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Abstract. We prove that the “slit carpet” studied by Merenkov does not admit a bi-Lipschitz embedding

into any uniformly convex Banach space. In particular, this includes any space Rn, but also spaces such as
Lp for p ∈ (1,∞). This resolves Question 8 in the 1997 list by Heinonen and Semmes.

1. Introduction

In 1997, in the early days of the field now called “analysis on metric spaces”, Heinonen and Semmes [14]
posed a list of “Thirty-three yes or no questions about mappings, measures, and metrics,” which have gone
on to be quite influential. A number of these questions have been solved since the publication of this list,
but many remain open.

In this paper, we resolve, in the negative, Question 8 from that list:

Question 1.1 ([14], Question 8). If an Ahlfors regular metric space admits a regular map into some Euclidean
space Rn, then does it admit a bi-Lipschitz map into another, possibly different, Euclidean space?

Precise definitions for the relevant terms in the question will be given in Section 2 below. For now, a
bi-Lipschitz map is simply an embedding that preserves distances up to a constant factor, and a regular map
is a map that “folds” a metric space in a certain quantitative, N -to-1 manner. Thus, informally, Question 1.1
asks: if a metric space can be quantitatively folded to fit into some Euclidean space, can it be quantitatively
embedded into some Euclidean space?

We give an explicit example showing that the answer to Question 1.1 (Question 8 of [14]) is “no”. In fact,
our example is a space that has already appeared in the literature as an interesting example in a different
context. This is the so-called “slit carpet”, which we will denote by M. As we understand the history, this
example was first proposed by Bonk and Kleiner as an example of a topological Sierpiński carpet that is
minimal for conformal dimension. It was first defined and studied in print by Merenkov [16], who showed
that M has very strong quasisymmetric rigidity properties.

We postpone a formal definition of M to later in the paper, but the idea is the following. Start with the
unit square Q0 = [0, 1]2 in the plane. Cut a vertical “slit” in the square along the segment { 12}× [ 14 ,

3
4 ]. Now

subdivide Q0 into its four natural dyadic sub-squares, and similarly remove a vertical slit of half the side
length from the center of each sub-square. Repeating this process in all dyadic squares of all scales in Q0

leaves us with a remaining set A ⊆ Q0, the complement of the countably many slits, which we equip with
the shortest path metric. The completion of A in this metric is the slit carpet M. See Figure 1 below. (We
give a slightly more careful definition of M as a certain limit below.)

The name “slit carpet” comes from the fact that M is homeomorphic to the classical planar Sierpiński
carpet [16, Lemma 2.1]. For an example of how M serves as a counterexample, see [17], where the authors
show that there is no quasisymmetric embedding f : M→ R2.
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Figure 1. An approximation to the slit carpet M

As noted above, Merenkov [16] studied M in the context of quasisymmetric mappings, showing that the
double of M along its boundary gives the first known example of a space which is “quasisymmetrically co-
Hopfian” for metric rather than topological reasons. More relevant to our purposes, the space M is Ahlfors
regular, and the natural map π : M→ Q0 ⊆ R2 given by “collapsing the slits” (which we define precisely in
Section 2) is a regular mapping in the above sense, so M admits a regular mapping into the Euclidean space
R2.

However, we prove the following:

Theorem 1.2. There is no bi-Lipschitz map f : M→ B, for any uniformly convex Banach space B.

In particular, M admits no bi-Lipschitz embedding into any Rn, answering Question 1.1, but also no such
embedding into any Lp space for p ∈ (1,∞).

The proof of Theorem 1.2 is based on a technique appearing in seminal work of Burago-Kleiner [1]. This
scheme begins by identifying a certain extremal pair of points, where the Lipschitz constant of the supposed
embedding is nearly achieved. In the vicinity of such an extremal pair, with the aid of approximation, the
mapping f has to behave roughly linearly in this direction. Finally, this near-linearity is used to contradict
some setting-dependent non-linear or non-Euclidean behavior. In our case, the non-Euclidean behavior
arises from the presence of the slits at all locations and scales, which leads to a contradiction to the supposed
bi-Lipschitz behavior of the map.

Interestingly, the idea of looking for maximal or almost-maximal directional expansion for Lipschitz func-
tions appears in other contexts as well, namely questions of finding points of differentiability in small sets.
See [11,19].

We conclude the introduction with two remarks concerning Question 1.1 and an open question.

Remark 1.3. A 2005 paper by Movahedi-Lankarani and Wells [18, VII (p. 262)] mentions that Tomi Laakso
informed those authors that he had an example showing that the answer to Question 1.1 is “no”, and in
fact has the same property we prove for M in Theorem 1.2. So far as we know, Laakso’s example has never
appeared in print, and we do not know if his example or his proof is the same as ours, though our proof
certainly owes some ideas to [15].

Remark 1.4. One way of seeing the difficulty in Question 1.1 is to observe that a now-standard technique
of proving non-embedding theorems for metric spaces, Cheeger’s differentiation theory, cannot possibly
provide a “no” answer to the question. Cheeger’s theory [2] endows certain metric spaces, the so-called
PI spaces, with a type of “measurable differentiable structure”. Using this theory, Cheeger showed that
PI spaces whose blowups, in the pointed Gromov-Hausdorff sense, are not bi-Lipschitz homeomorphic to
Euclidean spaces cannot admit bi-Lipschitz embeddings into any Rn, work which was later generalized by
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other authors [3,4,6,8]. This provides a unified approach to many non-embedding theorems, including that
of the Heisenberg group [3] and Laakso spaces [5]

On the other hand, it also follows from Cheeger’s theory that an Ahlfors regular PI space whose blowups
are not bi-Lipschitz homeomorphic to Euclidean spaces cannot even admit a regular map into any Euclidean
space. (This follows from the above remarks, the measure-preservation property of regular mappings, and
[10, Theorem 1.5].) So Cheeger’s differentiation theory is not directly useful for answering Question 1.1.

Of course, a number of interesting Banach spaces do not fit into the uniformly convex framework. For
embedding questions, the most interesting of these are probably ℓ1 and L1.

Question 1.5. Does M admit a bi-Lipschitz embedding into ℓ1? Into L1?

One way of approaching the question of an L1 embedding is to see if M has “Lipschitz dimension 1” in the
sense of [4], which by Theorem 1.7 of that paper would force it to be bi-Lipschitz embeddable in L1. Note
that by [9, Lemma 8.9], M has Lipschitz dimension ≤ 2. However, we do not discuss Lipschitz dimension or
Question 1.5 further in this paper.

Acknowledgments. G. C. David was partially supported by the National Science Foundation under Grant
No. DMS-1758709. S. Eriksson-Bique was partially supported by the National Science Foundation under
Grant No. DMS-1704215.

2. Notation and constructions

2.1. Metric spaces and Banach spaces. Our notation is fairly standard. If X is a metric space, we
denote its metric by d unless otherwise specified. The diameter of a metric space is

diam(X) = sup{d(x, y) : x, y ∈ X}.

Open and closed balls in X are denoted B(x, r) and B(x, r), respectively.
If X is a metric space and d > 0, the d-dimensional Hausdorff measure on X is defined by

Hd(E) = lim
δ→0

inf
∑︂
B∈B

(diam(B))d,

where the infimum is over all covers B of E by sets of diameter at most δ. (See, e.g., [13, Section 8.3].) Various
other standardizations of Hausdorff measure exist that differ from this one by multiplicative constants.

The Hausdorff dimension of a space X is inf{d : Hd(X) = 0}. A stronger, scale-invariant version of
having Hausdorff dimension d is the notion of Ahlfors d-regularity, used in Question 1.1. A metric space X
is Ahlfors d-regular if there are constants C > c > 0 such that

crd ≤ Hd(B(x, r)) ≤ Crd for all r ≤ diam(X).

For Theorem 1.2, we also need to introduce the Banach space property of uniform convexity. Recall that
a Banach space B is uniformly convex, if for every ϵ > 0, there exists a δ > 0 such that for any x, y ∈ B
with ∥x∥ = ∥y∥ = 1 and ∥x− y∥ ≥ ϵ, we have⃦⃦⃦⃦

x+ y

2

⃦⃦⃦⃦
≤ 1− δ.
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2.2. Lipschitz, bi-Lipschitz, and regular mappings. Three basic classes of mappings are used in the
rest of the paper. A mapping f : X → Y between metric spaces is called Lipschitz if there is a constant
L > 0 such that

d(f(x), f(y)) ≤ Ld(x, y) for all x, y ∈ X.

It is called bi-Lipschitz if there are constants b, L > 0 such that

bd(x, y) ≤ d(f(x), f(y) ≤ Ld(x, y)

for all x, y ∈ X. The smallest L and largest b satisfying this are called the Lipschitz and lower-Lipschitz
constants for f . The pair (b, L) will be referred to as the bi-Lipschitz constants of f .

Lastly, a Lipschitz map g : X → Y is called regular if there is a constant C > 0 such that, for every ball
B ⊆ Y of radius r, the pre-image g−1(B) can be covered by at most C balls of radius Cr.

In particular, regular mappings are always at most C-to-1, but the definition implies more than this.
Regular mappings were introduced by David and Semmes [7, Definition 12.1] as a kind of intermediate
notion between Lipschitz and bi-Lipschitz mappings. One nice way in which regular mappings generalize
bi-Lipschitz mappings is that they preserve the d-dimensional measure of all subsets, up to constant factors
[7, Lemma 12.3].

2.3. Construction of the slit carpet. We now follow [16, Section 2] to give a more careful definition of
the slit carpet than that in the introduction. Though we use our own notation, the reader may wish to look
at [16] for more details. Generalizations of this construction have also recently been studied by Hakobyan
[12].

Let Q0 = [0, 1]2 be the unit square in R2. Let Dn be the collection of dyadic sub-squares of Q0 at level
n, that is squares

Dl,k = [l2−n, (l + 1)2−n]× [k2−n, (k + 1)2−n]

for l, k ∈ N ∩ [0, 2n − 1]. The collection of all such dyadic squares is denoted D.
For each Dn

l,k ∈ Dn, consider the points

bnl,k = ((2l + 1)2−n−1, (4k + 1)2−n−2) and tnl,k = ((2l + 1)2−n−1, (4k + 3)2−n−2).

These define a vertical segment

snl,k = [bnl,k, t
n
l,k] ⊆ Q0,

which we call a slit of level n. Note that diam(snl,k) = 2−n−1. We call the set

snl,k \ {bnl,k, tnl,k}

the interior of the slit snl,k.

Define now M0 = Q0 = [0, 1]2, and, iteratively, Mk+1 = Mk \
⋃︁

a,b s
k
a,b. (See Figure 2.) Then define Mk

as the completion of Mk with respect to the shortest path metric dk on Mk. (We will continue to call this
new complete metric on Mk by dk.) This amounts to “cutting along” each slit of level k or lower. Note that
the dk-diameter of each Mk is bounded by 3.

As observed by Merenkov, for each k ≤ j, there is a natural 1-Lipschitz mapping πj,k : Mj →Mk obtained
by identifying opposing points on slits of levels greater than j corresponding to the same point in Mk. These
maps compose in the natural way. We can then define the Merenkov slit carpet M as the inverse limit of the
system

M0
π1,0←−−M1

π2,1←−−M2
π3,2←−− . . . ,

equipped with the metric

d(x, y) = lim
k→∞

dk(xk, yk)
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(a) M1 (b) M2 (c) M3

Figure 2. The first three Mi.

for x = (xk) and y = (yk) such that πk(xk) = xk−1, and similarly for yk. Note that this is the limit of a
bounded, increasing sequence.

Alternatively, one could also define M as the Gromov-Hausdorff limit of the (Mk, dk), or directly by
removing all the slits from [0, 1] and taking a metric completion with respect to the path metric.

For each k, there is a natural 1-Lipschitz projection πk : M → Mk, given by πk((xi)) = xk. We let
π = π0 : M→M0

∼= Q0. Merenkov proves the following about π:

Lemma 2.1 ([16], Lemma 2.3). The map π : M→M0
∼= Q0 is regular.

Merenkov uses this lemma and other properties of π to show that M is Ahlfors 2-regular. (See [16, p.
370].)

We take the opportunity to introduce some further notation describing M that we will use below.
Each slit snl,k ⊆ Q0 has a pre-image in M under π that is a topological circle. Set mn

l,k to be the midpoint

of snl,k in Q0, and let mn,+
l,k and mn,−

l,k in M denote the two pre-images of mn
l,k under π. (There is one on each

“side”.) On the other hand, the top and bottom tnl,k and bnl,k have single pre-images under π. We denote

those pre-images by t̃
n
l,k and b̃

n

l,k, respectively.
Let

Vn := {(x, y) ∈ (Q0)
2 : x = (l2−n, k2−n), y = (l2−n, (k + 1)2−n), l ∈ {0, . . . , 2n}, k ∈ {0, . . . , 2n − 1}}

be the collection of all pairs of points defining vertical sides of the dyadic squares at level n, and V =
⋃︁

n≥0 V
the collection of all of these pairs at all scales. We say that a element of V is at level n if (x, y) ∈ Vn.

We use V to define a set of “vertically adjacent” pairs of points in the carpet M. Let

Wn = {(v, w) ∈M2 : (π(v), π(w)) ∈ Vn and d(v, w) = |π(v)− π(w)|}

and

W = ∪n≥0Wn.

The point of the condition d(v, w) = |π(v) − π(w)| in the definition of W is that, if π(v) and π(w) lie on a
common slit in Q0, then v and w must lie on the same “side” of that slit in M. Note that, for instance, all
of the following pairs are in W:

(b̃
n

l,k,m
n,±
l,k ), (mn,±

l,k , t̃
n
l,k).

3. Proof of Theorem 1.2

We begin with a few preliminary lemmas, and then give the proof of Theorem 1.2.
First, we observe that line segments in Q0 between “vertical pairs” of points (v, w) ∈ W can be approxi-

mated by discrete paths which have a significant fraction of their length lying along slits.
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Lemma 3.1. Let (v, w) ∈ Wn. Then, for every m > n, there is a discrete path (q0, q1, . . . , qN ) in M and a
subset G ⊆ {0, . . . , N − 1} such that

(1) q0 = v, qN = w,
(2) d(q1, q0) = d(qN , qN−1) ≤ 2−m−1,
(3)

N−1∑︂
i=0

d(qi, qi+1) = 2−n + 2−m,

(4) ∑︂
i∈G

d(qi, qi+1) = 2−n−1,

(5) if i ∈ G, then [π(qi), π(qi+1)] = sma,b for some a, b, and

(6) if i /∈ G ∪ {0, N − 1}, then (qi, qi+1) ∈ W.

Proof. Let x = π(v) and y = π(w), so that (x, y) ∈ Vn.
There are k, l so that x = (l2−n, k2−n), y = (l2−n, (k + 1)2−n). Let m > n be arbitrary. We will first

define a discrete path (p0, . . . , pN ) from x to y in Q0.
We will take this path to be the original segment [x, y] shifted by 2−m−1 to either the left or right, and

then discretized appropriately. We will now describe this discretization in detail.
The points x and y are dyadic of level 2−n. Therefore, no slit of level ≥ n intersects the horizontal lines

through x or y. Moreover, the assumption that (v, w) ∈ W implies that if v and w lie on a common slit,
then they lie on the same “side” of that slit.

Set x± = x± (2−m−1, 0) and y± = y ± (2−m−1, 0). Let v± and w± be pre-images under π of x± and y±.
(These pre-images are uniquely determined: since m > n, x± and y± cannot lie in the interior of a slit.)
Then at least one pair of distances

(3.2) d(v+, v) and d(w+, w)

or

(3.3) d(v−, v) and d(w−, w)

are both equal to 2−m−1. Without loss of generality, we assume the former. (Note that if l = 0, we take the
first option, while if l = 2n we take the second option.)

The line segment in Q0 from x+ to y+, is half-covered by slits sma,b. Let N = 3 · 2m−n +2, and first define

p0 = x, pN = y, pN−1 = y+ = (l2−n + 2−m−1, (k + 1)2−n). For the remaining pi (i ∈ {1, . . . , N − 2}), we
first represent i = 3s+ j, for j = 1, 2, 3 and s = 0, . . . 2m−n − 1. We then set

pi =

⎧⎨⎩ (l2−n + 2−m−1, k2−n + s2−m) i = 3s+ 1, s = 0, . . . 2m−n − 1
(l2−n + 2−m−1, k2−n + s2−m + 2−m−2) i = 3s+ 2, s = 0, . . . 2m−n − 1
(l2−n + 2−m−1, k2−n + s2−m + 3 · 2−m−2) i = 3s+ 3, s = 0, . . . 2m−n − 1

See Figure 3.
In other words, (pi) form a discrete path that starts at x, takes a step of size 2−m−1 to the right, proceeds

up vertically with certain jumps until reaching the height of y, and then takes a step of size 2−m−1 to the
left to reach y.

Observe that, for each i ∈ {1, . . . , N − 1}, the point pi does not lie in the interior of any slit, and so has
a unique pre-image qi ∈M under π. Moreover, we have

(3.4) d(qi, qi+1) = |pi − pi+1| for each i ∈ {0, . . . , N − 1}.
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Figure 3. The points pi

Indeed, if i ∈ {1, . . . , N − 2} the step from pi to pi+1 is in the vertical direction, in which case dk(pi, pi+1)
is the length of the segment [pi, pi+1] for each i and k. If we are in the horizontal step in which i = 0 or
i = N − 1, equation (3.4) holds because of our understanding that both distances in (3.2) are ≤ 2−m−1.

With this definition of (qi) and (3.4), (1) and (2) are immediate. Item (3) is also simple:

N−1∑︂
i=0

d(qi, qi+1) =

N−1∑︂
i=0

|pi − pi+1| = 2−n + 2−m,

since the (pi) form of a discrete vertical geodesic path of length 2−n, plus two horizontal steps of size 2−m−1.
We now set

G = {3s+ 2 | s = 0, . . . 2m−n − 1}.
By the definition of pi, it is easy to see that if i ∈ G, then pi = π(qi) and pi+1 = π(qi+1) are the bottom and
top, respectively, of a slit sma,b in a square of side length 2−m. This verifies (5).

Item (6) is also simple by inspection: If i /∈ G ∪ {0, N − 1}, then the formulae above for pi = πi(qi) and
pi+1 = πi(qi+1) indicate that they are adjacent vertical corners of a dyadic square of side length 2−m−2,
hence (π(qi), π(qi+1)) ∈ V. Moreover, as observed above, d(qi, qi+1) = |pi − pi+1| = |π(qi)− π(qi+1)|, which
shows that (qi, qi+1) ∈ W.

Lastly, for item (4), we observe that ∑︂
i∈G

|pi − pi+1|

is simply the total length of the slits in the vertical segment from x + (2−m−1, 0) to y + (2−m−1, 0), which
is half the total length of that segment, and hence equal to 2−n−1. Item (4) follows from this and (3.4).

□

The next lemma concerns uniformly convex Banach spaces. In a uniformly convex Banach space, metric
midpoints are unique. The uniform convexity property can be used to quantify this statement, as follows.

Lemma 3.5. Suppose x, y ∈ B are points, and m ∈ B is an additional point. Then for every ϵ > 0, there
exists an η > 0 so that either
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(1)

max{∥x−m∥, ∥y −m∥} ≥ 1 + η

2
∥x− y∥

or
(2) ⃦⃦⃦⃦

m− y + x

2

⃦⃦⃦⃦
≤ ϵ∥x− y∥.

Proof. By translation and scaling, we can take x = 0 and ∥y∥ = 1. Apply the uniform convexity condition
to ϵ to obtain a δ > 0. Let η = 1

2 min{ϵ, δ}. Suppose that the first property fails with this choice of η. Then
by the triangle inequality we get

1− η

2
≤ ∥m∥ ≤ 1 + η

2

and
1− η

2
≤ ∥y −m∥ ≤ 1 + η

2
.

Define ξ1 = m
∥m∥ , and ξ2 = y−m

∥y−m∥ . Note that

∥ξ1 − 2m∥ ≤ η and ∥ξ2 − 2(y −m)∥ ≤ η.

Therefore, ⃦⃦⃦⃦
ξ2 + ξ1

2

⃦⃦⃦⃦
≥ 1− η > 1− δ.

Consequently, from the uniform convexity, ∥ξ1 − ξ2∥ ≤ ϵ, and so ∥2m− 2(y −m)∥ ≤ 2η + ϵ. In that case,

∥m− (y/2)∥ = 1

4
∥2m− 2(y −m)∥ ≤ η

2
+

ϵ

4
≤ ϵ,

which gives the second possibility, as desired. □

On the other hand, the slit carpet M does not have unique midpoints, as the slits can be traversed on
both “sides”. The following lemma is immediate from the definition of M.

Lemma 3.6. Suppose s = snl,k = [bnl,k, t
n
l,k] is any slit in Q0. Recall the four associated points in M on

π−1(s), which we called t̃
n
l,k, b̃

n

l,k, m
±,n
l,k .

Then

d(t̃
n
l,k, b̃

n

l,k) = 2−n−1

d(mn,±
l,k , t̃

n
l,k) = d(mn,±

l,k , b̃
n

l,k) = 2−n−2 = d(t̃
n
l,k, b̃

n

l,k)/2

and

d(mn,+
l,k ,mn,−

l,k ) ≥ 2−n−1 = d(t̃
n
l,k, b̃

n

l,k).

We are now ready to prove Theorem 1.2, that M admits no bi-Lipschitz embedding into any uniformly
convex Banach space B. As noted above, the argument is heavily inspired by the framework of Burago and
Kleiner [1] and also an argument of Laakso [15].
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Proof of Theorem 1.2. Suppose that B is a uniformly convex Banach space, and f : M→ B is a bi-Lipschitz
mapping. Let (b, L) be the bi-Lipschitz constants of f .

Recall the definitions of W and Wn from Section 2 above.
We define the maximal vertical distortion of f by

Lv = sup
(x,y)∈W

|f(x)− f(y)|
d(x, y)

.

Note that Lv is bounded above by the Lipschitz constant L of f , and below by the lower-Lipschitz constant
b > 0 of f . We proceed to derive a contradiction.

Fix ϵ = b
4L and apply Lemma 3.5 to obtain a corresponding η > 0. Next, choose η′ > 0 so that

Lv

Lv−η′ < 1 + η.

Choose a pair (x, y) ∈ Wn so that

(3.7) Lv −
η′

4
≤ |f(x)− f(y)|

d(x, y)
.

In particular, |f(x)− f(y)| ≥ 2−nLv + η′2−n−2.
Then, choose m > n large enough so that

(3.8) (2L+ Lv)2
−m < η′2−n−2.

Using Lemma 3.1 (with v = x and w = y), we can find a discrete path q0, . . . , qN from x to y in M with
the properties in the statement.

By Lemma 3.1 (6), for i ̸∈ G ∪ {0, N − 1}, we have (qi, qi+1) ∈ W, and so

|f(qi+1)− f(qi)| ≤ Lvd(qi+1, qi).

We now argue that there exists an i ∈ G so that

(3.9) |f(qi+1)− f(qi)| ≥ (Lv − η′)d(qi+1, qi).

Suppose that this was not the case. In that case, using properties (2), (3), (4), and (6) from Lemma 3.1, we
have

|f(x)− f(y)| ≤ |f(q1)− f(q0)|+
N−2∑︂
i=1

|f(qi+1)− f(qi)|+ |f(qN )− f(qN−1)|

≤ L21−m +
∑︂
i∈G

|f(qi+1)− f(qi)|+
∑︂

i ̸∈G∪{0,N−1}

|f(qi+1)− f(qi)|

≤ L21−m + (Lv − η′)
∑︂
i∈G

d(qi+1, qi) + Lv

∑︂
i ̸∈G

d(qi+1, qi)

= L21−m + Lv

N−1∑︂
i=0

d(qi+1, qi)− η′
∑︂
i∈G

d(qi+1, qi)

≤ L21−m + Lv(2
−n + 2−m)− η′2n−1

= 2−n

(︃
Lv −

η′

2

)︃
+ 2−m(2L+ Lv)

<

(︃
Lv −

η′

4

)︃
d(x, y),

where in the last line we used (3.8). However, this contradicts (3.7). Therefore, (3.9) holds for some i ∈ G.
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We thus have an i ∈ G so that |f(qi+1)− f(qi)| ≥ (Lv − η′)d(qi+1, qi). By Lemma 3.1 (5), this coincides

with a slit smk,l, with qi+1 = t̃
m
k,l and qi = b̃

m

k,l. Now, consider the two pre-images mm,±
k,l under π of the

mid-point of this slit, as defined near the end of Section 2.
Set M± = f(mm,±

k,l ), X = f(qi), and Y = f(qi+1) in B. Since the pairs (mm,±
k,l , qi+1) and (qi,m

m,±
k,l ) are

in W, we have the following bounds:

∥M± −X∥ ≤ Lvd(m
m,±
k,l , qi)

= Lvd(qi+1, qi)/2

≤ Lv

2(Lv − η′)
∥Y −X∥

<
1 + η

2
∥Y −X∥.

Similarly, we can conclude that

∥M± − Y ∥ < 1 + η

2
∥Y −X∥.

Consequently, from Lemma 3.5 we have that⃦⃦⃦⃦
M± − X + Y

2

⃦⃦⃦⃦
≤ ϵ∥Y −X∥

and hence that

∥M+ −M−∥ ≤ 2ϵ∥Y −X∥ ≤ 2ϵLd(qi+1, qi) =
b

2
d(qi+1, qi),

using our choice of ϵ = b/4L.
On the other hand, since f is bi-Lipschitz with lower Lipschitz constant b, we also have by Lemma 3.6

that
∥M+ −M−∥ ≥ bd(mm,+

k,l ,mm,−
k,l ) ≥ bd(qi+1, qi) > 0.

This is a contradiction. □
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