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ABSTRACT

Accelerating shifts in global climate have focused the attention of ecologists and physiologists on
extreme environmental events. However, the dynamic process of physiological acclimatization
complicates study of these events' consequences. Depending on the range of plasticity and the
amplitude and speed of environmental variation, physiology can be either in tune with the surroundings
or dangerously out of synch. We implement a modified quantitative approach to identifying extreme
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events in environmental records, proposing that organisms are stressed by deviations of the
environment from the current level of acclimatization, rather than by the environment’s absolute state.
This approach facilitates an unambiguous null model for the consequences of environmental variation,
identifying a unique subset of events as 'extremes.' Specifically, it allows one to examine how both the
temporal extent (the acclimatization window) and type of an environmental signal affect the magnitude
and timing of extreme environmental events. For example, if physiology responds to the moving average
of past conditions, a longer acclimatization window generally results in greater imposed stress. If instead
physiology responds to historical maxima, longer acclimatization windows reduce imposed stress, albeit
perhaps at greater constitutive cost. This approach should be further informed and tested with empirical

experiments addressing the history-dependent nature of acclimatization.
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INTRODUCTION

In light of ongoing dramatic shifts in global climate, extreme environmental events have become a focus
for ecologists and environmental physiologists [1-9]. However, study of the biological consequences of
these events is hampered by complexities inherent in the dynamic interaction between organism and
environment. These complexities include physiological acclimatization, the process by which organisms
adjust their physiology to maintain function under prevailing environmental conditions. This
acclimatization takes time [e.g., 10]—in a temporally variable world, physiology is often chasing the
environment. Depending on the range of an organism’s physiological plasticity (which can be small or
large), the environmental signal(s) to which an organism responds (which could incorporate many
aspects of temporal variation), and the amplitude and speed of environmental fluctuations (which vary
drastically among habitats), an organism’s physiology can be well adjusted to potential stressors or
dangerously out of synch. Thus, our ability to predict extreme events and their consequences hinges not
only on our ability to predict changes in the physical environment but also on our understanding of the

complex temporal mechanics of acclimatization [6, 8].

At present, this understanding is woefully incomplete. For example, experimental studies of acclimation
(the laboratory analog of acclimatization) typically measure an organism’s physiological response to a
step change to a new constant environment, such as the change in thermal tolerance caused by moving
from a constant low temperature to a constant higher temperature [11, 12]. Although such experiments
provide useful demonstrations of the degree of physiological plasticity, it is difficult to translate their
results to nature, where environments vary continuously. A next step toward disentangling the
interactions between environment and physiology might be to obtain paired time series of a pertinent
environmental factor and simultaneous physiological capacity; e.g., a year-long record of water

temperature and the co-occurring thermal limits of an aquatic organism. From these paired records,
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time-series analysis [13] could identify pertinent aspects of thermal history that affect the
acclimatization of thermal tolerance. For instance, an organism’s current level of acclimatization might
be correlated with the average daily maximum temperature encountered in the preceding three days.
One could then predict how a shift in environmental variability would affect the likelihood of the
organism exceeding its thermal limits. Furthermore, this knowledge would allow one to more efficiently
address the physiological mechanisms underlying acclimatization (e.g., production of heat-shock
proteins, shifts in membrane fluidity)[14] by focusing the design of future experiments. However, to our
knowledge, there are few, if any, available time series pairing high-frequency measurements of
physiological limits with environmental records. Existing physiological time series are typically restricted
to either short durations or infrequent (*monthly) sampling [15, 16]. The reasons for this are largely
logistical. For instance, measuring a species’ thermal limits requires killing many organisms; a lengthy

time series of such measurements in any single population would be impractical, if not unethical.

The current paucity of physiological time series does not preclude theoretical exploration of how
acclimatization could affect the magnitude and likelihood of stressful events. To that end, in this

exploration we:

1. lIdentify several potential environmental signals to which physiology might acclimatize,

2. Use environmental time-series from representative habitats to analyze how the temporal
extent of each environmental signal affects the magnitude and frequency of stressful
events,

3. Discuss physiological studies that are needed to further clarify the relationship between

environmental variation and physiological acclimatization.

We couch our discussion in the context of elevated body temperature and its relationship with

organismal physiology, a choice driven by three considerations. (1) Concerns over global change give
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issues of temperature variation unusual and immediate importance. (2) Unlike other environmental
factors (e.g., salinity, pH, oxygen concentration), the biological effects of temperature change are nearly
universal [17]; thus, any conclusions likely apply across taxa. (3) Long-term temperature records are

readily available.

We make a simplifying assumption regarding the physiological consequences of environmental
variation: that the stress placed on an organism scales, perhaps nonlinearly, with the difference
between the current state of acclimatization (that is, what the organism’s physiology 'expects') and what
the environment imposes. This deviation-based index of environmental stress is both easily quantified
and intuitive. For example, if, based on recent experience or endogenous rhythms, an organism has
acclimatized to a winter temperature of 10°C, sudden imposition of 25°C (a 15°C deviation) could be
stressful. For the same organism acclimatized in summer to 20°C, imposition of 25°C (a mere 5°C

deviation) would likely be benign.

We acknowledge that this simple, deviation-based characterization of stress does not consider all
potential aspects of the complex physiology involved in organism/environment interactions. For
example, instead of (or in addition to) the magnitude of deviation, the acute rate of environmental
change during a stressful event might be important [18, 19]. It is also possible that the same magnitude
of deviation might have different consequences in different seasons. These aspects could be integrated

in the future, but here we concentrate solely on the magnitude of deviation.

This idea of extremes as local 'anomalies' or 'pulses' against a background that is itself dynamic has
recently received attention [3, 20, 21]. However, this approach is far from universal, and studies often
do not account for acclimatization. For example, even recent studies of extreme temperatures address

only the highest values within one season [e.g., 9]. We suggest that the deviation-based method
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represents an improved, unambiguous null model for the degree of physiological stress experienced by

organisms inhabiting realistically dynamic environments.

Environmental signals for acclimatization

Our first task is to identify aspects of the environment ('signals') to which physiology might respond to
maintain organismal performance. Here, we evaluate four of many possible indices that plausibly could

serve as environmental signals in the context of thermal physiology:

(1) the average temperature, the moving, weighted average of all temperatures encountered
over some recent time interval: the acclimatization window;

(2) the average daily maximum (or minimum) temperature, the moving, weighted average of
daily maxima (or minima) over the window;

(3) the absolute maximum (or minimum) temperature, the single highest (or lowest) value
encountered over the window;

(4) the historic periodic temperature, the temperature 'expected' by an organism’s physiology
for predictable, periodic fluctuations based on information from previous experience or
inherited from prior generations. For example, if endogenous rhythms tell an organism that air
temperature fluctuates sinusoidally with a 365-day period, it can prepare its physiology
accordingly. (Note that this mechanism provides a means to remove the lag between

environmental change and acclimatization intrinsic to the first three indices.)

It is possible that different traits respond to different environmental signals [22], or that other indices
(and combinations of indices) could inform physiology, but these four provide a broad set of heuristic

examples.
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Here, we model the adjustment of physiology to prevailing environmental conditions via acclimatization
as a continuous process; we assume that physiology is constantly updated based on the most recent
index value. For example, if the signal is the average temperature in a 7-day acclimatization window, we
assume that, at any given time, the organism is as adjusted as its physiology allows to the previous 7
days. Note that this assumption does not imply that physiology is necessarily adjusted to the current
temperature. For instance, during a period of continuous temperature increase, physiology will be

acclimatized to a temperature cooler than that the organism currently experiences.

To calculate the average-temperature index, we use a moving, locally-weighted smoothing algorithm (a
modified LOWESS regression) [23] (Figure 1). Given a time-series of environmental temperature data
(e.g., hourly air temperature), a weighted linear regression is fitted to the data within an acclimatization
window of n temperatures preceding and including the current time point. [By contrast, the standard
LOWESS approach uses a window extending in both directions from the current point.] The weight given
to each temperature in the window declines for temperatures farther in the past, thus implementing an
implicit assumption that physiology is most influenced by the most recent conditions (we return to this
assumption in the Discussion). The value of the weighted regression at the current time is then taken as
the expected (acclimatized) temperature. This retrospective calculation can be repeated for all points in

the time-series except for the initial n-1 points.

Indices 2 and 3 are then estimated for the same acclimatization window. To calculate the average daily
maximum temperature index, we reapply the locally weighted algorithm using only the daily maxima in
the acclimatization window preceding, but not including, the present day (today's maximum is not yet
known). For the absolute-maximum temperature index, we simply record the highest temperature in

the acclimatization window preceding, but not including, the present.



145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

To estimate the historic periodic temperature index, we average temperatures at each given time in a
year across all years of the environmental time series. For example, for a 20-year time series, we
average all 20 measurements of the temperature at 8:40 am on March 23 to generate the index for that
date and time in any year. This procedure captures both circadian and annual temperature fluctuations,
but it smooths over tidal fluctuations, whose lunar period aligns with neither the solar calendar nor the

24-h clock.

The acclimatization window—which incorporates both the interval over which the environment is
monitored and the time allowed for physiological adjustment—could vary from extremely short cycles
[e.g., tidal cycles, 24, 25] to diel oscillations [26] to annual cycles or perhaps even longer periods [27].
Our analyses address this potential diversity by repeating the calculations above using acclimatization
windows from 4 hours to 1 year. To calculate temperature deviations for a given signal index and
acclimatization window, we subtract the time series of expected/acclimatized temperatures from the
corresponding time series of measured values. These results allow us to dissect the effect of
acclimatization-window duration on the resulting distribution of temperature deviations, and thereby
on the proposed degree of physiological stress. The acclimatization window acts as a low-pass filter; the
longer the window, the less sensitive a signal is to high-frequency thermal variation and the rate of
temperature change. As a result, the magnitude of deviations depends on both acclimatization-window
length (the strength of the low-pass filter) and frequency-dependent variation in the thermal

environment.

Definitions: ‘extreme’ versus ‘threshold-exceeding’

Given a time series of thermal deviations, our next task is to identify the subset of deviations that are

potentially of physiological, ecological, and evolutionary interest. However, we must first deal with a
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semantic issue. Typically, these events are referred to as ‘extreme,” and we have used this term

informally above. However, dictionary definitions of ‘extreme’ encapsulate two distinct ideas:

1. Aneventis extreme if it is both rare and far from the average. This statistical definition refers to
the low-probability events in a distribution’s tails. For example, one might reasonably propose
that, to be extreme, a high-temperature event must fall within the highest x% of all
measurements, where x is small [e.g., 9].

2. Alternatively, an event is extreme if it exceeds prescribed bounds. In a biological context, this
refers to events that exceed some functional threshold (e.g., the critical thermal maximum) and,
therefore, have deleterious consequences. For example, Gutschick and BassiriRad [4] defined

extremes as events that exceed an organism’s acclimatory capacity.

The same concepts apply to values in the lower tail of a distribution or values that fall below some lower
critical threshold (e.g., temperatures below the freezing point). Biologists have struggled to reconcile
these two components—statistical rarity and biological consequences—into utilitarian definitions of an

extreme event [1, 4, 28-30].

To avoid confusion, henceforth we refer to events that satisfy Definition 1 as extreme, and those that
exceed a functional threshold—and, therefore, satisfy Definition 2—as threshold-exceeding. The
distinction is useful because a given event need not satisfy both definitions: events that are rare may not
have functional consequences, while events that exceed a given threshold might not be rare. For
example, limited plasticity of upper thermal-tolerance thresholds, observed in many ectotherms [12],
implies absolute constraints on physiological limits. Consequently, the warmest temperatures in a
particularly warm spell of a warm year could exceed thermal tolerance thresholds without falling in the
uppermost percentiles of deviations from expected. The distinct terms threshold-exceeding and

extreme allow clear discussion of such circumstances.
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In the analyses below, we focus on the delineation of extreme and threshold-exceeding events from
environmental datasets. Using Definition 1, we (arbitrarily) define extreme events as those lying in the
top 5% of a distribution, whether that distribution is the raw distribution of temperatures (raw
extremes) or the distribution of deviations (deviation extremes); the Supplement includes results for
other percentiles. In some scenarios physiologists have identified seasonal or otherwise appropriate
absolute-temperature thresholds [e.g., 10, 31], but we are unaware of comparable deviation-based
biological threshold estimates. To identify threshold-exceeding deviations from acclimatized
temperature using Definition 2, we explore the consequences of setting a range of threshold values. We
systematically examine patterns of extreme and threshold-exceeding events when the

percentile/threshold, the environmental signal, and the length of the acclimatization window change.

Temperature datasets

To illustrate the resulting patterns, we employ three representative time series, with a focus on
environments for which it is reasonable to assume that operative body temperatures of organisms

follow recorded environmental patterns (for details of each record, see Supplemental Table 1):

1. A 29-year record of air temperature at an arctic field site, recorded hourly [32];

2. An 18-year record of mid-latitude desert soil temperature, recorded hourly at a depth of 20

cm [33];

3. A 7-year record of near-shore tropical ocean temperature, recorded every half hour [34].
With few exceptions [e.g., some corals; 35] aquatic ectotherms’ body temperatures reliably mirror the
temperature of the surrounding liquid medium [36]. Similarly, body temperatures of small, soil-dwelling
organisms likely equal habitat temperature. By contrast, above-ground terrestrial ectotherms’ body
temperatures can be heavily influenced by other biophysical factors (e.g., solar irradiance, evaporation),
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physiological processes (e.g., heat generation), body size [37], and/or behavioral thermoregulation [12,
38], leading to large differences between body and air temperatures [36]. Therefore, our record of arctic

air temperature approximates that of a hypothetical small ectotherm in a shaded habitat.

The distributions of raw habitat temperatures vary in shape across these datasets (Figure 2, insets);
none is normally distributed as is often modeled [39]. The tropical-sea distribution is left-skewed, the

arctic-air distribution is relatively flat topped, and the desert-soil distribution is bimodal.

RESULTS

Expectations matter: The magnitude of extremes and frequency of threshold-exceeding events

depend on the environmental signal and length of the acclimatization window

The average magnitude of extreme deviations is sensitive to acclimatization-window length, but the
pattern of sensitivity differs dramatically depending on the acclimatization signal. For the average-
temperature and average-daily-maximum temperature signals, longer acclimatization windows generate
smoother, less variable time-series of physiological expectations. Consequently, the magnitude of
deviations tends to increase as the window lengthens, particularly in the desert-soil and arctic-air
datasets (Figure 3A for top 5% of deviations; Supplemental Figure 1A,B,F,G for a range of percentiles). In
other words, if organisms in these habitats adjust in response to a moving average, longer
acclimatization windows result in greater imposed stress. Physiological lags, most likely acting in concert
with excessive energetic costs, prohibit near-instantaneous acclimatization [40]. Nonetheless, if
organisms in these habitats respond to some moving average of environmental conditions, they should
minimize the length of the acclimatization window; otherwise, they risk being physiologically under-
prepared for the next extreme elevated temperature. This pattern is, however, not universal. In the

tropical-seawater dataset, the mean magnitude of extreme deviations is maximal at an intermediate
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acclimatization window and is much less sensitive overall to changes in the acclimatization window (Fig.

3A; Supplemental Figure 1K,L).

In contrast to moving-average signals, if the organism adjusts its physiology in response to the absolute-
maximum-temperature signal, longer acclimatization windows result in extremes with decreasing mean
deviations for all three datasets (Figure 3B for top 5% of deviations; Supplemental Figure 1D,I,N for a
range of percentiles). The longer the acclimatization window, the greater the likelihood that one of the
few highest values in the overall distribution will be encountered. Consequently, for long acclimatization
windows nearly all experienced temperatures are lower than the temperature to which the organism is
acclimatized, and the average of extreme deviations becomes increasingly negative (Figure 3B). Thus,
organisms that acclimatize to long-term absolute maximum temperatures are physiologically adjusted to
higher temperatures than they are likely to soon encounter. This conservative strategy might backfire if
costs of thermal defenses are high [41], and over-preparation could influence life-history tradeoffs or
related biological phenomena [42]. However, it is not uncommon to find organisms with median
thermal tolerances above mean annual maximum temperatures [e.g., 41, 43], perhaps suggesting that

costs of thermal defenses are not always substantial.

Endogenous programming of responses to periodic temperature changes does not necessarily decrease
the magnitude of extreme deviations. For short acclimatization windows (less than approximately 25-30
days), in the desert-soil and artic-air datasets mean extreme deviations from the historic periodic signal
(dashed lines in Figure 3A) are larger than those from the average-temperature signal. However, this
pattern reverses at longer acclimatization windows. In other words, historic knowledge would reduce
the intensity of extremes encountered in these two habitats only if the only other option were to
respond to a relatively long-term moving average. Over timescales of a few weeks, historic knowledge of

periodicity is—somewhat counterintuitively—not beneficial. The picture is again different for tropical-

12



258 ocean temperatures, for which deviations from moving average signals are always less than those from
259  the historic periodic signal. This is likely due to variation in this dataset being driven more by episodic
260  upwelling of cold water and by tidal rhythms than by diel or annual oscillations (Supplemental Figure 2).
261 In sum, the utility of knowledge of environmental periodicity depends on the predictability with which

262 the environment fluctuates.

263 In order to integrate temporal acclimatization with Definition 2 for threshold-exceeding events, we

264  selected a range of deviation magnitudes that might serve as a biological threshold in each dataset. For
265 a given threshold deviation and window length, acclimatizing to the average daily maximum

266  temperature always results in fewer threshold-exceeding events than acclimatizing to the average

267  temperature index (Figure 4A; Supplemental Figure 3A,B,E,F,1,J). While the frequency of threshold-

268  exceeding events rises monotonically in the arctic air and desert soil datasets for these two indices, as
269  before the tropical-seawater dataset is unique. It exhibits local maxima in the frequency of threshold-
270  exceeding events at an intermediate window length (Supplemental Figure 31,J). Using the absolute-

271 maximum-temperature index, the longer the acclimatization window the fewer events cross a given

272 threshold deviation (Figure 4B; Supplemental Figure 3C,G,K; Supplemental Figure 4C,G,K). Knowledge of
273 historic periodic temperature reduces the number of threshold-exceeding events per year relative to the
274 moving average indices for the arctic-air and desert-soil datasets, but only for long acclimatization

275 windows (Figure 4A; Supplemental Figure 3); such historic knowledge is never advantageous relative to
276 any length window for tropical-sea temperatures (Supplemental Figure 3L). As above for the magnitude
277 of deviation extremes, the historic periodic temperature acclimatization strategy is advantageous in

278  some habitats only if organisms are otherwise restricted to lengthy acclimatization windows.

279

13



280  The temperatures of threshold-exceeding events and extremes need not fall in the tails of a raw

281 distribution

282 Many temperatures that would be considered mundane in the distribution of raw values nonetheless
283 represent substantial deviations from what an organism expects based on its thermal history (Figure
284 2B,D,F). For example, only temperatures above 14.3°C fall in the top 5% of the raw temperature

285 distribution for the arctic-air dataset, whereas a temperature as low as -33.3°C (only the 6th percentile
286 of the raw data) qualifies as a warm deviation extreme with a 7-d acclimatization window. This context-
287 dependency of an extreme represents perhaps the greatest advantage of defining such events based on
288  deviations from the expected, while also presenting a formidable challenge in identifying the

289  appropriate length of acclimatization window for any given organism (see below).

290  There is negligible overlap between measurements identified as deviation extremes and those that
291 would be considered raw extremes (see red points in Figure 2). This degree of overlap increases as the
292 acclimatization window increases in length, but it rarely exceeds 50% even with windows of up to one
293 year (Supplemental Figure 5). At the limit, with exceedingly long windows, deviation extremes will

294  converge on raw extremes. However, such long acclimatization windows are likely to be rare in nature;
295 many organisms live less than a year, and a litany of studies across many taxa have documented short-

296  term plasticity of thermal physiology [reviewed elsewhere, e.g., 12, 39].

297  DISCUSSION

298 Challenges for the context-dependent approach

299  One advantage of this context-dependent, quantitative approach is that it makes concrete, testable
300 predictions. Some of these are counterintuitive. For example, it will now be incumbent upon

301 physiologists who study overwintering to ascertain whether sudden deviation to a warmer temperature,
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still well below the freezing point, can induce the same sorts of cellular perturbations (e.g., of

membrane or enzyme structure) that accompany 'canonical' heat stress [14].

There are at least three challenges that must be overcome to take full advantage of this context-
dependent approach to extreme and threshold-exceeding events. First, further empirical work is needed
to delineate the signals organisms use to set environmental expectations. Progress in this respect has
been hampered by physiologists' experimental designs, which only rarely have included realistic
temporal patterns of environmental variation [e.g., 44, 45]. The optimal signal likely varies considerably
among habitats (in our analyses tropical seawater consistently exhibits unique patterns) and among
organisms, depending at least in part on the relative contributions of physiology (acclimatization
capacity) and behavior (ability to modulate environmental exposure) [12]. Although beyond the scope of
this contribution, a synthetic analysis of the timescales of acclimatization in organisms from a variety of
habitats exhibiting different spectral qualities of temperature variation would be very informative. In
such an analysis, the suite of possible signals identified here could function as null models, yielding
testable predictions regarding the magnitude and frequency of stressful events under alternative

acclimatization strategies.

A second potential challenge involves the length and sampling frequency of the environmental time
series itself. If stressful events occur randomly in time, as they often do [7], the longer the time over
which the distribution of events is measured, the more extreme are the raw values encountered [a
fundamental conclusion of Extreme Value Theory; 46]. Thus, even in the absence of climate warming,
the highest temperatures encountered in a year typically are lower than the highest temperatures
encountered in a decade. This issue poses a potential problem to the statistical delineation of
extremes—the distribution of raw extreme values varies with the length of the environmental time

series. However, preliminary assessment of artificially shortened versions of the datasets analyzed here
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indicates that the mean and standard deviation of the magnitude of deviation extremes are relatively
insensitive to the length of the time series (Supplemental Figure 6). This observation warrants further
attention to examine its generality. In addition, sampling frequency must be sufficiently high [47]; to

capture the rate of acute change during individual extreme events requires at least hourly sampling.

A third challenge involves the under-explored role of carryover effects between repeated events that
are separated by intervals of varying lengths. While much discussion in the climate-change biological
literature focuses on changes in the frequency and intensity of extreme events in a warmer and more
variable world [e.g., 2], these events are often treated as discrete, isolated incidents. However, as noted
by Gutschik and BassiriRad [4], when environmental conditions exceed biological thresholds they impart
a ‘legacy’ to an organism, modifying (at least temporarily) the manner in which it interacts with its
environment. The duration of this legacy varies, and the underlying mechanisms might vary with
duration [48]. At one end of the spectrum, hardening has effects that appear to dissipate after one or a
few days [e.g., 49, 50]. Developmental plasticity, in which early experience irreversibly alters adult traits
[51, 52], often takes considerably longer. Furthermore, while we may be tempted to conclude that what
matters most for an organism is its experience during its lifetime, evolutionary processes,
transgenerational effects of environmental experience, and possibly other mechanisms link organisms
and environments across considerably longer time spans [14, 53, 54]. The simple approach we have
taken here does not incorporate these carryover effects. For example, we implicitly—but
unrealistically—assume that the physiological effect of a given magnitude of thermal deviation is the
same before and after another threshold-exceeding or extreme event. Furthermore, for some
organisms, the rate of acclimatization as temperatures rise is different from that as temperatures fall

[11, 55]. These complexities demand greater empirical attention.
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Given the likelihood of carryover effects [8], studies of threshold-exceeding and extreme environmental
conditions must consider their temporal relationship to each other. In this regard, it is imperative not
only to quantify (or forecast) the magnitude of extreme or threshold-exceeding events, but also to
quantify distributions of the intensity of extremes (duration x magnitude) and inter-event intervals.
These metrics are perhaps the most relevant to forecasting the biological consequences of climate
change [2, 56]. For example, warm extreme and threshold-exceeding events tend to occur in clusters
(heat waves). Heat waves already show signs of increasing frequency, which may have profound

biological effects [21, 57-59].

Along with a focus on the temporal distribution of extreme events must come experimental designs that
mimic patterns that currently — or soon will — occur in nature and repeated measurements of the state
of biological systems experiencing those patterns [6, 60]. We believe that physiologists must redouble
their efforts to understand the contingent nature of thresholds [61], including their relationship with
developmental or life-history transitions. In each of these experimental scenarios, physiologists will
need to quantify shifts in critical thresholds, metabolic or developmental rates, and other indicators of
functional impairment. A greater emphasis on sublethal thresholds should also provide valuable insight
[e.g., 62]. Finally, nonlinearities in physiological (or ecological) rate functions could have profound
impacts on the likelihood of exceeding functional thresholds [63], particularly in the likely event that
those thresholds vary through time and/or among individuals. Much difficult work remains to be done in
reconciling the concepts of extreme and threshold-exceeding in the context of thermal biology in

nature.

CONCLUSIONS

When discussing the biological consequences of environmental fluctuations, and particularly when

expounding on likely impacts of global change, biologists often assume that the intensity and frequency
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of extreme events will increase in the future. A modified approach to delineating extreme and/or
threshold-exceeding events from environmental records reveals that incorporating the dynamic process
of acclimatization can fundamentally change the subset of environmental conditions that should be the
focus of environmental physiologists and ecologists. This approach recognizes and attempts to
incorporate the potentially complex, context-dependent interactions between organisms and their
variable environments. It also offers unambiguous, testable predictions of the magnitude and frequency
of stressful events from long-term environmental records. We hope and expect that, ultimately, a more
comprehensive, mechanistic synthesis will emerge from empirical study of biological systems facing

these extra-ordinary circumstances.
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Figure 1.

A modified approach to delineating stressful events in environmental records. Here, a hypothetical organism
experiences a series of body temperatures (grey line; 1 week is depicted). Expected values at each time were
generated using a retrospective LOWESS smoothing function on hourly data (average-temperature index in the
text) with an acclimatization window of 7 days (dashed black line). Extremes can be defined as the largest
deviations between the 'observed' and 'expected' conditions. Using this approach, the absolute warmest
temperatures are not always extreme. For example, compare the length of the blue arrow (small deviation at high
temperature) to that of the red arrow (large deviation at low temperature).
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Figure 2.

The distribution of extreme deviations from expected/acclimatized temperature varies across habitat
types, and deviations identified as extreme represent a surprisingly broad range of absolute
temperatures. A) Temperature extremes for the arctic air dataset, recorded at 1-h intervals (thin grey
line). Expected values for each time were generated using the average-temperature index (dashed black
line) with an acclimatization window of 7 d. Black circles, deviation extremes (largest 5% of deviations
from expected); open circles, raw extremes (largest 5% of raw values); red circles, extreme according to
both criteria. The small, black scale bar in the upper left indicates one day. The inset shows one year of
data from this location. B) Histograms illustrating the overall shape of the air temperature distribution
(light grey background and inset) as well as the distributions of different varieties of extremes. White
bars indicate raw extremes. Superimposed black bars indicate deviation extremes. C) and D) same as A)
and B) but for mid-latitude desert soil at 1-h intervals. E) and F) same as A) and B) but for 0.5-h intervals
in the tropical seawater dataset.
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Figure 3.

The magnitude of high-temperature deviation extremes varies among habitat types, and it is sensitive to
the choice of acclimatization signal. A) The mean of the top 5% of deviations from expected values
generated using the average temperature index for the three datasets. Deviations were calculated for
acclimatization windows from 4 h to 1 yr. Horizontal, dashed lines indicate the mean extreme deviations
using the historic periodic temperature index. B) The mean of deviation extremes generated using the
absolute maximum temperature index, for acclimatization windows of 4 h to 1 yr. Note the difference in
y-axis scales. Mean deviation extremes for other acclimatization signals and percentiles that could be

used to define an extreme are found in Supplemental Figure 1.
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Figure 4.

The number of threshold-exceeding events per year in the arctic air dataset varies among
acclimatization signals and as the acclimatization window increases in length. A) Events crossing a
deviation-based threshold of 6.5, 8.5, or 10.5°C for the average temperature index (black) or the historic
periodic temperature index (blue; independent of acclimatization window length). B) Events crossing a
different set of thresholds for the absolute maximum temperature index (most deviations are negative
for this index). Analogous plots for the desert soil and tropical seawater datasets are found in
Supplemental Figures 3 and 4.
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