic data, previous studies (15) have applied detrending to traffic data us-
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ing simple linear methods like autoregressive (AR) models, which can identify trends when traffic
conditions are stationary throughout the analysis period. This assumption is reasonable for short
time periods that do not occur when traffic states are transitioning (e.g., changing from peak to
non-peak periods). However, traffic conditions are non-stationary over longer time periods (e.g.,
throughout the course of a day) when transitions between unique traffic states occur and thus the5

linear, AR models are not generally applicable to describe traffic data.
Instead, we implement here a non-linear detrending method that is better suited to non-

stationary data. The remainder of this section describes the proposed detrending method in more
detail, as well as the methods propose to use the detrending data to identify cross-correlations
between individual link speeds and identify communities of links that behave similarly during any10

time period.

Detrending method
The detrending method proposed here consists of three steps: 1) identification of a non-linear tem-
poral trend; 2) identification of repeating seasonality effects; and, 3) estimation of the remaining
residuals. The residuals resulting from the detrending can then used to assess correlations be-15

tween traffic data (i.e., link speeds) between different elements to identify those that exhibit spatial
correlation.

Step 1: Trend identification
A non-parametric, non-linear moving average method is proposed to identify and remove the nat-
ural temporal trend in traffic data from each link (18, 19, 20, 21). This moving average method20

is applicable to any type of data and can readily accommodate situations in which the trend is
non-linear or traffic states are not stationary. It is also computationally efficient and simple to
apply.

In this moving average method, a fixed window length is chosen and average speeds are
obtained by sliding this window forward in time to obtain consecutive moving average values. For25

example, the moving average for any given link k at time t is obtained by averaging the speeds
values from that link within a window centered at time t. The next element obtained by shifting
the window forward in time by one unit, which excludes the first speed value of the series and
includes the next available speed value from that link.

Mathematically, the moving average method is expressed as follows. Denote the time-30

series data from each link k on day d as Y (k, d) = [vk,0,d, vk,1,d, vk,2,d, ..., vk,T,d], where vk,t,d
represents the speed on link k at discrete time period t on day d and T is the total number of time
periods available. Applying the moving average converts the vector Y (k, d) into a new vector of
speed trends, D(k, d):

D(k, d) = [Dk,l,d, Dk,l+1,d, Dk,l+2,d, ..., Dk,T−l,d]. (1)

and

Dk,t,d =
Σl
i=−lvk,t+i,d

(2l + 1)
, (2)

where 2l + 1 is equal to the window length of moving average.35

The length of the window presents a trade-off between reducing statistical fluctuations and
meaningful observable trends. Longer windows have less variation but might minimize the pres-
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ence of these trends. Thus, several windows must be tested to determine the length that provides
the best balance.

Step 2: Seasonality adjustments
The use of a sliding window for the moving average means that a single speed value impacts
2l + 1 data elements in the time series of speed trend, T (k, d). This can lead to regular, periodic5

impacts caused by higher or lower values observed in the dataset. To remove these period impacts,
additional steps are necessary to identify and remove ‘seasonal’ impacts. To do so, a convolution
filter is applied to the dataset it identify regularly occurring trends with the period 2l + 1. The
average of the smoothed series identified for each period is the returned as the seasonal component.
For more details, see (22, 23).10

In this work, we consider a functional form in which the seasonlity adjustments influence
the observed speed values in a multiplicative manner. In this way, the relationship between the
observed speeds, speed trends, seasonality adjustment and speed residuals takes the following
form:

Y (k, d) = D(k, d) ∗ S(k, d) ∗ r(k, d) (3)

where S(k, d) provides the seasonality impacts and r(k, d) provide the remaining impacts. The
length of the time series here is T −2l, which removes the first l elements at the beginning and end
of the original data due to the moving-average being applied.

Note that other functional relationships can be assumed between the trend, seasonality and
error terms. For example, an additive model was also considered in this work in which Y (k, d) =15

D(k, d) + S(k, d) + r(k, d). However, the trends in the error terms were remarkably similar
across the two model structures and thus both functional forms provided very similar results in
terms of spatiotemporal correlations of individual link speeds. For brevity, only the results of the
multiplicative model are provided in this paper since it provided slightly more precise results in a
predictive test.20

Once the seasonality adjustment is accounted for, a new time series of residuals is obtained
which takes the following form for any given link K and day d:

r(k, d) = [rk,l,d, rk,l+1,d, rk,l+2,d, ..., rk,T−l,d] (4)

Step 3: Obtaining average residuals across many days
At the end of Step 2, a unique time series of speed residuals is available for each day. These
residuals are then averaged across several days to reduce the impacts of missing data for any one25

time period on any given day. The resulting residuals array, r̂(k) = [r̂k,l, r̂k,l+1, ..., r̂k,T−l], has
elements that take the following form:

r̂(k) =
ΣN
i=1r(k, i)

N
(5)

where N is the number of days for which data that are available.

Cross-Correlation and link communities
Cross-correlation is a standard method in signal processing to estimate the degree to which two30

series are correlated as a function of a temporal displacement of one relative to the other. In this
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work, we propose to calculate cross-correlation values for the detrended speed residuals obtained at
the end of Step 3 described above. The cross correlation γ between links k and k′ with a temporal
displacement of τ is defined as:

γr̂(k)r̂(k′)(τ) =

∑T−τ
t=0 (r̂k,t − ¯̂r(k))(r̂k′,t+τ − ¯̂r(k′))√∑T−τ

t=0 (r̂k,t − ¯̂r(k))2
√∑T−τ

t=0 (r̂k′,t+τ − ¯̂r(k′))2
(6)

where ¯̂r(k) and ¯̂r(k′) are sample means of variables r̂(k) and r̂(k′) respectively. Cross-correlation
is bounded between -1 and 1 and values with absolute values closer to 1 representing a stronger5

relationship. The resulting cross-correlation matrices can be used describe the relationship between
traffic conditions between any link pair.

Various time-lags are tested and the value that maximizes the cross-correlation between
any link pair on a given day is defined as the optimal time lag, τ ck,k′ . These optimal time lags and
cross correlation values are used to identify links that have the strongest spatiotemporal connection10

with other links in the network, which can provide an indication of the most important links in the
network.

Identifying communities in networks, especially in large-scale networks, is an important
task in many scientific areas, such as graph theories (24) or in transportation networks (25, 26, 27,
28). The cross-correlation values can also be used to identify communities of links over which15

traffic performs similarly. To do so, a threshold cross-correlation value, γ′, is identified that indi-
cates high correlation in traffic performance across two links. The specific value of the threshold
is obtained by examining the cumulative probability function of the cross-correlation matrix ele-
ments to identify the cross-correlation value for which some fraction of the elements are greater
than a certain value. A new cross-correlation matrix is then created in which link pairs that have20

a correlation that exceed this critical value are retained. The remaining link pairs are removed,
which assumes that no information is shared between these links. The result is a directed and
weighted graph in which the weights represent the strength of the highly correlated link pairs and
information flow within the transportation network.

This graph is then used to identify communities of links that behave similarly. A general25

complex network is said to have community structure if the nodes of the network can be clustered
into sets of nodes such that each set of nodes is densely connected internally but has only sparse
connections with the rest of the network. Communities give a large-scale overview of the network
and its function since each community acts like meta-node in the network which can simplify its
representation (29, 30). In this paper, the Infomap technique is applied to identify communities in30

the directed and weighted graph. In the Infomap method, communities are detected with respect
to how the information or resources flow through that network. The details are omitted here for
brevity, particularly since the method used to identify the communities is not the primary purpose
of this paper. More information on this approach can be found at (31).

APPLICATION OF METHODOLOGY TO A CASE STUDY EXAMPLE35

As a case study example, the proposed detrending and community identification methods were
applied to real-time speed data obtained from a private-sector company. This section describes the
data and the results of the proposed methods.
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Dataset
Speed data were obtained from probe vehicles traveling within the transportation network that
communicated their location using GPS-enabled devices and either fleet or cellular communication
technology. The probe vehicle locations were used to estimate speeds on segments or links defined
by the service provider at regular intervals. Speed data were obtained from the urban area of5

Philadelphia, Pennsylvania for a one-month period (March 2018). The specific network considered
is illustrated in the top of FIGURE 1 and consists of a 0.893 miles by 1.360 mile area in downtown
Philadelphia. The numbered circles in the figure represent the start and end points of each link
(defined by the service provided) included in the study. The bottom of FIGURE 1 provides a graph
representation of this network using the numbered circles as nodes in the network. The solid arrows10

in the graph represent links with available probe travel speeds, while the dotted arrows represent
significant travel links for which probe speed data were not available. Each link with data available
are assigned a link number, which is illustrated in blue. Speed data were available for 40 links in
the network and these links varied in lengths from 0.0072 miles to 0.6842 miles, with average
length of 0.161. Links are generally defined based on the existence of traffic control devices and15

merge/diverge points along roadway segments, which are anticipated to interrupt traffic flow and
change travel speeds.
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FIGURE 1 Top: Map of case study network used for this paper. Each symbol represents
start and end points of the links under study. Bottom: Network representation of the case
study network. The solid arrows represent links for which speed data are available. The
dashed line arrows represent important links that can affect the network, but for which speed
data are not available.

Speed data are available for each link at regular 5-minute intervals. Each speed measure-
ment also includes an indication of whether the measurement represents a real-time speed mea-
surement or is an estimated speed using historical travel time information. Time periods for which
real-time speed data were not regularly available were excluded from this analysis. Thus, only data
from 6AM to 8PM were considered as probe data were generally not available for late evening and5

early morning periods.
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FIGURE 2 Left: Illustration of detrending results for Link 26 → 28 for all Thursdays
within study period. Right: Final residuals obtained after detrending.

Detrending results
Speed data for each link was detrended as described in the Methoodology section. FIGURE 2
provides an illustration of the detrending process and results. The cyan dots on the left hand side
represent the observed speed data on link 26 → 28 over time of day for all Thursdays in the
dataset. The moving average representing the temporal trend is illustrated by the solid blue line in5

FIGURE 2 for a window length of 2 hours. Note that several windows lengths were considered
here and that the results were consistent for window lengths between 1.5 and 2.5 hours. Window
lengths less than 1.5 provided too much randomness in the trend, while windows larger than 2.5
hours did not show significantly fluctuations in speed throughout the day. Notice that the blue line
suggests that speeds are generally high in the morning, decrease during the day, and then increase10

after the PM peak hour.
The seasonality adjustment was obtained using the convolution filter. These values had a

mean value of 1 and fluctuated in a cyclical pattern with period equal to 2l + 1 = 2 hour. Note
that the fluctuations illustrated here are actually multiplied by 30 to better visualize the seasonality
trend that exists in the data.15

The final residual values were then obtained by removing the trend and seasonality adjust-
ments from the average travel speed on each link as per equation 3. The right hand side of FIG-
URE 2 illustrates this for link 26 → 28. Notice that these values also fluctuate around 1 since the
residuals are considered in a multiplicative manner as per Equation 3. This process was repeated
for all links and these detrended residuals are then used to identify spatiotemporal correlations in20

link behaviors in the case study network.

Cross-correlation matrices
The left hand side of FIGURE 3 provides the correlation values obtained between all links consid-
ering travel speeds across the entire time period (6AM to 8PM). (Please note that color is used to
illustrate these correlation values and other pertinent features in the figures of this paper; the reader25

is strongly encouraged to view the electronic file or a colored printout to better observed these fea-
tures.) Notice that correlation values are both positive and negative. Positive values represent links
in which speeds move in the same direction (i.e., increase or decrease at the same time), while
negative values indicate links for which speeds move in opposite directions. This is reasonable as
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FIGURE 3 Left: Correlation value between each link pair. Right: Absolute correlation
value.

in general traffic networks some links would be expected to behave similarly while others would
not. However, the majority of the link correlations (58%) have positive correlation values.

The magnitude of the correlation values (i.e., absolute values) represent the strength of the
relationship between speed residuals between any two links. These absolute values are plotted in
FIGURE 3. Notice that this figure reveals that most of the absolute values are in the range of about5

0.1, which does not indicate very strong relationships. If actual speed data were used without
detrending, correlations would be much higher as previously discussed.

A cumulative distribution of the absolute value of correlation values is shown by the red
line in FIGURE 4. These low values can be partially explained by the fact that correlations are
being calculated on the residuals across an entire day. Larger values would be obtained when10

examining correlations over shorter time periods (e.g., over the course of several hours instead of
the entire day). Furthermore, no time lags are considered here. In reality, information takes time
to travel between links on a network. For example, fluctuations in speed will move downstream
in free flow traffic as vehicles travel from one link to the next. In congested traffic, information
generally travels upstream and takes time to propagate from one link to the next.15
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To better capture these temporal relationships in speed residuals on individual links, the
correlation values were re-calculated considering various time lags that might exist. For the pur-
poses of this paper, we considered only time lags from 0 to 15 minutes in 5-minute increments;
however, in practice, finer time resolutions could (and likely should) be considered, especially for
a small network of this size. The top left of FIGURE 5 shows the maximum (for positive correla-5

tions) or minimum (for negative correlations) cross-correlation values (MCC) obtained across all
time lag values considered. The absolute values of the strongest cross-correlations with optimal
time lags are provided in the top right of FIGURE 5. For each matrix, the x-axis represents the link
r(k) at time t while the y-axis represents link r(k′) with optimal time lag, τ ck,k′ , applied. So, if one
is interested in considering the information flow sent from a particular link to others, the column of10

that link should be studied. On the other hand, if one is interested in the information flow received
from a link from others, the row of that link should be studied.

Visual comparison of FIGURE 5 with FIGURE 3 reveals that adding the optimal time lag
improves the correlation results; however, the differences might be difficult to observe. To better
illustrate this improvement, FIGURE 4 also provides the cumulative distribution of the absolute15

values of the correlation results when the optimal time lag for each link is applied. As shown,
the magnitude of the correlations are significantly larger when the optimal time lag is applied, as
evidence by a higher proportion of larger values. Across the all links and considering correlations
of link speeds across the entire time periods, adding the optimal time lag improve correlation values
by 38% compared to the case in which no time lag is considered. The optimal time lag values are20

illustrated in the bottom of FIGURE 5. Notice that most optimal time lags are 0 or 5 minutes,
likely due to the small network size. Note that this optimal time lag could differ based on the time
period of analysis (e.g., across the different days of the week); however, several tests (not shown
here for brevity) suggest that these optimal values are fairly stable across analysis days, especially
for links that are in close spatial proximity.25

We now use the cross-correlation metrics to examine how link speeds are correlated spa-
tially and temporally in the network. As an illustrative example, three links (8 → 7, 14 → 12
and 20 → 21) are randomly selected and the optimal time lag and associated cross-correlation
values between these links and all other links in the network are examined to reveal spatiotemporal
patterns; see FIGURE 6. In this figure, the color of each link represents the cross-correlation value30

between that link and the subject link (illustrated with a star), while the number near each link
represents the optimal time lag, τ c, between that link and the starred link.

FIGURE 6 reveals the magnitudes of the cross-correlation values generally (but does not
always) decrease with the distance between the subject link and all other links. Similarly, the opti-
mal time lags generally increase with the distance between the subject link and all other links. For35

example, links on the same (right-to-left) arterial as the subject link have a very strong correlation
with the subject link with zero optimal time lag. The spatial relationship is reasonable as links in
closer proximity should behave more similarly than links that are further away. Links nearby also
tend to have a positive correlation with the subject link, while negative correlations are generally
only observed with links that are located further away in the network. The temporal relationship40

is also reasonable as it takes a shorter time for information to travel to links in nearby proximity
as it does for information to travel to links further away in the network. Note the optimal time lag
for some links on the other side of the network are zero, indicating that information takes no time
to travel between these links and the subject links. In general, these links have similar correlation
values for the range of time lags considered and zero simply happens to have the lowest value so is45
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FIGURE 5 Top-left: MCC value between each link pair when optimal time lag is applied.
Top-right: Absolute MCC value between each link pair when optimal time lag is applied.
Bottom: Optimal time lag for each link pair.

reported here for complete accuracy. However, this does not negate the general trend that optimal
time lag is zero for nearby links and higher for links further away.

Link community identification
We now use the cross-correlation values to identify communities of links in the network that behave
similarly. Knowledge of these communities can be leveraged to improve prediction of individual5

link speeds, dynamically partition the network based on how information travels (32), or target
traffic control in a more intelligent manner.

We first select a threshold MCC value to identify links with a significant connection be-
tween them. To ensure that only the most strongly connected links are considered in the commu-
nity identification, we select the 90th percentile for the observed MCC values, which ensures that10

only the strongest 10% of the link pairs are considered. Based on the results of FIGURE 4, an
MCC threshold of 0.3 was considered here. Note that while this threshold is not very high, previ-
ous papers that applied linear detrending methods consider much lower threshold values to identify
strongly correlated links. For example, (8) used a critical threshold of 0.1 to identify highly cor-
related locations. Additionally, this threshold was applied to correlation values when considering15

speeds throughout the entire day. Higher thresholds would be needed to identify the strongest 10%
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FIGURE 6 Spatiotemporal cross-correlation between links 8→ 7, 14→ 12 and 20→ 21
and other links. The color of each link shows the cross-correlation value between that link
the starred link. The number near each link shows the associated τ c value between the link
pair.

of link relations for correlations over shorter time periods; e.g., analysis of link travel speeds during
2-hour periods required an MCC threshold of 0.6 to identify the most correlated link pairs.

The corresponding graph based on the MCC threshold of 0.3 is shown on the left of FIG-
URE 7. Using this graph, the Infomap technique is used to identify communities within this graph
network that contain the most information overlap within the community and with minimal in-5

formation sharing outside of the community. The resulting 11 communities are illustrated on the
right-hand side of FIGURE 7. For each community, one can find the links which have the higher
cross-correlation with nodes in the same community. Based on this information, it might be possi-
ble to observe traffic speeds on only these 11 most influential links to gain an accurate picture of
traffic conditions across the entire network.10

To explore the relationships between these communities and the individual links, the 11
communities are also illustrated on map of the network in FIGURE 8. As can be seen, these com-
munities generally consist of links that are in close spatial proximity. Furthermore, communities
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are generally made up of links on the same arterial (e.g., the black or purple links at the bottom
of the network). Again, this is reasonable as one would expect links on certain segments of the
same street to behave in the same way. In some cases, a community can be made up of links
on nearly parallel streets; e.g., the dark blue links in the middle of the network. This also seems
reasonable, especially when vehicles can distribute themselves to respond to lower speeds on one5

link by taking and alternative route. This re-routing is usually done using both real-time (i.e., on
the ground) information and historical information from drivers using the same network over the
course of many days.

It should be noted that the lengths of individual links vary considerably. This is due to the
fact that the links are pre-defined by the provided of the probe speed data and generally start/end10

at traffic control devices and merge/diverge points along the roadway. Many of the communities
identified exist of shorter links that are on the same roadway segment, and it is not terribly sur-
prising that their speed profiles share similar fluctuations throughout the day. Still, the fact that
the algorithm groups these links together helps to verify that it can accurately identify these spa-
tiotemporal patterns. Additionally, some short links on the same roadway segment are not always15

grouped into the same community; examples include links 2→ 3 and 1→ 2 and links 3→ 4 and
4 → 5. Thus, even though one might expect that these shorter links be always grouped together,
on several days this is not the case due to prevailing spatiotemporal speed patterns.

FIGURE 7 Left: Network of the graph. Right: Community of the network

Dependence of the community structure on days of the week
The previous results also considered cross-correlations and communities based on traffic conditions20

that occurred on Thursdays during the study period. In this section, we repeat the previous analyses
to examine how the community structure changes based on the day of the week. The resulting
community structures are presented in FIGURE 9 for each of these other days. In this figure, each
unique color represents a link community. Interestingly, although there are some slight differences
across the seven days in the week, the community structure is remarkably similar across these25

days. In fact, subsets of some communities persist exactly the same across all days in the week
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FIGURE 8 Link communities identified based on the data of all Thursdays of March
2018. Links of the same color represent a single community.

(i.e., always share the same color every day). Specifically, the following groups of links (identified
by the nodes that they connect) are always included in communities together:

Grout 1 = 27→ 25→ 8→ 7→ 1→ 2
Group 2 = 26→ 9→ 6→ 5

Group 3 = 13→ 14→ 12, 13→ 125

Group 4 = 3→ 4→ 5

This is very interesting finding given that there are obvious differences in demand patterns
that occur across these different days. The significant overlap between the communities created
from traffic data on different days of the weeks suggest that the network structure and traffic control
properties play a large role in the strong correlations between travel speeds on individual links10

within the network.
FIGURE 10 shows the number of clusters on each day of week. As illustrated, there are

generally more communities on weekdays than on weekends. This might suggest that there is more
diversity in speed distribution and traffic phases on weekdays when compared to weekend days,
perhaps due to more complicated traffic and demand patterns. The lone exception appears to be15

Wednesday, which has very few communities. This could be due to prevailing traffic patterns on
Wednesday or the use of a variable, day-specific MCC threshold when defining communities. Note
that the number of communities on any day is highly influenced by the MCC threshold selected.
FIGURE 11 illustrates this relationship showing the average of communities based on threshold
for all days of the week. Errors bars represent average deviation of days of the week from the20

mean value. As expected, the number of communities increases with the threshold selected. This
makes sense as larger thresholds results in a sparser network used to identify these communities.
The tradeoff here is that larger thresholds helps to identify communities in which speeds are more
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FIGURE 9 Community structures in days of a week.
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closely related. As the threshold increases, the overlap between the individual links that make up
the communities across different days of the week decreases. This makes sense: the more strict the
criteria becomes for identifying the communities, the less likely these communities will be similar
across the days of the week. Nevertheless, there is still significant overlap even when the critical
threshold is increased above the value used for FIGURE 10, which suggests strong spatiotemporal5

correlations in link travel speeds exists in urban traffic networks.
Similar findings were also obtained when examining community structures for shorter time

periods during a single day. For example, the Thursday time period was broken up into 7 two-
hour periods and cross-correlation values obtained for each of these shorter time intervals were
used to identify community structures during each interval. In doing so, the critical threshold10

used to identify strong correlations had to be increased (from 0.3 to 0.6) since correlations were
generally stronger during the shorter time intervals. The results (omitted here for brevity) revealed
that the community structure for these shorter intervals differed from those obtained for the entire
day. However, significant overlap still existed among these two-hour communities and groups
of links were still common among the daily and two-hour communities. The results confirm the15

existence of strong spatiotemporal correlations that result in similar traffic behaviors across links
in a network.
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FIGURE 10 Number of communities in each day of a week using the 0.3 MCC threshold.

LEVERAGING COMMUNITY STRUCTURE TO IMPROVE SPEED PREDICTION
This section illustrates how the knowledge of a link’s community can be used to improve over-
all travel speed prediction by removing extraneous information. The specific prediction applied20

here is a Gaussian Process (GP) model, which is a supervised learning technique used to solve
regression and probabilistic classification problems based on Bayesian inference. This model type
can solve hard machine learning problems due to its flexible, non-parametric nature and relative
computational simplicity (33). This method has been previously applied in many fields, such as
marketing (34), biology (35), and industrial engineering (36). The specific details on this modeling25

technique are omitted here for brevity but can be found in the preceding references.
Travel speed predictions for links 1 → 2 and 13 → 14 are performed using the following

three sets of input data used to train and apply the GP model:
1) Speed data from all other links of the network.
2) Speed data only from the links in the subject link’s community.30
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FIGURE 11 Number of communities and average deviation for different threshold values
over different days of the week.

Link RMSD-Network RMSD-Community RMSD-Most important link of the community
1→ 2 7.07 7.03 7.94

13→ 14 5.83 3.07 4.13

TABLE 1 RMSD based on different methods

3) Speed data from the most important link in the subject link’s community.

In all methods, speed data from 6 AM to 8 PM on four days (1, 8, 15, 22 of March 2018)
are used to train the model. Data from the last day (29 March 2018) are then used to validate the
predictions.5

FIGURE 12 illustrates the prediction results on the two subject links along with the ob-
served speeds for comparison. As shown, all methods seem to predict the data fairly well, although
some abnormal outliers are not well-captured for all models. The root-mean-square-deviation
(RMSD) is also used to quantify the overall prediction performance across the entire one-day pre-
diction horizon. TABLE 1 provides these values for the three methods applied to both links. Notice10

that prediction using speed data from the subject link’s community outperforms speed predictions
using speed data from all links in the network. This occurs because data from all links in the
network will include some non-useful information into the prediction model, and this decreases
the efficiency of the prediction algorithm. The non-useful information belongs to links that are in
other communities, which are more or less independent of the subject links. In other words, adding15

the information of the links that have low correlation with the study link will only serve to damage
the prediction result. Thus, the community structure can be leveraged to make sure only the most
useful information is included in the prediction model.

CONCLUDING REMARKS
This paper proposes the use of novel detrending methods to study spatiotemporal correlation of20

link travel speeds on an urban traffic network using probe vehicle data. The use of non-parametric



20

moving-average detrending methods to identify temporal trends in individual link speed data while
accounting for seasonality effects and classification of detrended data into link communities rep-
resents a significant contribution over previous studies in this area. The proposed approach can
readily account for non-linear trends and does not require stationary traffic conditions. Thus, this
method can be applied to both short time periods during which traffic conditions are relatively5

stable and long time periods during which traffic conditions might vary widely; e.g., an entire day
including morning and evening peak periods as demonstrated here. After detrending the data, cor-
relations between individual link speeds were found to improve when a time lag was introduced
(i.e., when using cross-correlations ). The time lag better accounts for the physics of traffic and the
fact that information takes time to travel between links in a transportation network.10

The cross-correlation values were then used to identify groups of links (communities) that
behaved similarly with respect to traffic speeds throughout the day using graph theory methods.
For links in a community, traffic states throughout the community can be estimated fairly well
using only data from a single link. For example, since there are 11 communities identified for
Thursdays, travel speeds on all 40 links in the network can be estimated fairly well using only15

data from 11 links and travel speeds on links in a given community can be used to predict speeds
on other links within that community. This latter fact is verified using a simple Gaussian Process
speed prediction model.

The number of communities generally changed from day to day and weekdays were shown
to have higher number than weekends, perhaps due to more complex travel patterns. However,20

there was remarkable similarity among the community structures across the days of the week. In
fact, three groups of links were identical across all days. This similarity suggests that the spatiotem-
poral relationships between travel speeds on individual links might representing underlying rela-
tionships about the structure of the network, in addition to travel demand patterns. It is worth noting
that existing network partitioning methods can also be used to identify these groups/communities25

if applied to data from different days; however, these methods generally do not apply (non-linear)
detrending methods to account for the impact of daily traffic patterns.

While this study revealed interesting findings about spatiotemporal correlations that exist
between travel speeds on individual links in a network across the days of the week, additional
work is needed to verify that these relationships hold during other time periods. For example,30

this study only considered speed data obtained for a one-month period. A more extensive dataset
is required to ensure that these patterns hold for longer time periods that might include seasonal
variations in travel demands. Every effort was also made to use traffic data taken from links with
the same land use patterns. However, due to the nature of the probe data, links were often of
different lengths. Further research in this area should consider links with more uniform lengths.35

Additionally, changes in land use patterns should be considered when applying these methods to
larger spatial regions.
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FIGURE 12 Prediction results for links 1→ 2 (Left column) and 13→ 14 (right column)
Top row: Using only speed data from other links in the community for prediction. Middle
row: Using speed data from all link in the network for prediction. Bottom row: Using speed
data only from the most important link of the community for prediction.
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