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Abstract

Crop domestication and selective breeding have altered plant defense mechanisms, influencing insect-plant interactions. A
reduction in plant resistance/tolerance against herbivory is generally expected in domesticated species, however, limited efforts
have been made to compare inducibility of plant defenses between wild and domesticated genotypes. In the present study, the
inducibility of several plant defense mechanisms (e.g. defensive chemicals, trichomes, plant volatiles) were investigated, and the
performance and preference of the herbivore Helicoverpa zea were measured in three different tomato genotypes; a) wild tomato,
Solanum pimpinellifolium L. (accession LA 2093), b) cherry tomato, S. lycopersicum L. var. cerasiforme (accession Matts Wild
Cherry), and ¢) cultivated tomato, S. [ycopersicum L. var. Better Boy). Enhanced inducibility of defensive chemicals, trichomes,
and plant volatiles in the cultivated tomato, and a higher level of constitutive plant resistance against herbivory in the wild
genotype was observed. When comparing the responses of damaged vs. undamaged leaves, the percent reduction in larval growth
was higher on damaged leaves from cultivated tomato, suggesting a higher induced resistance compared to other two genotypes.
While all tomato genotypes exhibited increased volatile organic compound (VOCs) emissions in response to herbivory, the
cultivated variety responded with generally higher levels of VOCs. Differences in VOC patterns may have influenced the
ovipositional preferences, as H. zea female moths significantly preferred laying eggs on the cultivated versus the wild tomato
genotypes. Selection of traits during domestication and selective breeding could alter allocation of resources, where plants
selected for higher yield performance would allocate resources to defense only when attacked.
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Introduction

Crop domestication and selective breeding have altered traits
of wild ancestors to produce crop plants with superior agricul-
tural characteristics, including higher yield and better quality
(Ladizinsky 1998). The focus on yield and quality, however,
often has neglected other important traits such as plants’ de-
fenses against herbivores. While most breeding programs ad-
dress plant defense if the pest is particularly threatening,
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resistance to insects is often not a priority (Chaudhary 2013;
Mitchell et al. 2016). However, there is great genetic variation
for plant defenses against insects, which could be revealed by
comparing wild and domesticated germplasm (Milla et al.
2015; Whitehead et al. 2017).

Through their evolution, plants have developed constitu-
tive and induced defense mechanisms in response to attacks
from a wide array of herbivores (Felton and Gatehouse 1996;
Gatehouse 2002). While plants may exhibit both types of re-
sponses, often there is a negative correlation between consti-
tutive and induced defense responses (Agrawal 1999;
Agrawal et al. 2002). Plant defenses may be costly, and thus
a genotype with high levels of constitutive defenses would
have limited benefits on investing in induced defenses
(Karban and Baldwin 1997). Plants use an array of biochem-
ical and morphological responses to attacks by herbivores,
which would interfere with development or behavior of her-
bivores (Bi and Felton 1995; Karban 2011); plants may also
produce volatile organic compounds (VOCs) that attract nat-
ural enemies of herbivores (Walling 2000; Heil et al. 2001).
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Domesticated genotypes (except for some modern culti-
vars) are often more vulnerable to insect pests, compared to
their wild relatives; this is because crop evolution under do-
mestication and selective breeding has presumably narrowed
their genetic base (Chen et al. 2015; Whitehead et al. 2017).
Plant defenses are considered costly (Herms and Mattson
1992), thus selection and breeding for crop productivity and
quality were possibly at the expense of reduced pest resistance
(Chaudhary 2013; Chen et al. 2015; Whitehead et al. 2017).
Specifically, the capacity to augment direct defenses, such as
increasing the concentration of plant defensive chemicals
(Gols and Harvey 2009; Meyer et al. 2012) and trichomes
(Bellota et al. 2013; Mo et al. 2016), are often reduced. On
the contrary, stronger indirect defense responses (volatile
emissions) in domesticated species compared to the wild rel-
atives have been reported (Rowen and Kaplan 2016).

Domestication of plants may enhance or reduce rates of
inducibility in response to herbivore attacks. For example,
the inducibility of chemical defenses against an herbivore
was lower in domesticated cabbage, Brassica oleracea cv.
Stonehead and Cyrus (Harvey et al. 2011) and cv. Acephala
and Capitata (Moreira et al. 2018) as well as in domesticated
cranberries, Cacccinium macrocarpon cv BHS98-23
(Rodriguez-Saona et al. 2011), compared to their correspond-
ing wild relatives, whereas it was higher in natural populations
of lima beans, Phaseolus lunatus L (Shlichta et al. 2014) com-
pared to their domesticated counterparts. A lower constitutive
and a higher induced resistance in domesticated species was
also revealed in an extensive experiment with ornamental
plant species (Kempel et al. 2011). In general, inducibility of
plant volatiles increased with domestication (Rowen and
Kaplan 2016). However, in contrast there are a few reports
of reductions in herbivore induced plant volatiles (Tamiru
et al. 2011; Rodriguez-Sanoa et al. 2011; Chen et al. 2015).

Plant volatiles may not only play a role in indirect defense,
but also can directly alter host utilization and preference by
herbivores. An enhanced ovipositional preference of Tobacco
hornworm (Manduca sexta) on domesticated modern tomato
cultivars (compared to their wild relatives), which was medi-
ated by plant volatiles, was recently reported by Li et al.
(2018). In contrast, ovipositional preference of the silk moth
(Bombyx mori) was not affected by domestication
(Damodaram et al. 2014). These variations in plant defenses
based on species and cultivars suggest that the impact of do-
mestication and selective breeding is not as consistent as pre-
viously assumed (Meyer et al. 2012).

The cultivated tomato, Solanum Ilycopersicum L. (SL), has
been continuously selected for a wide array of desirable traits for
centuries (Bas et al. 1992), including fruit size, and fruit sugar
and phenolics content (Ilahy et al. 2009; Kanayama 2017).
Selection reduced genetic variation within the cultivated species,
and thus the ability to withstand biotic and abiotic stresses (Sim
etal. 2011). Introduced from the Andean region to Europe in the
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sixteenth century and then to the United States in nineteenth
century, tomato is currently the most popular and economically
important vegetable crops in the world (Bergougnoux 2014;
www.faostat3.fao.org). There are more than 12 wild species of
tomato (Knapp and Peralta 2016), of which the red-fruited spe-
cies S. pimpinellifolium (SP) is thought to be the closest relative,
and potentially an ancestor to the cultivated tomato (Peralta et al.
2008; Zuriaga et al. 2009; Blanca et al. 2015). Furthermore, the
wild form of the cultivated tomato species, known as S.
lycopercicum var. cerasiforme (SLC), is considered to be an
evolutionary intermediate between SL and SP (Ranc et al.
2008; Blanca et al. 2015).

Wild tomato species bear a wealth of genetic variation for
numerous characteristics important to crop improvement, in par-
ticular resistance and tolerance to biotic and abiotic stresses;
much of such genetic variation, however, has remained largely
unexploited (Miller and Tanksley 1990; Foolad 2007). Some
wild tomato genotypes have been evaluated for resistance/
tolerance to insect pests, including whitefly, Bemisia tabaci
(Rodriguez-Saona et al. 2011; Firdaus et al. 2012, 2013), green
peach aphid, Myzus persicae (Carter and Snyder 1985; Turcotte
et al. 2014), beet armyworm, Spodoptera exigua (Turcotte et al.
2014), two-spotted spider mite, Tetranychus urticae (Lucini
et al. 2015; de Oliveira et al. 2018), South American leaf miner,
Tuta absoluta (Dias et al. 2013; Lima et al. 2016), cabbage
moth, Mamestra brassicae (Moreira et al. 2018) and Colorado
potato beetle, Leptinotarsa decemlineata (Carter et al. 1989).
However, evaluations between cultivated and wild tomato ge-
notypes were largely based on comparison of herbivore perfor-
mance alone; plant defense (constitutive and induced) responses
against herbivore have not been adequately examined.

The present study compares anti-herbivore chemical de-
fenses, both constitutive and induced, as well as the inducibility
of multiple chemical (defensive proteins, total phenolics, plant
volatiles) and physical defenses (leaf trichomes) and their sub-
sequent impact on the growth of herbivore Helicoverpa zea and
its ovipositional preference in a cultivated tomato, SL (cv. Better
boy), a cherry tomato, SLC (cv. Matts Wild Cherry), and a wild
tomato, SP (accession LA 2093). Knowledge derived from such
comparisons will improve our understanding of the evolutionary
ecology of insect-plant interactions in tomatoes and will be
helpful in identifying potential resistance traits to be targeted
by crop breeding programs.

Materials and Methods
Plant Material

Original seeds of Solanum pimpinellifolium accesion LA 2093
were received from the C.M. Rick Tomato Genetics Resource
Center, UC Davis, Davis CA (https:/tgrc.ucdavis.edu/), and
seeds of cultivated tomato S. lycopersicum cv. Better Boy
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(BB) and S. lycopercicum var. cerasiforme accession Matts
Wild Cherry (MWC) were procured commercially. LA 2093
was chosen because it is a well-studied accession of SP with
numerous desirable horticultural characteristics, including
resistance/tolerance to biotic and abiotic stresses and high fruit
quality, and has been used to develop a super-density genetic
map of tomato and for studying various desirable horticultural
characteristics (Ashrafi and Foolad 2015; Foolad et al. 2015;
Gonda et al. 2018). BB is a popular commercial hybrid culti-
var and MWC is a widely grown cherry tomato sold commer-
cially. Plants were grown in greenhouse under artificial lights
in 3.5 in.-pots filled with Metromix 400 potting mix (Griffin
Greenhouse and Nursery Supplies, Tewksbury, MA). In the
greenhouse experiments, plants were maintained on a 16-h/
8-h light/dark photoperiod, relative humidity (RH) of 55-65%
and a temperature of 25 °C+2 °C. Plants and seeds were
randomly allocated to treatments, and plants were randomly
placed on different greenhouse benches. Plants were regularly
watered every 2—-3 days as needed.

Herbivore

Helicoverpa zea eggs were obtained from Benzon Research
(Carlisle, PA, USA) and larvae were reared on wheat germ and
casein-based diet (Peiffer and Felton 2009) until they were
used for the experiments. H. zea (Family: Noctuidae), a gen-
eralist herbivore, commonly known as corn earworm or toma-
to fruit borer is a major agricultural pest on a wide variety of
crops, including tomatoes (Fitt 1989). It has been estimated
that H zea arrived in the New World ~ 1 million years ago,
well in advance of any crop domestication. Considering its
broad host plant range and broad geographic range including
the region covering the wild ancestors of tomato (Hardwick
1965), it is highly likely to have used these plants as hosts.
Plant (three genotypes) and herbivore responses were com-
pared simultaneously in a greenhouse at the Pennsylvania
State University, University Park, PA, during 2017-2018.

Analysis of Leaf Defensive Proteins and Phenolics

At the four-leaf stage, fully expanded terminal leaflets of the
leaf from the bottom (n = 7-8/treatment) were used as the
focal leaf for defensive chemical bioassays (Tan et al. 2018).
Tomato leaflets were damaged by allowing a single Sth instar
H. zea larva to feed inside a clip cage (3.15 cm?) ensuring that
the plants receive equal amount of damage across all treat-
ments. An empty cage without herbivore was used on undam-
aged leaves. Detached leaves (damaged and undamaged) were
weighed before being flash-frozen in liquid nitrogen and
stored at —80 °C until analysis. Activity of two jasmonic acid
(JA)-related defensive proteins, trypsin protease inhibitor
(TPI; % inhibition/mg protein) and polyphenol oxidase
(PPO; mOD/min/mg protein), were measured and compared

after 48 h of caterpillar feeding using a spectrophotometric
method (Acevedo et al. 2017). Total phenolics content in
leaves (pg/mg tissue) based on colorimetric assay was ana-
lyzed using methods from Ainsworth and Gillespie (2007).

Shoot Biomass

In a separate set of experiments, the entire shoot (all above
ground) of 3-week old plants (n = 6/treatment) were removed
and dried in an oven (60 °C for 48 h) to determine the shoot
dry weight (SDW; gm).

Density and Morphology of Leaf Trichomes

Terminal leaflets of the fourth leaf from the bottom were sam-
pled and damaged by H. zea as described above. Fourteen days
post caterpillar feeding, plants (z = 8) from each treatment were
chosen and the youngest terminal leaflets of damaged or undam-
aged leaf were randomly selected to compare the density of
trichomes on the adaxial surface. Two leaf discs of 0.6 cm di-
ameter were punched out from each side of the mid-vein of a
leaflet, and the density (number/cm?) of all glandular and non-
glandular trichomes was determined using a light microscope.
Morphologies of leaf trichomes among genotypes were also
compared using scanning electron microscopy (SEM), using a
protocol described by Kang et al. (2010).

Herbivory Feeding Bioassay

An excised leaf bioassay with damaged and undamaged leaves
using st instar H. zea larvae was conducted to measure the
herbivore response. Tomato leaflets (youngest terminal leaflet
of the fourth leaf from the bottom) were damaged as described
above. After 48 h post-damage, randomly selected 1st instar
larvae (n = 20/treatment) were individually weighed and placed
into plastic cups (30 ml) with a tomato leaflet (fourth leaf from
bottom) from each of the three tomato genotypes.

Individual larvae were then weighed after 48 h and relative
growth rate (RGR) was calculated as:

RGR (tissue gained/g/day) = (W2-W1)/((t2-t1)*W1),

where W, and W, are larval weight at times t; and t,, and W,
is the initial larval weight before the start of the experiment.

Volatile Organic Compounds (VOCs) Collections
and Analysis

Volatiles were collected for a duration of 12 h (from the start of
the experiments) from plants either damaged by H. zea or left
undamaged. Individual 3rd instar larvae were placed inside a
9 L volume glass chamber letting them feed freely on plants
for damaged treatment throughout the duration of experiment
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(12 h). Control plants did not receive any herbivore treatment.
In total, 4-5 plants per genotype and treatment were sampled.
Dry weight (DW) of the entire shoot of each plant was mea-
sured after volatile collection. Volatiles were collected using a
push-pull collection system. Volatiles were first trapped using
adsorbent filters containing 45 mg of Super-Q (Alltech
Associates, Deerfield, IL, USA) at 0.5 L min ! and were elut-
ed using 150 pL dichloromethane. Five puL of a standard
(nonyl acetate (80 ng uL ') was added to the 150 pL of ali-
quot of the emission solution for analysis (Helms et al. 2019).

The various VOCs were identified with gas chromatogra-
phy (Agilent 7890A), coupled with a mass spectrometer
(Agilent model 5975C). Individual volatile compounds were
identified by comparing retention time and mass spectra with
data from two published libraries, National Institute of
Standards and Technology (NIST), 2014 and Gothenburg
Department of Chemical Ecology mass spectral library data
bases (Helms et al. 2019). Only those volatiles which are
identified by the program with more than 90% confidence
were included for the principal component analysis (PCA).
The relative abundance of each compound was calculated
based on the internal standard (nonyl acetate) within the sam-
ple. Individual compound abundance was further standardized
by the DW of each plant and expressed as ng/g DW/12 h. Total
VOC emission per plant was calculated by adding the concen-
trations of all the VOCs recorded in the blend.

Oviposition Preference

In a greenhouse, 2 %2 x2 m cages (BugDorm Cages,
Megaview Science Co., Ltd. Taichung 40762, Taiwan) were
used to examine the oviposition preference of H. zea for the
three tomato genotypes. Ten pairs of newly emerged female
H. zea moths were placed in a single cage with three plants,
one from each of the three tomato genotypes. Undamaged
plants with similar size at the four-leaf-stage were randomly
allocated to the cages. The number of eggs on the plants were
visually determined daily for three days.

Statistical Analysis

Using a completely randomized design (CRD), experiments
on plant defensive chemicals, density of trichomes, herbivore
growth, and ovipositional preference were analyzed using a
two-way ANOVA, with the main effects being tomato geno-
types and insect feeding treatments plus all interaction effects.
Plant biomass among genotypes were tested by one-way
ANOVA. Means were separated with Tukey’s Honest
Significant Differences (HSD) mean comparison tests. Data
were checked for normality and analyzed using ‘Minitab 18.0’
software (Minitab Inc. 2018).

Volatile data were analyzed using the R statistical software
program (R Core Team 2017). Random forest analysis
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(package “randomForest”) was performed on the full data
set of 65 volatiles to identify important volatiles differentiating
tomato genotypes and herbivore treatments. Volatiles with the
“Mean Decrease Accuracy” larger than zero were selected for
further analysis (Supplementary Table 1). Principle compo-
nent analysis (PCA) was performed using function “prcomp”
on the selected list of volatiles from both control and damage
treatments. Results of the PCA were visualized using package
“ggbiplot” (Vu2011). Due to lack of significant differences in
volatile profiles of undamaged plants, only volatile data from
damaged plants were used to test for statistical significance
(Table 1). The non-parametric Kruskal-Wallis test was
employed to determine differences among quantity of volatile
emitted from damaged plants. Percent contribution of individ-
ual compounds was calculated by dividing the individual vol-
atile concentration by the total volatile blend concentration.

Results
Induction of Leaf Defensive Chemicals

Trypsin Protease Inhibitors (TPI) LA 2093 had the highest
amount of constitutive TPI followed by MWC and BB
(Fig. 1). In contrast, inducibility of TPI was significantly
higher in the cultivated tomato BB (18-fold increase) in dam-
aged leaves compared to MWC (2.6-fold increase) and LA
2093 (1.7-fold increase) (insect damage; F =206.2, df=1,
P <0.001, genotype; F=6.6, df =2, P=0.004) (Fig. 1a).
Additionally, there was a significant interactive effect between
genotypes and insect damage (genotype x damage; F =20.1,
df=2,P<0.001).

Polyphenol Oxidase (PPO) The cultivated tomato BB had sig-
nificantly higher levels of PPO activity in both damaged and
undamaged leaves, compared to MWC and LA 2093 (insect
damage; F=441.2, df=1, P<0.001, genotype; F=183.8,
df=2, P<0.001) (Fig. 1b). The inducibility for BB was also
the highest (4.4-fold increase), followed by MWC (4.2-fold
increase) and LA 2093 (2.8-fold increase). There was also a
significant interactive effect between genotypes and insect
damage (genotype x damage; F=82.97, df=2, P<0.001).

Total Phenolics Content (TPC) There was a significant effect of
genotype on TPC (genotype; F=181.3, df=2, P<0.001)
(Fig. 1c). LA 2093 demonstrated the highest level of consti-
tutive TPC and BB had the lowest. While herbivore damage
increased levels of TPC in both BB (1.23-fold increase) and
MWC (1.20-fold increase), it did not do so in LA 2093 (insect
damage; 1.0-fold increase) (insect damage; F=106.5, df=1,
P <0.001). There was also a significant interactive effect be-
tween genotypes and insect damage (genotype x damage; F =

14.6, df=2, P <0.001).
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Table1 Major Volatiles (ng/g dry weight) emitted by three tomato genotypes, Solanum lycopercicum cv. Better Boy (BB), Solanum lycopersicum var:
cerasiforme (Matts Wild Cherry (MWC)), and Solanum pimpinellifolium (LA 2093) upon herbivore damage

% %
- S % Kruskal
voC BB contribu MWC contributio LA 2093 g N
S. . contribution -Wallis
tion n
N Test
Mea
Mean SE Mean SE n SE p-value
1 Limonene (MT) n.d n.d 0.00 n.d n.d 0.00 63433 | 3409 97.37 <0.001
2 a-Terpinene (MT) 19244 989 8.74 17864 2805 19.12 374 192 0.57 <0.005
3 Sabinene (MT) 33867 21467 15.39 19348 19348 20.70 n.d n.d 0.00 0.465
B-Caryophyllene 3257 397 1.48 1031 367 1.10 n.d n.d 0.00 <0.001
4 (ST)
5 o - Pinene (MT) 2652 542 1.20 2298 440 2.46 nd n.d 0.00 <0.005
6 2-Carene (MT) 57604 6994 26.17 16820 3834 18.00 959 290 1.47 <0.001
trans-B- Ocimene 1400.4 92.4 0.64 123.2 77.5 0.13 nd n.d 0.00 <0.001
7 (MT)
B - Phellandrene 85089 18719 38.66 30276 10297 32.40 n.d n.d 0.00 <0.005
8 (MT)
9 Cymene (MT) 8795 817 4.00 2931 1336 3.14 n.d n.d 0.00 <0.001
10 B - Pinene (MT) 1785 345 0.81 193 162 0.21 n.d nd 0.00 <0.001
11 allo-Ocimene 144 40.5 0.07 n.d n.d 0.00 n.d n.d 0.00 <0.001
G Terpinene (MT) 903 348 0.41 811 296 0.87 324 203 0.50 0.404
trans-Isolimonene 278 93 0.13 287 143 031 nd n.d 0.00 0.087
13 (MT)
14 a-Humulene (ST) 571 174 0.26 253 128 0.27 nd n.d 0.00 0.052
15 Cymenene (MT) 226.2 723 0.10 n.d n.d 0.00 135 135 0.02 <0.005
16 Terpinolene (MT) 489 364 0.22 n.d n.d 0.00 n.d n.d 0.00 <0.005
cis-meta-Mentha- 298 137 0.14 n.d n.d 0.00 nd n.d 0.00 <0.005
2,8-diene (MT)
17
18 Copaene (ST) 5.15 5.15 0.00 n.d n.d 0.00 9.39 9.39 0.01 0.052
Y Gurjunene (MT) 104.1 49.2 0.05 5.27 5.27 0.01 n.d n.d 0.00 0.053
Trimethyl- 334 149 0.15 152.2 93.5 0.16 nd n.d 0.00 0.148
1,3(E),7(€),11-
tridectetraene
20 (GLV)
21 o -Copaene (ST) 173.7 89.7 0.08 n.d n.d 0.00 n.d n.d 0.00 0.075
2 B -Elemene (ST) 100.7 45.4 0.05 n.d n.d 0.00 nd n.d 0.00 0.215
23 Carvacrol (MT) 106.9 382 0.05 225 225 0.02 nd n.d 0.00 0.07
cis-Calamenene 64.3 29.2 0.03 n.d n.d 0.00 n.d n.d 0.00 0.075
24 (GLV)
- Cyprene (MT) 473 219 0.21 25.4 25.4 0.03 n.d n.d 0.00 0.169
6-9-Guaiadiene 305 146 0.14 186 171 0.20 nd nd 0.00 0.129
26 (GLV)
27 Myrcene (MT) 491 491 0.22 156.6 98.2 0.17 nd n.d 0.00 0.409
28 y- Murolene (ST) 91.3 91.3 0.04 75.5 46.3 0.08 n.d n.d 0.00 0.409
29 Indole (A) n.d n.d 0.00 76.2 67.2 0.08 nd n.d 0.00 0.117
30 p- Cymene (MT) 46 29.2 0.02 n.d n.d 0.00 n.d n.d 0.00 0.2
Bicyclo[2.2.1]hept 91.6 48.7 0.04 n.d n.d 0.00 n.d n.d 0.00 0.075
-2-ene, 1,7,7 (GLV)
31
2 o -Gurjunene (MT) 336 153 0.15 170 154 0.18 n.d n.d 0.00 0.129
33| @ Selinene (GLV) 57.2 43 0.03 nd n.d 0.00 n.d n.d 0.00 0.2
34 Cadalene (GLV) 17.5 11.5 0.01 nd nd 0.00 n.d n.d 0.00 0.2
35 Piperitone (MT) 51.4 326 0.02 29.3 29.3 0.03 n.d n.d 0.00 0.412
36 3- Carene (MT) 560 355 0.25 202 202 0.22 34.8 34.8 0.05 0.751
Cyclohexene, 1- 47.4 37.4 0.02 49.9 30.5 0.05 n.d nd 0.00 0.396
methyl-4-(1-
37 methlidene) (GLV)
6-Selinene (GLV) 60.7 40.2 0.03 60.2 60.2 0.06 n.d n.d 0.00 0.505
38

Highlighted VOCs indicate a significant difference among herbivore-damaged genotypes based on Kruskal-Wallis test

MT monoterpene; ST sesquiterpene; GLV C6 aldehydes, alcohols and esters; A aromatic; n.d Not Detected. Percent (%) contribution of individual
compound refers to a value calculated by dividing the individual volatile concentration with the total volatile blend concentration
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Plant Growth

As expected, at 3-weeks of age, BB had the highest shoot
biomass (SDW), whereas LA 2093 had the lowest (F =29.9,
df=2, P<0.001) (Fig. 2).

Trichome Density and Morphology

Undamaged leaves of LA 2093 had fewer glandular and
non-glandular trichomes than BB and MWC (genotype;
F=181.3, df=2, P<0.001) (Fig. 3). In response to cat-
erpillar damage, there was a significantly higher induc-
tion in trichome density in BB than MWC and LA 2093
(insect damage; F=88.48, df=1, P<0.001). While
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there was a very low level of induction in LA 2093
(1.07- and 1.04- fold increase) and MWC (1.4- and
1.2-fold increase), density of glandular trichomes and
non-glandular trichomes in BB was increased by 1.7-
and 1.4-fold increase, respectively.

SEM pictures of trichome types are provided in supple-
mentary materials (Supplementary Fig. la-1e). The BB and
MWC genotypes had higher number of types VII trichomes
and a very low density of Type III trichomes. The MWC and
BB exhibited Type 11, V, VI VII, and VIII trichomes, but type
VI glandular trichomes were the most abundant
(Supplementary Fig. 2a & 2b). LA 2093 had very few foliar
trichomes and type III, IV and V were mostly observed
(Supplementary Fig. 2¢).
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Fig.2 Shoot biomass (dry weight

(g)) of three-weeks old plant from

three different tomato genotypes, 5

Solanum lycopercicum cv. Better 45

Boy (BB), Solanum lycopersicum 4

var. cerasiforme (Matts Wild
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Herbivore Performance

Tomato genotypes varied in their level of resistance to
H. zea caterpillar feeding. In undamaged leaves, the
RGR of H. zea was highest when larvae fed on undam-
aged leaves of BB in comparison with MWC and LA
2093 (F=124, df=2, P<0.001) (Fig. 4). However,
when larvae were fed on leaves previously damaged
by H. zea, the RGR reduction in BB (2.2-fold decrease)
was highest followed by MWC (1.3-fold decrease) and
LA 2093 (1.09-fold decrease).

Emission of Volatile Organic Compounds (VOCs)

Overall, a total of 63 VOCs were detected (Table S1),
representing a complex blend of alcohols, esters, benzenoids,
monoterpenes and sesquiterpenes, with terpenes being the
most abundant. Based on the values of variable importance
to the projection (VIP) of VOCs (Supplementary Table 1), 38
major VOCs were selected for comparison of quantitative
difference in volatile emission among three tomato genotypes
(Table 1). Thirteen of the 38 volatiles significantly differed in
damaged plants when compared across the three tomato
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Fig. 3 Density of glandular and non-glandular trichomes (no of tri-
chomes/cm?) on undamaged (UD) and damaged (D) (Helicoverpa zea)
leaf surface (adaxial) from three different tomato genotypes, Solanum
lycopercicum cv. Better Boy (BB), Solanum lycopersicum var.

cerasiforme (Matts Wild Cherry (MWC)), and Solanum pimpinellifolium
(LA 2093). Bars are mean + SEM, and means with different letters are
statistically different as determined by a Tukey HSD
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Fig. 4 Relative growth rate
(RGR) (tissue gained/g/day) of
H zea larvae fed with detached 0.50 A
leaves (damaged and undamaged) 0.45 T
from three different tomato geno- 0.40 i
types, Solanum lycopercicum cv. =035
Better Boy (BB), Solanum ©
. X 3 030 B
lycopersicum var. cerasiforme E
(Matts Wild Cherry (MWC)), and & 025 C C
Solanum pimpinellifolium (LA g 0.20
2093). Bars are mean = SEM, and < 0.15 D
means with different letters are 0.10 D
statistically different as deter- 0.05
mined by a Tukey HSD ’
0.00 |
Undamaged Damaged Undamaged Damaged Undamaged Damaged
BB MWC LA 2093

genotypes (Kruskal Wallis test: P < 0.05, see Table 1). These
compounds were limonene, x-terpinene, [3-caryophyllene, x-
pinene, 2-carene, trans-3-ocimene, (3-phellandrene, cymene,
[3-pinene, allo-ocimine, cymenene, terpinolene and cis-meta-
mentha-2,8-diene.

Total volatile emission in undamaged BB leaves was signifi-
cantly higher in comparison to MWC and LA 2093 (Fig. 5).
Further, a significantly higher inducibility of VOCs was detected
when H. zea actively fed on BB (23-fold increase) compared with
the feeding on MWC (18.3-fold increase) and LA 2093 (15.3-
fold increase) (F=23.1, df=2, P<0.001) (Fig. 5). Principal
component analysis (PCA) for VOCs from damaged plants pre-
sents a clear separation in volatile emission, with the first principal
component, separating BB (damaged) and MWC (damaged)
from LA 2093 (damaged) and explaining 44.5% of the variance
(Fig. 6a and b).

The tomato genotypes BB and MWC, in comparison to LA
2093, produced different patterns of volatiles, both in quality
and quantity, during active herbivore feeding (Table 1 and
Supplementary Fig, 3a-3c). A total of 36 (out of 38) major
volatiles were recorded in the BB leaves. Better Boy leaves
emitted 36 of the 38 major volatiles. 3-Phellandrene was the
most abundant (38.6% of the total blend) followed by 2-carene
(26.2%), sabinene (15.4%), o-terpinene (8.7%), and cymene
(4.0%). Apart from sabinene, all other compounds were signif-
icantly different among genotypes (Table 1). Similarly, 25 major
volatiles were recorded in MWC. Like BB, (3-phellandrene was
the most abundant (32.4%) followed by sabinene (20.7%), o-
terpinene (19.2%), 2-carene (18.0%), and cymene (3.14%).
Only seven volatiles were recorded in LA 2093 with limonene
being the most abundant with at 97% of the total blend followed
by 2-carene (1.5%) and o-terpinene (0.6%).

Fig. 5 Emission of volatile
Organic Compounds (VOCs)
from undamaged and damaged 300000
(Helicoverpa zea feeding) plants
in three different tomato geno- 250000
types Solanum lycopercicum cv.
Better Boy (BB), Solanum %
lycopersicum var. cerasiforme 0 200000
(Matts Wild Cherry (MWC)), and 2
Solanum pimpinellifolium (LA _S' 150000
2093) Bars are mean += SEM, and 0
means with different letters are £
statistically different as deter- ? L0y
mined by a Tukey HSD
50000 cD
0
BB

Undamaged Damaged Undamaged Damaged Undamaged Damaged

BC

i

D D

—— o

——

MWC LA 2093
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BB.Damage

LA 2093.Control

! P l MWC .Control

MWC .Damage

] LA 2093.Damage

-20 -10
Dim1 (44.5%)
Fig. 6 Principal component analysis (PCA) a) Individual factor map and
b) Variables factor map displaying the variability in headspace volatile
collection (measured as ng/g dry weight) of three different tomato geno-
types, Solanum lycopercicum cv. Better Boy (BB), Solanum
lycopersicum var. cerasiforme (Matts Wild Cherry (MWC)), and
Solanum pimpinellifolium (LA 2093) with or without herbivore (H.zea)
damage. A clear separation at the genotypes level damaged by herbivore
applied on sixty-five volatile compositions; BB Damage (yellow circle),
MWC damaged (purple circle) and LA 2093 damaged (blue circle).
Alignment of arrows representing individual compounds towards a

Oviposition Preference

Female H. zea moths exhibited a significant preference
for plants of BB throughout the experiment (F=263.1,
df=2, P<0.001) (Fig. 7), suggesting that plants of the
other two genotypes were less favorable for the female
moths. There was a significant difference in the number
of eggs laid on each plant genotype. BB, on average,
received a significantly higher number of eggs (21.4
eggs/plant), followed by MWC (11.0 eggs/plant) and
LA 2093 (10.2 eggs/plant).

O o e e e i e i s i ¥ s e e e T

principal component (either PC1 or PC2) indicates a strong association
towards that component. The length of an arrow represents how well the
parameter explains the distribution of the data. Color indicate the contri-
bution of a variable in explaining the variation in principle component.
The darker the color the more significant role a variable plays in
explaining variation. Due to a high similarity of volatile profile of un-
damaged control from different genotypes in fig (a), all symbol for control
are overlapped. The location is indicated by the symbol for mean coordi-
nate of LA 2093 Control (filled square)

Discussion

This study provides evidence that the selection and breeding
process that produced modern commercial tomato varieties also
reorganized their defense strategy as demonstrated by a shift
from constitutive to inducible chemical defenses as well as
concomitant fitness changes in an herbivore. While this study
focuses on a association among primitive to modern tomato
genotypes and a single herbivore, it is illustrative of the varia-
tion available in a single plant genus. Among the genotypes
examined in the present study, the cultivated tomato (BB) had
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Fig. 6 (continued)

proportionately higher levels of inducible chemical defenses
whereas the cherry tomato (MWC) and the wild tomato acces-
sion (LA 2093) had higher levels of constitutive chemical de-
fenses. Undamaged leaves of the cultivated tomato had higher
densities of constitutive trichomes, and post herbivory they
produced more glandular and non-glandular trichomes, than
the two other genotypes. Herbivore performance was poorer
on undamaged wild tomato species, but once damaged by her-
bivory, the cultivated tomato suppressed herbivore performance
to a greater degree. While all tomato genotypes demonstrated
increased VOC emissions in response to herbivory, the culti-
vated type responded with higher levels of VOCs. Differences
in VOC patterns may have influenced the ovipositional prefer-
ence of H. zea for Better Boy.

The wild tomato genotype (LA 2093) had a proportionately
higher level of constitutive defensive chemicals compared
with inducible chemicals. Higher levels of total phenolics
and TPI, but reduced concentrations of PPO, were recorded
in undamaged leaves of LA 2093 and MWC, compared with

@ Springer

the cultivated variety BB. Notably, the inducibility of all three
defensive chemicals was lowest in LA 2093 upon herbivore
feeding. The cultivated variety BB, in contrast, demonstrated
a low constitutive amount of both phenolics and TPI, but a
higher concentration of PPO. This corresponds with previous
reports suggesting that domesticated crops have reduced con-
stitutive defense levels compared to their wild relatives
(Turcotte et al. 2014; Moreira et al. 2018; Whitehead et al.
2017). Further, the low inducibility in MWC and LA 2093
was comparable to that observed in cranberry, where a very
weak induction of phenolics was found in wild populations
(Rodriguez-Saona et al. 2011). Selective breeding that priori-
tizes yield and desirable traits such as fruit quality during the
process of domestication often results in an inadvertent selec-
tion against plant defenses, including reduced constitutive
chemical defenses in domesticated species (Herms and
Mattson 1992; Mirnezhad et al. 2010; Whitehead et al. 2017).

The cultivated tomato BB exhibited significantly higher in-
ducibility for all three defensive chemicals, TPI, PPO and TPC.
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Fig. 7 Oviposition preference of
H. zea female moths on three A
different tomato genotypes,
Solanum lycopercicum cv. Better 30
Boy (BB), Solanum lycopersicum
var. cerasiforme (Matts Wild 25

Cherry MWC)), and Solanum A%
pimpinellifolium (LA 2093)
calculated by counting number of
eggs in plants for three
consecutive days (Day I, II and
IIT). Bars are mean = SEM, and
means with different letters are
statistically different as
determined by a Tukey HSD
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While this response is largely consistent with the findings by
Kempel et al. (2011) and Brzozowski et al. (2019), it contrasts
with results of investigations by as Gols et al. (2008) and
Moreira et al. (2018); in the latter studies no significant induc-
tion of glucosinolates was found in either the wild or cultivated
cabbage against Diamond back moth (Plutella xylostella) and
Cabbage butterfly (Pieris brassicae). The contradictory finding
in cabbage might be due to the narrow scope of the assessment,
where only a single defensive compound was considered. Plants
tend to utilize multiple defense mechanisms to resist attacks by
foreign invaders (Agrawal and Fishbein 2006; Kempel et al.
2011). Furthermore, the cabbage herbivores were specialists,
whereas the herbivore used in the present study was a generalist.
In general, plant responses to insect herbivores with a common
evolutionary history is different from responses to those without
a shared evolutionary relationship (Lankau 2007; Desurmont
et al. 2011; Danner et al. 2018).

Contrary to the patterns of inducible chemical defenses, the
cultivated tomato (BB) had significantly higher levels of consti-
tutive leaf trichomes, both glandular and non-glandular, com-
pared to MWC and LA 2093. While our results were congruent
to those of Bellota et al. (2013), they were in contrast with
findings of several other studies (e.g Turcotte et al. 2014; Chen
etal. 2015; Mo et al. 2016), where trichome density was reduced
in the cultivated species. This contradiction may be a cultivar-
specific phenomenon, as we only used one cultivated genotype,
or may have some broader trend that needs to be studied further.

In the present study, a higher inducibility of both glandular
and non-glandular trichomes was observed in the cultivated
species following herbivore damage. Wounding and/or herbi-
vore feeding generally would activate jasmonic acid (JA) path-
way. Besides the expression of defensive genes (e.g protease
inhibitors), JA is also known to induce trichome formation,
especially glandular trichomes (Traw and Bergelson 2003;

Boughton et al. 2005). While induction of leaf trichomes in
response to herbivores is well documented in the cultivated
tomato (Peiffer et al. 2009; Tian et al. 2012), studies comparing
inducibility of leaf trichomes in the domesticated as well as wild
genotypes are limited. Additionally, insects not only influence
trichome densities but also the allelochemicals produced by
them, which can affect performance of both herbivores and their
natural enemies (Escobar-Bravo et al. 2017).

As to the impacts on the herbivore, undamaged leaves from
the MWC and LA 2093 were less suitable for the growth of
H. zea larvae than the leaves from BB. This is in general accor-
dance with several previous similar studies (Meyer et al. 2012;
Whitehead et al. 2017). Rosenthal and Dirzo (1997) also report-
ed that cultivated maize is less resistant to insects compared to
wild relatives (teosintes), which is a indicative of a tradeoff be-
tween productivity and defense. A higher concentration of phe-
nolics and TPI in wild relatives may provide a plausible mech-
anism for higher resistance against H. zea larvae. For instance,
various reports have suggested a strong growth inhibition with
phenolics and TPI against caterpillars (Felton et al. 1989; Duffey
and Stout 1996; Lawrence and Koundal 2002). Surprisingly,
higher densities of trichomes in BB failed to affect herbivore
growth. While a limited number of studies have demonstrated
direct resistance against caterpillars (e.g. Kariyat et al. 2018), leaf
trichomes in tomatoes, by and large, have been found to offer
resistance against small insects such as whiteflies (Bleeker et al.
2009; Firdaus et al. 2012), leathoppers (Dellinger et al. 2006;
Kaplan et al. 2009) and mites (Maluf et al. 2001).

Interestingly, there was a significant reduction in larval
growth when they fed on damaged leaves from BB.
Reduced growth rates of H. zea on damaged BB leaves were
correlated with increased accumulations of PPO and TPI in
the leaf tissues. This reveals that the cultivated tomato BB
exhibits higher levels of resistance once attacked, which
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negatively influences herbivore performance. Kempel et al.
(2011) and Haak et al. (2014) reported similar correlations,
whereas others have reported a reduction in plants’ resistance
in cultivated crops (Harvey et al. 2011; Moreira et al. 2018).
While a strong effect of inducible chemical defenses in BB
suggests an important role of inducibility in the cultivated
tomato (BB), it makes a relatively weak contribution in LA
2093 and MWC in response to herbivore damage suggesting
an increased reliance on constitutive resistance in the cherry
tomato and wild accession. Induced defenses are less costly
and increases the variability of plants response to herbivores
(Karban and Myers 1989; Karban and Baldwin 1997).
Therefore, cultivated varieties like BB may benefit with a high
level of inducibility as the additional resources could be
diverted to growth and reproduction. In contrast, high invest-
ments in constitutive defenses seems appropriate in wild ge-
notypes which are exposed to a constant and high pressure
from herbivores (Karban 2011; Bixenmann et al. 2016).

The analysis of volatile profiles revealed that herbivore
feeding elicited increased levels of VOCs in all three geno-
types, although the overall emissions differed quantitatively.
The cultivated variety BB demonstrated greater inducibility of
volatile emission in comparison to the cherry and wild tomato
genotypes (MWC and LA 2093). This result is consistent with
a recent meta-analysis that reported a comparatively higher
level of herbivore-induced volatile emission in commercial
varieties than their wild relatives (Rowen and Kaplan 2016).
Terpenes, the most abundant group of compounds in the pres-
ent study, play a major role in plant defenses that are mostly
secreted by glandular trichomes (Kang et al. 2010; Bleeker
et al. 2012). A higher density of glandular trichomes in BB,
therefore, could possibly explain the enhanced level of vola-
tile compounds in comparison with the two wild genotypes
(Spyropoulou et al. 2014; Chen et al. 2018).

The most abundant VOCs in damaged BB and MWC leaves
were (3-phellandrene, 2-carene, o-terpinene and cymene,
whereas limonene and 2-carene dominated in LA 2093.
Interestingly, 3-phellandrene and cymene were only detected
from the leaves of BB and MWC, whereas limonene was found
exclusively in LA 2093. In similar studies with several domes-
ticated tomatoes, 3-phellandrene, 2-carene, x-terpinene and
cymene were found as the major contributors to the volatile
blend (Raghava et al. 2009; Bleeker et al. 2009). Limonene
has also been previously reported in the wild tomato relatives
(Bleeker et al. 2012). Overall, the results suggest that volatile
compositions are influenced by domestication and selective
breeding (Kariyat et al. 2012).

In the oviposition assay, H. zea females preferred the cul-
tivated BB variety over the cherry and wild tomato genotypes.
The volatile blend emitted by LA 2093, especially the large
contribution of limonene to the blend, may partly explain the
low preference of H. zea female moths for this tomato species.
Limonene can have a strong repellent effect on various insect
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pests (Li et al. 2014; Afifi et al. 2015; Zarrad et al. 2017). A
recent study on tomato with another herbivore, Manduca
sexta, suggested a similar trend where female moths preferred
laying eggs on cultivated rather than the wild or landrace
tomatoes (Li et al. 2018). Similar results were observed by
McDaniel et al. (2016), where whiteflies preferred laying eggs
on the cultivated tomato, when compared with the wild tomato
species S. pimpinellifolium. However, there was no noticeable
effect of a higher volatile level in BB on herbivore perfor-
mance and preference, as described by previous studies
(Paré and Tumlinson 1999; McCallum et al. 2011). In addition
to influencing herbivore performance and preference, plant
volatiles play a key role in recruitment of predators and para-
sitoids (Silva et al. 2018; Turlings and Erb 2018). Considering
the minimal effect of higher volatile emissions from BB on
insect performance and preference, we speculate that those
induced volatiles may play an important role in attraction of
natural enemies (Walling 2000; Heil et al. 2001).

Higher trichome densities in BB did not affect H. zea growth
and ovipositional preference, which is contrary to findings of
previous studies where trichomes affected performance and
preference of herbivores (Horgan et al. 2009; Kessler and
Baldwin 2002). However, Tian et al. (2012) observed similar
results to ours, when studied tomato resistance to H. zea and
Colorado potato beetle, Leptinotarsa decemlineata. These con-
trasting results may suggest that the effect of trichomes on ovi-
position and herbivore performance is variable and depends on
both insect and plant genotypes used. It should be noted, how-
ever, that trichomes also offer other benefits to the plant, includ-
ing reflectance, energy balance, ultraviolet protection, drought
resistance and gas exchange (Xiao et al. 2017).

Overall, the findings from the present study indicated an
enhanced inducibility of defensive chemicals, trichomes and
herbivore induced volatiles in cultivated tomato variety BB
compared to the other two accessions. This is important as
induced plant defenses are economical, flexible and avoid
resource allocation to defense production when herbivores
are not present (Agrawal 2000). Although the cherry and wild
tomato genotypes were more resistant against the herbivore, a
higher induced resistance in cultivated tomato is notable and
suggests that priming defenses should be further examined in
both the wild and cultivated genotypes (Kim and Felton
2013). Inducibility of plant defenses could be exploited as a
component of sustainable crop production by either using de-
fense elicitors (Paudel et al. 2014; Strapasson et al. 2014) or
through plant breeding approaches (Ahman 2009).

The herbivore H. zea exhibited reduced growth and prefer-
ence on the cherry and wild genotypes, MWC and LA 2093.
Identification and characterization of specific genetic traits in
these genotypes to deter herbivore could be useful for host re-
sistance breeding purposes (Trapero et al. 2016). Bleeker et al.
(2012), for example, successfully developed tomato plants that
produced 7-epizingiberene, originally discovered in
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S. habrochaites, and demonstrated an enhanced level of host
resistance against insect pests. Introgression of trichome-based
resistance traits from wild tomato S. pimpinellifolium to the
cultivated tomato resulted in an increased type-IV trichomes
following methyl jasmonate (MeJA) treatment, leading to a de-
creased whitefly incidence (Escobar-Bravo et al. 2016).

This study demonstrated some of the benefits of comparing
wild and cultivated genotypes for insect resistance, suggesting
potential exploitation of plant-defensive traits against insect
herbivore in breeding programs. Because of global climate
change, crop losses from insect pests are expected to rise
(Deutsch et al. 2018); therefore, identification, characteriza-
tion and utilization of variation in plant-defensive traits may
contribute to the sustainability of crop protection. Further
studies, including a broader array of host genotypes and addi-
tional defensive traits such as glycoalkaloids, are necessary to
bolster the results and conclusions drawn from this study.
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