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ABSTRACT  16 

Accelerating shifts in global climate have focused the attention of ecologists and physiologists on 17 

extreme environmental events. However, the dynamic process of physiological acclimatization 18 

complicates study of these events' consequences. Depending on the range of plasticity and the 19 

amplitude and speed of environmental variation, physiology can be either in tune with the surroundings 20 

or dangerously out of synch. We implement a modified quantitative approach to identifying extreme 21 
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events in environmental records, proposing that organisms are stressed by deviations of the 22 

environment from the current level of acclimatization, rather than by the environment’s absolute state. 23 

This approach facilitates an unambiguous null model for the consequences of environmental variation, 24 

identifying a unique subset of events as 'extremes.' Specifically, it allows one to examine how both the 25 

temporal extent (the acclimatization window) and type of an environmental signal affect the magnitude 26 

and timing of extreme environmental events. For example, if physiology responds to the moving average 27 

of past conditions, a longer acclimatization window generally results in greater imposed stress. If instead 28 

physiology responds to historical maxima, longer acclimatization windows reduce imposed stress, albeit 29 

perhaps at greater constitutive cost. This approach should be further informed and tested with empirical 30 

experiments addressing the history-dependent nature of acclimatization.  31 

  32 
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INTRODUCTION 33 

In light of ongoing dramatic shifts in global climate, extreme environmental events have become a focus 34 

for ecologists and environmental physiologists [1-9]. However, study of the biological consequences of 35 

these events is hampered by complexities inherent in the dynamic interaction between organism and 36 

environment. These complexities include physiological acclimatization, the process by which organisms 37 

adjust their physiology to maintain function under prevailing environmental conditions. This 38 

acclimatization takes time [e.g., 10]—in a temporally variable world, physiology is often chasing the 39 

environment. Depending on the range of an organism’s physiological plasticity (which can be small or 40 

large), the environmental signal(s) to which an organism responds (which could incorporate many 41 

aspects of temporal variation), and the amplitude and speed of environmental fluctuations (which vary 42 

drastically among habitats), an organism’s physiology can be well adjusted to potential stressors or 43 

dangerously out of synch. Thus, our ability to predict extreme events and their consequences hinges not 44 

only on our ability to predict changes in the physical environment but also on our understanding of the 45 

complex temporal mechanics of acclimatization [6, 8]. 46 

At present, this understanding is woefully incomplete. For example, experimental studies of acclimation 47 

(the laboratory analog of acclimatization) typically measure an organism’s physiological response to a 48 

step change to a new constant environment, such as  the change in thermal tolerance caused by moving 49 

from a constant low temperature to a constant higher temperature [11, 12]. Although such experiments 50 

provide useful demonstrations of the degree of physiological plasticity, it is difficult to translate their 51 

results to nature, where environments vary continuously. A next step toward disentangling the 52 

interactions between environment and physiology might be to obtain paired time series of a pertinent 53 

environmental factor and simultaneous physiological capacity; e.g., a year-long record of water 54 

temperature and the co-occurring thermal limits of an aquatic organism. From these paired records, 55 
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time-series analysis [13] could identify pertinent aspects of thermal history that affect the 56 

acclimatization of thermal tolerance. For instance, an organism’s current level of acclimatization might 57 

be correlated with the average daily maximum temperature encountered in the preceding three days. 58 

One could then predict how a shift in environmental variability would affect the likelihood of the 59 

organism exceeding its thermal limits. Furthermore, this knowledge would allow one to more efficiently 60 

address the physiological mechanisms underlying acclimatization (e.g., production of heat-shock 61 

proteins, shifts in membrane fluidity)[14] by focusing the design of future experiments. However, to our 62 

knowledge, there are few, if any, available time series pairing high-frequency measurements of 63 

physiological limits with environmental records. Existing physiological time series are typically restricted 64 

to either short durations or infrequent (~monthly) sampling [15, 16]. The reasons for this are largely 65 

logistical. For instance, measuring a species’ thermal limits requires killing many organisms; a lengthy 66 

time series of such measurements in any single population would be impractical, if not unethical.   67 

The current paucity of physiological time series does not preclude theoretical exploration of how 68 

acclimatization could affect the magnitude and likelihood of stressful events. To that end, in this 69 

exploration we:  70 

1. Identify several potential environmental signals to which physiology might acclimatize,  71 

2. Use environmental time-series from representative habitats to analyze how the temporal 72 

extent of each environmental signal affects the magnitude and frequency of stressful 73 

events, 74 

3. Discuss physiological studies that are needed to further clarify the relationship between 75 

environmental variation and physiological acclimatization.  76 

We couch our discussion in the context of elevated body temperature and its relationship with 77 

organismal physiology, a choice driven by three considerations. (1) Concerns over global change give 78 
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issues of temperature variation unusual and immediate importance. (2) Unlike other environmental 79 

factors (e.g., salinity, pH, oxygen concentration), the biological effects of temperature change are nearly 80 

universal [17]; thus, any conclusions likely apply across taxa. (3) Long-term temperature records are 81 

readily available.   82 

We make a simplifying assumption regarding the physiological consequences of environmental 83 

variation: that the stress placed on an organism scales, perhaps nonlinearly, with the difference 84 

between the current state of acclimatization (that is, what the organism’s physiology 'expects') and what 85 

the environment imposes. This deviation-based index of environmental stress is both easily quantified 86 

and intuitive. For example, if, based on recent experience or endogenous rhythms, an organism has 87 

acclimatized to a winter temperature of 10°C, sudden imposition of 25°C (a 15°C deviation) could be 88 

stressful. For the same organism acclimatized in summer to 20°C, imposition of 25°C (a mere 5°C 89 

deviation) would likely be benign.  90 

We acknowledge that this simple, deviation-based characterization of stress does not consider all 91 

potential aspects of the complex physiology involved in organism/environment interactions. For 92 

example, instead of (or in addition to) the magnitude of deviation, the acute rate of environmental 93 

change during a stressful event might be important [18, 19]. It is also possible that the same magnitude 94 

of deviation might have different consequences in different seasons. These aspects could be integrated 95 

in the future, but here we concentrate solely on the magnitude of deviation.   96 

This idea of extremes as local 'anomalies' or 'pulses' against a  background that is itself dynamic has 97 

recently received attention [3, 20, 21]. However, this approach is far from universal, and studies often 98 

do not account for acclimatization. For example, even recent studies of extreme temperatures address 99 

only the highest values within one season [e.g., 9]. We suggest that the deviation-based method 100 
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represents an improved, unambiguous null model for the degree of physiological stress experienced by 101 

organisms inhabiting realistically dynamic environments.  102 

Environmental signals for acclimatization 103 

Our first task is to identify aspects of the environment ('signals') to which physiology might respond to 104 

maintain organismal performance. Here, we evaluate four of many possible indices that plausibly could 105 

serve as environmental signals in the context of thermal physiology:  106 

(1) the average temperature, the moving, weighted average of all temperatures encountered 107 

over some recent time interval: the acclimatization window; 108 

(2) the average daily maximum (or minimum) temperature, the moving, weighted average of 109 

daily maxima (or minima) over the window;  110 

(3) the absolute maximum (or minimum) temperature, the single highest (or lowest) value 111 

encountered over the window;  112 

(4) the historic periodic temperature, the temperature 'expected' by an organism’s physiology 113 

for predictable, periodic fluctuations based on information from previous experience or 114 

inherited from prior generations. For example, if endogenous rhythms tell an organism that air 115 

temperature fluctuates sinusoidally with a 365-day period, it can prepare its physiology 116 

accordingly. (Note that this mechanism provides a means to remove the lag between 117 

environmental change and acclimatization intrinsic to the first three indices.) 118 

 119 

It is possible that different traits respond to different environmental signals [22], or that other indices 120 

(and combinations of indices) could inform physiology, but these four provide a broad set of heuristic 121 

examples.  122 
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Here, we model the adjustment of physiology to prevailing environmental conditions via acclimatization 123 

as a continuous process; we assume that physiology is constantly updated based on the most recent 124 

index value. For example, if the signal is the average temperature in a 7-day acclimatization window, we 125 

assume that, at any given time, the organism is as adjusted as its physiology allows to the previous 7 126 

days. Note that this assumption does not imply that physiology is necessarily adjusted to the current 127 

temperature. For instance, during a period of continuous temperature increase, physiology will be 128 

acclimatized to a temperature cooler than that the organism currently experiences.   129 

To calculate the average-temperature index, we use a moving, locally-weighted smoothing algorithm (a 130 

modified LOWESS regression) [23] (Figure 1). Given a time-series of environmental temperature data 131 

(e.g., hourly air temperature), a weighted linear regression is fitted to the data within an acclimatization 132 

window of n temperatures preceding and including the current time point. [By contrast, the standard 133 

LOWESS approach uses a window extending in both directions from the current point.] The weight given 134 

to each temperature in the window declines for temperatures farther in the past, thus implementing an 135 

implicit assumption that physiology is most influenced by the most recent conditions (we return to this 136 

assumption in the Discussion). The value of the weighted regression at the current time is then taken as 137 

the expected (acclimatized) temperature. This retrospective calculation can be repeated for all points in 138 

the time-series except for the initial n-1 points. 139 

Indices 2 and 3 are then estimated for the same acclimatization window. To calculate the average daily 140 

maximum temperature index, we reapply the locally weighted algorithm using only the daily maxima in 141 

the acclimatization window preceding, but not including, the present day (today's maximum is not yet 142 

known). For the absolute-maximum temperature index, we simply record the highest temperature in 143 

the acclimatization window preceding, but not including, the present.  144 
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To estimate the historic periodic temperature index, we average temperatures at each given time in a 145 

year across all years of the environmental time series. For example, for a 20-year time series, we 146 

average all 20 measurements of the temperature at 8:40 am on March 23 to generate the index for that 147 

date and time in any year. This procedure captures both circadian and annual temperature fluctuations, 148 

but it smooths over tidal fluctuations, whose lunar period aligns with neither the solar calendar nor the 149 

24-h clock.  150 

The acclimatization window—which incorporates both the interval over which the environment is 151 

monitored and the time allowed for physiological adjustment—could vary from extremely short cycles 152 

[e.g., tidal cycles, 24, 25] to diel oscillations [26] to annual cycles or perhaps even longer periods [27]. 153 

Our analyses address this potential diversity by repeating the calculations above using acclimatization 154 

windows from 4 hours to 1 year. To calculate temperature deviations for a given signal index and 155 

acclimatization window, we subtract the time series of expected/acclimatized temperatures from the 156 

corresponding time series of measured values. These results allow us to dissect the effect of 157 

acclimatization-window duration on the resulting distribution of temperature deviations, and thereby 158 

on the proposed degree of physiological stress. The acclimatization window acts as a low-pass filter; the 159 

longer the window, the less sensitive a signal is to high-frequency thermal variation and the rate of 160 

temperature change. As a result, the magnitude of deviations depends on both acclimatization-window 161 

length (the strength of the low-pass filter) and frequency-dependent variation in the thermal 162 

environment. 163 

Definitions: ‘extreme’ versus ‘threshold-exceeding’ 164 

Given a time series of thermal deviations, our next task is to identify the subset of deviations that are 165 

potentially of physiological, ecological, and evolutionary interest. However, we must first deal with a 166 
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semantic issue. Typically, these events are referred to as ‘extreme,’ and we have used this term 167 

informally above. However, dictionary definitions of ‘extreme’ encapsulate two distinct ideas: 168 

1. An event is extreme if it is both rare and far from the average. This statistical definition refers to 169 

the low-probability events in a distribution’s tails. For example, one might reasonably propose 170 

that, to be extreme, a high-temperature event must fall within the highest x% of all 171 

measurements, where x is small [e.g., 9].  172 

2. Alternatively, an event is extreme if it exceeds prescribed bounds. In a biological context, this 173 

refers to events that exceed some functional threshold (e.g., the critical thermal maximum) and, 174 

therefore, have deleterious consequences. For example, Gutschick and BassiriRad [4] defined 175 

extremes as events that exceed an organism’s acclimatory capacity.  176 

The same concepts apply to values in the lower tail of a distribution or values that fall below some lower 177 

critical threshold (e.g., temperatures below the freezing point). Biologists have struggled to reconcile 178 

these two components—statistical rarity and biological consequences—into utilitarian definitions of an 179 

extreme event [1, 4, 28-30].   180 

To avoid confusion, henceforth we refer to events that satisfy Definition 1 as extreme, and those that 181 

exceed a functional threshold—and, therefore, satisfy Definition 2—as threshold-exceeding. The 182 

distinction is useful because a given event need not satisfy both definitions: events that are rare may not 183 

have functional consequences, while events that exceed a given threshold might not be rare. For 184 

example, limited plasticity of upper thermal-tolerance thresholds, observed in many ectotherms [12], 185 

implies absolute constraints on physiological limits. Consequently, the warmest temperatures in a 186 

particularly warm spell of a warm year could exceed thermal tolerance thresholds without falling in the 187 

uppermost percentiles of deviations from expected. The distinct terms threshold-exceeding and 188 

extreme allow clear discussion of such circumstances.  189 
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In the analyses below, we focus on the delineation of extreme and threshold-exceeding events from 190 

environmental datasets. Using Definition 1, we (arbitrarily) define extreme events as those lying in the 191 

top 5% of a distribution, whether that distribution is the raw distribution of temperatures (raw 192 

extremes) or the distribution of deviations (deviation extremes); the Supplement includes results for 193 

other percentiles. In some scenarios physiologists have identified seasonal or otherwise appropriate 194 

absolute-temperature thresholds [e.g., 10, 31], but we are unaware of comparable deviation-based 195 

biological threshold estimates. To identify threshold-exceeding deviations from acclimatized 196 

temperature using Definition 2, we explore the consequences of setting a range of threshold values. We 197 

systematically examine patterns of extreme and threshold-exceeding events when the 198 

percentile/threshold, the environmental signal, and the length of the acclimatization window change.  199 

 200 

Temperature datasets 201 

To illustrate the resulting patterns, we employ three representative time series, with a focus on 202 

environments for which it is reasonable to assume that operative body temperatures of organisms 203 

follow recorded environmental patterns (for details of each record, see Supplemental Table 1):  204 

1.  A 29-year record of air temperature at an arctic field site, recorded hourly [32]; 205 

2. An 18-year record of mid-latitude desert soil temperature, recorded hourly at a depth of 20 206 

cm [33]; 207 

3. A 7-year record of near-shore tropical ocean temperature, recorded every half hour [34].  208 

With few exceptions [e.g., some corals; 35] aquatic ectotherms’ body temperatures reliably mirror the 209 

temperature of the surrounding liquid medium [36]. Similarly, body temperatures of small, soil-dwelling 210 

organisms likely equal habitat temperature. By contrast, above-ground terrestrial ectotherms’ body 211 

temperatures can be heavily influenced by other biophysical factors (e.g., solar irradiance, evaporation), 212 
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physiological processes (e.g., heat generation), body size [37], and/or behavioral thermoregulation [12, 213 

38], leading to large differences between body and air temperatures [36]. Therefore, our record of arctic 214 

air temperature approximates that of a hypothetical small ectotherm in a shaded habitat. 215 

The distributions of raw habitat temperatures vary in shape across these datasets (Figure 2, insets); 216 

none is normally distributed as is often modeled [39]. The tropical-sea distribution is left-skewed, the 217 

arctic-air distribution is relatively flat topped, and the desert-soil distribution is bimodal. 218 

RESULTS 219 

Expectations matter: The magnitude of extremes and frequency of threshold-exceeding events 220 

depend on the environmental signal and length of the acclimatization window 221 

The average magnitude of extreme deviations is sensitive to acclimatization-window length, but the 222 

pattern of sensitivity differs dramatically depending on the acclimatization signal. For the average-223 

temperature and average-daily-maximum temperature signals, longer acclimatization windows generate 224 

smoother, less variable time-series of physiological expectations. Consequently, the magnitude of 225 

deviations tends to increase as the window lengthens, particularly in the desert-soil and arctic-air 226 

datasets (Figure 3A for top 5% of deviations; Supplemental Figure 1A,B,F,G for a range of percentiles). In 227 

other words, if organisms in these habitats adjust in response to a moving average, longer 228 

acclimatization windows result in greater imposed stress. Physiological lags, most likely acting in concert 229 

with excessive energetic costs, prohibit near-instantaneous acclimatization [40]. Nonetheless, if 230 

organisms in these habitats respond to some moving average of environmental conditions, they should 231 

minimize the length of the acclimatization window; otherwise, they risk being physiologically under-232 

prepared for the next extreme elevated temperature. This pattern is, however, not universal. In the 233 

tropical-seawater dataset, the mean magnitude of extreme deviations is maximal at an intermediate 234 
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acclimatization window and is much less sensitive overall to changes in the acclimatization window (Fig. 235 

3A; Supplemental Figure 1K,L).  236 

In contrast to moving-average signals, if the organism adjusts its physiology in response to the absolute-237 

maximum-temperature signal, longer acclimatization windows result in extremes with decreasing mean 238 

deviations for all three datasets (Figure 3B for top 5% of deviations; Supplemental Figure 1D,I,N for a 239 

range of percentiles). The longer the acclimatization window, the greater the likelihood that one of the 240 

few highest values in the overall distribution will be encountered. Consequently, for long acclimatization 241 

windows nearly all experienced temperatures are lower than the temperature to which the organism is 242 

acclimatized, and the average of extreme deviations becomes increasingly negative (Figure 3B). Thus, 243 

organisms that acclimatize to long-term absolute maximum temperatures are physiologically adjusted to 244 

higher temperatures than they are likely to soon encounter. This conservative strategy might backfire if 245 

costs of thermal defenses are high [41], and over-preparation could influence life-history tradeoffs or 246 

related biological phenomena [42]. However, it is not uncommon to find organisms with median 247 

thermal tolerances above mean annual maximum temperatures [e.g., 41, 43], perhaps suggesting that 248 

costs of thermal defenses are not always substantial.  249 

Endogenous programming of responses to periodic temperature changes does not necessarily decrease 250 

the magnitude of extreme deviations. For short acclimatization windows (less than approximately 25-30 251 

days), in the desert-soil and artic-air datasets mean extreme deviations from the historic periodic signal 252 

(dashed lines in Figure 3A) are larger than those from the average-temperature signal. However, this 253 

pattern reverses at longer acclimatization windows. In other words, historic knowledge would reduce 254 

the intensity of extremes encountered in these two habitats only if the only other option were to 255 

respond to a relatively long-term moving average. Over timescales of a few weeks, historic knowledge of 256 

periodicity is—somewhat counterintuitively—not beneficial. The picture is again different for tropical-257 
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ocean temperatures, for which deviations from moving average signals are always less than those from 258 

the historic periodic signal. This is likely due to variation in this dataset being driven more by episodic 259 

upwelling of cold water and by tidal rhythms than by diel or annual oscillations (Supplemental Figure 2). 260 

In sum, the utility of knowledge of environmental periodicity depends on the predictability with which 261 

the environment fluctuates.  262 

In order to integrate temporal acclimatization with Definition 2 for threshold-exceeding events, we 263 

selected a range of deviation magnitudes that might serve as a biological threshold in each dataset. For 264 

a given threshold deviation and window length, acclimatizing to the average daily maximum 265 

temperature always results in fewer threshold-exceeding events than acclimatizing to the average 266 

temperature index (Figure 4A; Supplemental Figure 3A,B,E,F,I,J). While the frequency of threshold-267 

exceeding events rises monotonically in the arctic air and desert soil datasets for these two indices, as 268 

before the tropical-seawater dataset is unique. It exhibits local maxima in the frequency of threshold-269 

exceeding events at an intermediate window length (Supplemental Figure 3I,J). Using the absolute-270 

maximum-temperature index, the longer the acclimatization window the fewer events cross a given 271 

threshold deviation (Figure 4B; Supplemental Figure 3C,G,K; Supplemental Figure 4C,G,K). Knowledge of 272 

historic periodic temperature reduces the number of threshold-exceeding events per year relative to the 273 

moving average indices for the arctic-air and desert-soil datasets, but only for long acclimatization 274 

windows (Figure 4A; Supplemental Figure 3); such historic knowledge is never advantageous relative to 275 

any length window for tropical-sea temperatures (Supplemental Figure 3L). As above for the magnitude 276 

of deviation extremes, the historic periodic temperature acclimatization strategy is advantageous in 277 

some habitats only if organisms are otherwise restricted to lengthy acclimatization windows.  278 

 279 
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The temperatures of threshold-exceeding events and extremes need not fall in the tails of a raw 280 

distribution 281 

Many temperatures that would be considered mundane in the distribution of raw values nonetheless 282 

represent substantial deviations from what an organism expects based on its thermal history (Figure 283 

2B,D,F). For example, only temperatures above 14.3°C fall in the top 5% of the raw temperature 284 

distribution for the arctic-air dataset, whereas a temperature as low as -33.3°C (only the 6th percentile 285 

of the raw data) qualifies as a warm deviation extreme with a 7-d acclimatization window. This context-286 

dependency of an extreme represents perhaps the greatest advantage of defining such events based on 287 

deviations from the expected, while also presenting a formidable challenge in identifying the 288 

appropriate length of acclimatization window for any given organism (see below).  289 

There is negligible overlap between measurements identified as deviation extremes and those that 290 

would be considered raw extremes (see red points in Figure 2). This degree of overlap increases as the 291 

acclimatization window increases in length, but it rarely exceeds 50% even with windows of up to one 292 

year (Supplemental Figure 5). At the limit, with exceedingly long windows, deviation extremes will 293 

converge on raw extremes. However, such long acclimatization windows are likely to be rare in nature; 294 

many organisms live less than a year, and a litany of studies across many taxa have documented short-295 

term plasticity of thermal physiology  [reviewed elsewhere, e.g., 12, 39].  296 

DISCUSSION 297 

Challenges for the context-dependent approach  298 

One advantage of this context-dependent, quantitative approach is that it makes concrete, testable 299 

predictions. Some of these are counterintuitive. For example, it will now be incumbent upon 300 

physiologists who study overwintering to ascertain whether sudden deviation to a warmer temperature, 301 
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still well below the freezing point, can induce the same sorts of cellular perturbations (e.g., of 302 

membrane or enzyme structure) that accompany 'canonical' heat stress [14].  303 

There are at least three challenges that must be overcome to take full advantage of this context-304 

dependent approach to extreme and threshold-exceeding events. First, further empirical work is needed 305 

to delineate the signals organisms use to set environmental expectations. Progress in this respect has 306 

been hampered by physiologists' experimental designs, which only rarely have included realistic 307 

temporal patterns of environmental variation [e.g., 44, 45]. The optimal signal likely varies considerably 308 

among habitats (in our analyses tropical seawater consistently exhibits unique patterns) and among 309 

organisms, depending at least in part on the relative contributions of physiology (acclimatization 310 

capacity) and behavior (ability to modulate environmental exposure) [12]. Although beyond the scope of 311 

this contribution, a synthetic analysis of the timescales of acclimatization in organisms from a variety of 312 

habitats exhibiting different spectral qualities of temperature variation would be very informative. In 313 

such an analysis, the suite of possible signals identified here could function as null models, yielding 314 

testable predictions regarding the magnitude and frequency of stressful events under alternative 315 

acclimatization strategies.  316 

A second potential challenge involves the length and sampling frequency of the environmental time 317 

series itself. If stressful events occur randomly in time, as they often do [7], the longer the time over 318 

which the distribution of events is measured, the more extreme are the raw values encountered [a 319 

fundamental conclusion of Extreme Value Theory; 46]. Thus, even in the absence of climate warming, 320 

the highest temperatures encountered in a year typically are lower than the highest temperatures 321 

encountered in a decade. This issue poses a potential problem to the statistical delineation of 322 

extremes—the distribution of raw extreme values varies with the length of the environmental time 323 

series. However, preliminary assessment of artificially shortened versions of the datasets analyzed here 324 



16 
 

indicates that the mean and standard deviation of the magnitude of deviation extremes are relatively 325 

insensitive to the length of the time series (Supplemental Figure 6). This observation warrants further 326 

attention to examine its generality. In addition, sampling frequency must be sufficiently high [47]; to 327 

capture the rate of acute change during individual extreme events requires at least hourly sampling.    328 

A third challenge involves the under-explored role of carryover effects between repeated events that 329 

are separated by intervals of varying lengths. While much discussion in the climate-change biological 330 

literature focuses on changes in the frequency and intensity of extreme events in a warmer and more 331 

variable world [e.g., 2], these events are often treated as discrete, isolated incidents. However, as noted 332 

by Gutschik and BassiriRad [4], when environmental conditions exceed biological thresholds they impart 333 

a ‘legacy’ to an organism, modifying (at least temporarily) the manner in which it interacts with its 334 

environment. The duration of this legacy varies, and the underlying mechanisms might vary with 335 

duration [48]. At one end of the spectrum, hardening has effects that appear to dissipate after one or a 336 

few days [e.g., 49, 50]. Developmental plasticity, in which early experience irreversibly alters adult traits 337 

[51, 52], often takes considerably longer. Furthermore, while we may be tempted to conclude that what 338 

matters most for an organism is its experience during its lifetime, evolutionary processes, 339 

transgenerational effects of environmental experience, and possibly other mechanisms link organisms 340 

and environments across considerably longer time spans [14, 53, 54]. The simple approach we have 341 

taken here does not incorporate these carryover effects. For example, we implicitly—but 342 

unrealistically—assume that the physiological effect of a given magnitude of thermal deviation is the 343 

same before and after another threshold-exceeding or extreme event. Furthermore, for some 344 

organisms, the rate of acclimatization as temperatures rise is different from that as temperatures fall 345 

[11, 55]. These complexities demand greater empirical attention.  346 
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Given the likelihood of carryover effects [8], studies of threshold-exceeding and extreme environmental 347 

conditions must consider their temporal relationship to each other. In this regard, it is imperative not 348 

only to quantify (or forecast) the magnitude of extreme or threshold-exceeding events, but also to 349 

quantify distributions of the intensity of extremes (duration x magnitude) and inter-event intervals. 350 

These metrics are perhaps the most relevant to forecasting the biological consequences of climate 351 

change [2, 56]. For example, warm extreme and threshold-exceeding events tend to occur in clusters 352 

(heat waves). Heat waves already show signs of increasing frequency, which may have profound 353 

biological effects [21, 57-59].  354 

Along with a focus on the temporal distribution of extreme events must come experimental designs that 355 

mimic patterns that currently – or soon will – occur in nature and repeated measurements of the state 356 

of biological systems experiencing those patterns [6, 60]. We believe that physiologists must redouble 357 

their efforts to understand the contingent nature of thresholds [61], including their relationship with 358 

developmental or life-history transitions. In each of these experimental scenarios, physiologists will 359 

need to quantify shifts in critical thresholds, metabolic or developmental rates, and other indicators of 360 

functional impairment. A greater emphasis on sublethal thresholds should also provide valuable insight 361 

[e.g., 62]. Finally, nonlinearities in physiological (or ecological) rate functions could have profound 362 

impacts on the likelihood of exceeding functional thresholds [63], particularly in the likely event that 363 

those thresholds vary through time and/or among individuals. Much difficult work remains to be done in 364 

reconciling the concepts of extreme and threshold-exceeding in the context of thermal biology in 365 

nature.  366 

CONCLUSIONS 367 

When discussing the biological consequences of environmental fluctuations, and particularly when 368 

expounding on likely impacts of global change, biologists often assume that the intensity and frequency 369 
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of extreme events will increase in the future. A modified approach to delineating extreme and/or 370 

threshold-exceeding events from environmental records reveals that incorporating the dynamic process 371 

of acclimatization can fundamentally change the subset of environmental conditions that should be the 372 

focus of environmental physiologists and ecologists. This approach recognizes and attempts to 373 

incorporate the potentially complex, context-dependent interactions between organisms and their 374 

variable environments. It also offers unambiguous, testable predictions of the magnitude and frequency 375 

of stressful events from long-term environmental records. We hope and expect that, ultimately, a more 376 

comprehensive, mechanistic synthesis will emerge from empirical study of biological systems facing 377 

these extra-ordinary circumstances.  378 
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Figure 1.  543 

A modified approach to delineating stressful events in environmental records. Here, a hypothetical organism 544 

experiences a series of body temperatures (grey line; 1 week is depicted). Expected values at each time were 545 

generated using a retrospective LOWESS smoothing function on hourly data (average-temperature index in the 546 

text) with an acclimatization window of 7 days (dashed black line). Extremes can be defined as the largest 547 

deviations between the 'observed' and 'expected' conditions. Using this approach, the absolute warmest 548 

temperatures are not always extreme. For example, compare the length of the blue arrow (small deviation at high 549 

temperature) to that of the red arrow (large deviation at low temperature).  550 

  551 
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Figure 2.  552 

The distribution of extreme deviations from expected/acclimatized temperature varies across habitat 553 

types, and deviations identified as extreme represent a surprisingly broad range of absolute 554 

temperatures. A) Temperature extremes for the arctic air dataset, recorded at 1-h intervals (thin grey 555 

line). Expected values for each time were generated using the average-temperature index (dashed black 556 

line) with an acclimatization window of 7 d. Black circles, deviation extremes  (largest 5% of deviations 557 

from expected); open circles, raw extremes (largest 5% of raw values); red circles, extreme according to 558 

both criteria. The small, black scale bar in the upper left indicates one day. The inset shows one year of 559 

data from this location. B) Histograms illustrating the overall shape of the air temperature distribution 560 

(light grey background and inset) as well as the distributions of different varieties of extremes. White 561 

bars indicate raw extremes. Superimposed black bars indicate deviation extremes. C) and D) same as A) 562 

and B) but for mid-latitude desert soil at 1-h intervals. E) and F) same as A) and B) but for 0.5-h intervals 563 

in the tropical seawater dataset.  564 
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Figure 3.  568 

The magnitude of high-temperature deviation extremes varies among habitat types, and it is sensitive to 569 

the choice of acclimatization signal. A) The mean of the top 5% of deviations from expected values 570 

generated using the average temperature index for the three datasets. Deviations were calculated for 571 

acclimatization windows from 4 h to 1 yr. Horizontal, dashed lines indicate the mean extreme deviations 572 

using the historic periodic temperature index. B) The mean of deviation extremes generated using the 573 

absolute maximum temperature index, for acclimatization windows of 4 h to 1 yr. Note the difference in 574 

y-axis scales. Mean deviation extremes for other acclimatization signals and percentiles that could be 575 

used to define an extreme are found in Supplemental Figure 1.  576 
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Figure 4.  580 

The number of threshold-exceeding events per year in the arctic air dataset varies among 581 

acclimatization signals and as the acclimatization window increases in length. A) Events crossing a 582 

deviation-based threshold of 6.5, 8.5, or 10.5°C for the average temperature index (black) or the historic 583 

periodic temperature index (blue; independent of acclimatization window length). B) Events crossing a 584 

different set of thresholds for the absolute maximum temperature index (most deviations are negative 585 

for this index). Analogous plots for the desert soil and tropical seawater datasets are found in 586 

Supplemental Figures 3 and 4.  587 
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