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Ozone depletion, ultraviolet radiation, climate change and prospects for a
sustainable future

Abstract

Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV)
radiation conditions at the Earth's surface. Ozone depletion has also contributed to climate change across the
Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water
security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the
Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production
and use of ozone-depleting substances. This international treaty has also played an important role in
mitigating climate change. Climate change is modifying UV exposure and affecting how people and
ecosystems respond to UV; these effects will become more pronounced in the future. The interactions
between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal
Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.
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1. Summary

Changes in stratospheric ozone and climate over the past 40+ years have altered the
solar ultraviolet (UV) radiation conditions at Earth’s surface. Ozone depletion has also driven
climate change in the Southern Hemisphere. These, and other changes are interacting in
complex ways to affect human health, food and water security, and assorted ecosystem
services. Nonetheless, many adverse effects of exposure to high UV radiation have been
avoided because of the Montreal Protocol with its amendments and adjustments. This
international treaty has also played a significant role in mitigating global climate change. As the
ozone layer recovers, climate change will exert an increasing role on influencing surface UV
radiation and will modulate how organisms, ecosystems and people respond to UV radiation.
The interactions between stratospheric ozone, climate and UV radiation will therefore shift over
time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-

being and environmental sustainability.

2. Stratospheric ozone depletion, the Montreal Protocol, and the UNEP Environmental
Effects Assessment Panel

Warnings that Earth’s stratospheric ozone layer could be at risk from
chlorofluorocarbons (CFCs) and other anthropogenic substances were first issued by scientists
over 40 years ago'2. Soon thereafter, large losses of stratospheric ozone were reported over
Antarctica® with smaller, but more widespread erosion of stratospheric ozone found over much
of the rest of the planet*. Subsequent studies clearly linked these ozone losses to the
emissions of CFCs and other ozone-depleting substances® and, at least over Antarctica, unique
atmospheric conditions during winter that facilitate ozone depletion®”.

In response to the initial concerns about the potentially deleterious effects of elevated
surface solar ultraviolet-B radiation (UV-B; 280-315 nm) resulting from ozone depletion, the
international community began mobilizing in 1977 to recognize the fundamental importance of
stratospheric ozone to life on Earth and to develop and implement policies to preserve the
integrity of the ozone layer®. Of particular concern was the possibility that exposure to high
levels of UV-B would increase the incidence of skin cancer and cataracts in humans, weaken
people’s immune systems, decrease agricultural productivity and negatively affect sensitive
aquatic organisms and ecosystems. The policy solution that emerged to address ozone
depletion was the 1985 Vienna Convention for the Protection of the Ozone Layer. This

convention was followed by the 1987 Montreal Protocol on Substances that Deplete the Ozone
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Layer, which was negotiated to control the consumption and production of anthropogenic
ozone-depleting substances.

The Montreal Protocol was the first multilateral environmental agreement by the United
Nations to ever achieve universal ratification (197 parties by 2008). Since its inception, this
international accord has been amended and adjusted a number of times by the member Parties
to the Montreal Protocol. The Parties base their decisions on scientific, environmental, technical,
and economic information provided by three assessment Panels (Box 1). All three panels
provide full assessment reports to the Parties every four years (quadrennial reports) and

shorter, periodic updates in the intervening years as needed.

BOX 1. The three assessment panels supporting the Montreal Protocol.

There are three panels established by the Montreal Protocol to assess various aspects of
stratospheric ozone depletion. These three Panels have complementary charges. The
Scientific Assessment Panel (SAP) assesses the status of the depletion of the ozone layer and
relevant atmospheric science issues. The Technology and Economic Assessment Panel
(TEAP) provides technical and economic information to the Parties on alternative technologies
to replace ozone depleting substances. The Environmental Effects Assessment Panel (EEAP)
considers the full range of potential effects of stratospheric ozone depletion, UV radiation and
the interactive effects of climate change on human health, aquatic and terrestrial ecosystems,
biogeochemical cycles (e.g., movement and transformation of carbon and other elements
through the biosphere and atmosphere), air quality, and materials for construction and other
uses. Additional information on these panels, including their most recent reports, can be found
on the United Nations Environment Programme (UNEP) Ozone Secretariat website
(https://ozone.unep.org/science/overview).

The implementation of the Montreal Protocol has successfully prevented the
uncontrolled global depletion of the stratospheric ozone layer and associated large increases in
surface UV-B radiation®'? (Box 2). Concentrations of chlorine and bromine from long-lived
ozone-depleting substances have been declining in the stratosphere since the late 1990s2.
While significant seasonal ozone depletion over Antarctica has occurred annually since the
1980s (called the “ozone hole”), there have been small, but significant, positive trends in total
column ozone in Antarctica in spring over the period 2001-2013"2. Global mean total ozone has
been projected to recover to pre-1980 levels by about the middle of the 215t century, assuming

full compliance with the Montreal Protocol™. 13
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BOX 2. Environmental effects in the ‘World Avoided’

There are a number of published models addressing the implications and potential outcomes of a ‘World
Avoided’ without the Montreal Protocol™. All point to progressive loss of stratospheric ozone that would
have accelerated over time and extended to affect the entire planet by the second half of this century.
For example, the GEOS-CCM world avoided simulation' used here assumes that ozone-depleting
substances continue to increase by 3% per year, beginning in 1974. This collapse in the total global
ozone column would have resulted in clear sky UV Index (UVI) values increasing sharply after 2050 at
most latitudes (see graphs below) with extreme values of 20 becoming common-place by 2065 over
almost all inhabited areas of the planet, and as high as 41 in the tropics'!, more than four times the UVI
that is currently considered ‘extreme’ by the World Health Organization.
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The graphs show calculated surface monthly (grey lines) and annual mean (red line) UVI values for clear
skies at different latitudes without the Montreal Protocol, based on the model in Newman and
McKenzie!'. Range of maxima given show pre-1980 vs. 2065 data.

Combining these models of ozone and UV radiation with the understanding of the links between
exposure to excessive UV radiation and the risk of skin cancers has allowed some estimates of the
incidence of skin cancer in the ‘World Avoided'. Different studies have considered different time-scales
and/or different geographical regions, but all conclude that the successful implementation of the
Montreal Protocol will have prevented many millions of cases of skin cancers. For example, a report by
the United States Environmental Protection Agency'® showed that when compared with a situation of no
policy controls, full implementation of the Montreal Protocol and its Amendments is expected to avoid
more than 250 million cases of skin cancer and more than 45 million cases of cataract in the USA for
people born between 1890 and 2100.

While carbon dioxide (CO2), methane (CH4) and nitrous oxide (N20) are the dominant
greenhouse gases emitted by humans, most of the ozone-depleting substances controlled by
the Montreal Protocol (CFCs and others) are also potent greenhouse gases that contribute to
global warming'. Modeling studies indicate that in the absence of the Montreal Protocol, global
mean temperatures would have risen more than 2°C by 2070 due to the warming effects from

ozone-depleting substances alone's. The adoption of the Kigali Amendment to the Montreal
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Protocol in 2016 limits the production and consumption of hydrofluorocarbons (HFCs), which
are non-ozone depleting substitutes for CFCs'®. However, HFCs are potent greenhouse gases
and limiting emissions of these compounds could further reduce global temperatures as much
as 0.5 °C by the end of this century'. This Amendment has thus further broadened and
strengthened the scope of the Montreal Protocol, adding to an effective international treaty that
not only addresses stratospheric ozone depletion, but is doing more to mitigate global climate
change than any other human action to date'®20,

One of the important reasons for the success of the Montreal Protocol has been its
foundation on high quality science, which not only improves our understanding of the causes
and mechanisms of stratospheric ozone depletion, but also of the environmental effects of these
atmospheric changes. The UNEP Environmental Effects Assessment Panel (EEAP) is
specifically charged with providing regular assessments of the state of the science on the
environmental effects of stratospheric ozone depletion and consequent changes in UV radiation
at Earth’s surface, and the interactive effects of climate change.

In this paper, we highlight key findings from the most recent EEAP Quadrennial
Assessment Report, and consider the significant policy and societal implications of these
environmental effects. We further address the multiple ways by which the Montreal Protocol is
contributing to environmental sustainability and human health and well-being. Given the
accelerating pace of climate change?', we also consider the increasing role that climate change
is playing in influencing exposures of humans and other organisms to UV radiation, how
stratospheric ozone depletion is itself contributing to climate change, and the various ways that
climate change is affecting how plants, animals and ecosystems respond to UV radiation. Thus,
as mandated by the Parties of the Montreal Protocol, we consider a wide range of the
environmental effects that are linked to changes in stratospheric ozone, climate and solar UV
radiation. Our findings address many of the United Nations Sustainable Development Goals
(Fig. 1). More in-depth information on the environmental effects of ozone depletion can be found
elsewhere?2, By focusing on the interactions between stratospheric ozone, UV radiation, and
climate, the collated EEAP Assessment complements that of the UN'’s Intergovernmental Panel
on Climate Change? to provide a comprehensive assessment on the environmental effects of

global changes in Earth’s atmosphere.
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Figure 1. The United Nations Sustainable Development Goals (SDGs) addressed by the
UNEP Environmental Effects Assessment Panel 2018 Quadrennial Report. The findings
from this report are summarized in this paper according to five major topics (in circles).
These address 11 of the 17 UN SDGs (in numbered squares): 2. Zero hunger, 3. Good
health and well-being, 6. Clean water and sanitation, 7. Affordable and clean energy, 9.
Industry, innovation and infrastructure, 11. Sustainable cities and communities, 12.
Responsible consumption and production, 13. Climate action, 14. Life below water, 15. Life
on land and 17. Partnerships for the goals. More information on these SDGs can be found
at: https://www.un.org/sustainabledevelopment/sustainable-development-goals/
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3. Key findings and highlights
3.1 Stratospheric ozone, climate change and UV radiation at Earth’s surface

Stratospheric ozone depletion and climate change interact via several direct and indirect
pathways that can have consequences for food and water security, human well-being and
ecosystem sustainability (Figs. 1, 2). Climate change can modify depletion of stratospheric
ozone by perturbing temperature, moisture, and wind speed and direction in the stratosphere
and troposphere?*; and certain greenhouse gases (e.g., N-O and CH,) can affect ozone levels.'
Conversely, it is now clear that ozone depletion in the southern hemisphere is directly
contributing to climate change by altering regional atmospheric circulation patterns in this part of
the globe?® which affects weather conditions, sea surface temperatures, ocean currents, and the
frequency of wildfires?53°, These ozone-driven changes in climate are currently exerting
significant impacts on the terrestrial and aquatic ecosystems in this region®'-3* (Box 3). In the
northern hemisphere similar, but smaller effects of ozone depletion on climate may exist®, but
year-to-year variability in the meteorology is greater than in the southern hemisphere, and there
are no reports as yet linking these changes to environmental impacts.

Depletion of stratospheric ozone leads to increased UV-B radiation at Earth’s surface®®
and the resultant changes in UV-B can directly affect organisms and their environment.
Because of the success of the Montreal Protocol, present-day increases in UV-B (quantified as
clear sky UV Index) due to stratospheric ozone depletion have been negligible in the tropics,
small (5-10%) at mid-latitudes, and large only in Antarctica. As stratospheric ozone recovers
over the next several decades'?, the clear-sky noon-time UV Index is expected to decrease
(e.g., by 2-8% at mid-latitudes depending on season and precise location, and by 35% during
the Antarctic October ozone ‘hole’3%3%).

Independent of stratospheric ozone variations, climate change is increasingly
contributing to changes in incident surface UV-B radiation®>*" (Fig. 2). Unlike stratospheric
ozone depletion, these climate change-driven effects influence the amount of surface solar
radiation not just in the UV-B but also in the ultraviolet-A (UV-A; 315-400 nm) and visible (400-
700 nm) parts of the spectrum. These changes are important as many of the environmental and
health effects caused by UV-B can be either ameliorated or accentuated, to varying degrees, by

UV-A and visible radiation3':32:38,
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Figure 2. Links between stratospheric ozone depletion, UV radiation, and climate change,
including environmental effects and potential consequences for food and water security, human
well-being and the sustainability of ecosystems. Direct effects are shown as solid lines with feed-

back effects indicated by double arrows. Important effects driven by human action are shown as
dashed lines.
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Future changes in incident surface solar UV radiation (UV-B and UV-A) will depend
strongly on changes in aerosols, clouds, and surface reflectivity (e.g., snow and ice cover).
Climate change is altering cloud cover with some regions becoming cloudier and others less
cloudy®®. Increased cloud cover generally tends to reduce UV radiation at Earth’s surface, but
effects vary with type of clouds*® and their position relative to that of the sun*'. Aerosols (solid
and liquid particles suspended in the atmosphere*?) reduce and scatter UV radiation; the type
and amounts of aerosols in the atmosphere are affected by volcanic activity, the emissions of air
pollutants, the frequency and extent of wildfires and dust storms, and other factors, many of
which are affected by climate change3>4344, In heavily polluted areas (e.g., southern and
eastern Asia), improvements in air quality resulting from measures to control the emissions of
air pollutants are expected to increase levels of UV radiation to near pre-industrial levels (i.e.,
before extensive aerosol pollution); the extent of these changes is contingent on the degree to
which emissions of air pollutants in the future are curtailed. High surface reflectance from snow
or ice cover can enhance incident UV radiation because some of the reflected UV radiation is
scattered back to the surface by aerosols and clouds in the atmosphere. Consequently, climate
change-driven reductions in ice or snow cover, which is occurring in polar regions and
mountains, will likely decrease surface UV radiation in these areas®. At the same time, this will
increase the UV exposure of soils and waters that would previously have been covered by snow

orice.

3.2 UV radiation exposure and climate change

The direct effects of UV radiation on organisms, including humans, and materials
depend on levels of exposure to UV radiation. This is determined by a number of factors,
including many that are influenced by climate change (Fig. 2). Importantly, these climate
change-driven effects can result in either increases or decreases in exposures to solar UV
radiation, depending on location, time of year, individual species, and other circumstances.
Some of the most important regulators of exposure to UV radiation include:

e Behavior: The exposure of humans to UV radiation ranges from one-tenth to ten
times the average for the population*, depending on the time people spend indoors
vs outdoors and under shade structures. The exposure of the skin or eyes to UV
radiation further depends on the use of sun protection such as clothing or
sunglasses; the UV radiation dose received by cells and tissues within the skin is
influenced by pigmentation of the skin and use of sunscreens®. Warmer

temperatures and changing precipitation patterns resulting from climate change will

11
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alter patterns of exposure to the sun in humans?*®, but the direction and magnitude of
this effect is likely to be highly variable globally. Many animals, such as insects, fish
and birds, can sense UV radiation and use this ‘visual’ information to select suitable
habitats and avoid exposure to prolonged periods of high UV radiation*’:4¢,

¢ Inresponse to climate change, many animals and plants are migrating or shifting
their ranges to higher latitudes and elevations*®*°, while increases in exposure to UV
radiation leads zooplankton to migrate into deeper waters®'-°*. Because of the
natural gradients in solar UV radiation that exist with latitude, altitude and water
depth32%, these shifts in distributions will expose organisms to conditions of UV
radiation to which they are unaccustomed.

¢ Climate change is altering phenology, including plant flowering, spring bud-burst in
trees, and emergence and breeding of animals*®%5%, As solar UV radiation varies
naturally with seasons, such alterations in the timing of critical life-cycle events will
affect UV exposures.

¢ Modifications in vegetation cover (e.g., drought, fire, pest-induced die-back of forest
canopies or invasion of grasslands by shrubs) driven by changes in climate and land
use alter the amount of sunlight and UV radiation reaching many ground-dwelling
terrestrial organisms®’.

¢ Reductions in snow and ice cover and the timing of melt driven by climate change is
modifying surface UV reflectance and increasing the penetration of UV radiation into
rivers, lakes, oceans, and wetlands in temperate, alpine, and polar regions®.
Additionally, increases in extreme weather events (e.g., heavy rainfall and floods)
increase the input of dissolved organic matter and sediments into coastal and inland
waters that can reduce the clarity of water and exposure of aquatic organisms to UV
radiation®?°°. In contrast, in some lakes and oceans where climate warming is
leading to shallower mixing depths, exposure to UV radiation in the surface mixed

layer is increasing®2.

3.3. Environmental effects of changing exposure to UV radiation

Changes in exposure to solar UV radiation, driven by ongoing changes in stratospheric
ozone and climate, have the potential to affect materials, humans, and many other organisms in
ways that have consequences for the health and well-being of people and sustainability of
ecosystems (Fig. 1). Below we highlight some of these effects as identified in the recent UNEP

EEAP Quadrennial Assessment®2.
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3.3.1. Impacts on human health and air quality

Higher exposure to solar UV radiation increases the incidence of skin cancers and other
UV-induced human diseases, such as cataracts and photosensitivity disorders3é. While
increases in the incidence of skin cancer over the last century appear largely attributable to
changes in behavior that increase exposure to UV radiation, these changes highlight how
susceptible some human populations would have been to uncontrolled depletion of
stratospheric ozone. Skin cancer is the most common cancer in many developed countries with
predominantly light-skinned populations®®. Melanoma accounts for less than 5% of skin cancers,
but has a much higher mortality than other skin cancers and accounts for approximately 60,000
deaths worldwide each year. Exposure to UV radiation accounts for 60-96% of the risk of
developing cutaneous malignant melanoma in light-skinned populations; globally, ca.168,000
new melanomas in 2012 were attributable to ‘excess’ exposure to UV radiation (above that of a
historical population with minimal exposure) corresponding to 76% of all new melanoma
cases®. To date, stratospheric ozone depletion is expected to increase these numbers by a few
percent®! when integrated over a lifetime of exposure. Much larger increases in skin cancer
incidence would already be occurring in the absence of the Montreal Protocol'":'3 (Box 2).

Exposure to UV radiation contributes to the development of cataract, the leading cause
of impaired vision worldwide (12.6 million blind and 52.6 million visually impaired due to cataract
in 2015)82. Particularly in low income countries — often with high ambient UV radiation — access
to cataract surgery may be limited, making this a major health concern. The role of exposure to
UV radiation for age-related macular degeneration, another major cause of visual impairment
globally and particularly in older people, remains unclear®.

Concern about high levels of UV-B radiation as a consequence of stratospheric ozone
depletion was an important driver for the development of programs for sun protection in many
countries. These programs focus on promoting changes in people’s behavior, supported by
structural and policy-level interventions®. Sun protection programs have been shown to be
highly cost effective in preventing skin cancers®. Behavioral strategies need to be informed by
the real-time level of ambient UV radiation (provided by the UV Index) and include controlling
time outdoors together with using clothing, hats, sunscreen and sunglasses to reduce exposure
to UV radiation. Behavioral changes can be facilitated by providing shade in public spaces such

as parks, swimming pools, sports fields and playgrounds, and access to sunscreen®.
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Changes in UV radiation and climate can further impact human health by influencing air
quality*?. A number of recent international assessments have concluded that poor air quality is
the largest cause of deaths globally due to environmental factors*?. Together with nitrogen
oxides (NOXx) and volatile organic compounds (VOCs), UV radiation is a key factor in the
formation and destruction of ground-level ozone and some types of particulate pollutants. Future
recovery of stratospheric ozone and changes in climate may alter ground-level ozone via
decreases in UV radiation and increases in downward transport of stratospheric ozone*?.
Modelling studies for the USA indicate that reductions in UV radiation due to stratospheric
ozone recovery will lead to somewhat lower ground-level ozone in some urban areas but slight
increases elsewhere®. Although these changes in ground-level ozone are estimated to be small
(ca. 1% of current ground-level amounts), large populations are already affected by poor air
quality, such that even small relative changes in air quality could have significant consequences
for public health.

Exposure to UV radiation also has benefits for human health, the most important being
its role in the biosynthesis of vitamin D in the skin. Vitamin D is critical to healthy bones,
particularly during infancy and childhood. There is also growing evidence of a range of other
benefits of exposure to UV and visible radiation through both vitamin D and non-vitamin D
pathways; for example, in systemic autoimmune diseases (such as multiple sclerosis) and non-
cancer mortality, and in the prevention of myopia®. Gaps in our knowledge prevent calculations
of the dose of UV radiation necessary to balance the risks with benefits, particularly as this
varies according to age, sex, skin type, and location. Nevertheless, climate change will likely
alter the balance of risks vs. benefits for human populations living in different regions3%8. For
example, lower ambient UV-B at high latitudes will increase the risk of vitamin D deficiency
where this risk is already substantial. Conversely, warmer temperatures may encourage people
in cooler regions to spend more time outdoors, increasing exposure to UV-B. Reductions in
snow and ice cover could reduce the exposure of the eyes to UV radiation, possibly decreasing

the risk of damage to the eyes.
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BOX 3. Environmental effects of ozone-driven climate change in the southern
hemisphere.
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Stratospheric ozone depletion has been a dominant driver of changes in Southern Hemisphere
summer climate over the later part of the 20t Century, moving the winds and associated latitudinal
bands of high and low rainfall further south23-30.34 (inset globe). As a result, aquatic and terrestrial
ecosystems, including agriculture, have been affected in several ways3'32, For instance, the
productivity of the Southern Ocean is changing, decreasing over much of the ocean, but increasing in
other areas with corresponding effects on the uptake of carbon dioxide from the atmosphere. More
productive areas already support increased growth, survival and reproduction of sea birds and
mammals including albatross, several species of penguins and elephant seals. Regional increases in
oceanic productivity are likely to support increased fisheries. In contrast, warmer sea surface
temperatures related to these climate shifts are correlated with declines in kelp beds in Tasmania and
corals in Brazil®2. On land, changing patterns of rainfall have resulted in increased agricultural
productivity in some regions (e.g., SE South America) and drought conditions in others (e.g., Chile)3'.
Drier conditions have resulted in increasing salinity in lakes and changed lake fauna in East
Antarctica and the eastern Andes?'-%2. On the Antarctic Peninsula, productivity of terrestrial
ecosystems has increased with warmer and wetter conditions, while productivity in East Antarctica
has responded negatively to cooling and drying33. While our understanding of the extent of these
impacts has improved considerably in the past several years, there are likely many other impacts that
have not yet been quantified. Actions under the Montreal Protocol have moderated these climatic and
subsequent ecosystem changes, by limiting stratospheric ozone depletion as well as reducing
greenhouse gases. Without the Montreal Protocol and its Amendments, similar climatic changes
would likely have become manifest across the globe and would have been more extreme in the
southern hemisphere. As the ozone ‘hole’ recovers, some of these effects may be reversed. Image
updated and adapted from Robinson and Erickson3* with icons depicting the location and types of
organisms or environmental factors influenced by ozone-driven climate change and the arrows
showing the direction of these effects.
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3.3.2 Impacts on agriculture and food production

There is little evidence to suggest that modest increase in solar UV radiation by itself has
had any substantial negative effect on crop yield and plant productivity3'. It is unclear how food
production would have been impacted by the large increases in solar UV radiation in the
absence of the Montreal Protocol. One analysis, based on data from a number of field studies
conducted in regions where stratospheric ozone depletion is most pronounced (i.e., high
latitudes), concluded that a 20% increase in UV radiation equivalent to about a 10% reduction in
stratospheric ozone has only reduced plant production by ca. 6% (i.e., a 1% reduction in growth
for every 3% increase in UV radiation)®. To what extent this relationship would hold for levels of
UV radiation >2-fold higher than present (i.e., the ‘World Avoided’ scenario; Box 2'") is
uncertain, but would be an obvious major concern under such a scenario.

It is likely that by contributing to the mitigation of climate change, the Montreal Protocol
and its Amendments have reduced the vulnerability of agricultural crops to rising temperatures,
drought, and extreme weather events. However, on a regional scale, changes in southern
hemisphere rainfall, driven by ozone depletion and climate change, have been linked to both
increases and decreases in plant productivity (Box 3) and these effects may reverse as the
ozone ‘hole’ recovers. Exposure to UV radiation can also modify how climate change factors,
including drought, high temperatures, and rising carbon dioxide levels, influence plants, but
effects are complex and often contingent on growth conditions. For example, in some cases
increased UV radiation can reduce the stimulatory effects of elevated carbon dioxide on plant
growth®’. In other cases, exposure to UV radiation can increase tolerance of plants to drought®®.
Increases in ground-level ozone resulting from reduced UV radiation resulting from the recovery
of stratospheric ozone could also negatively affect crop yields*?. Understanding these, and other
UV-climate change interactions can inform growers and breeders about agricultural practices
that could aid in maintaining crop yields in the face of evolving environmental change.

UV radiation can also have beneficial effects on plants as mediated by specific
photoreceptors that regulate plant growth and development®®. These non-damaging effects
include alterations in plant chemistry, leading to changes in the nutritional quality of food’® and
increased plant defenses against pests and pathogens”'. Consequently, conditions that
decrease the exposure of crop plants to UV radiation (e.g., climate change, ozone recovery,
shifting planting dates or increased sowing densities), could reduce plant defenses and thereby
affect food security in ways other than just the direct effects on yield”?. For certain vegetable

crops grown in greenhouses and other controlled-environments, UV radiation from lamps is
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increasingly being used to manipulate plant hardiness, food quality and, in certain cases,

resistance to pests’.

3.3.3 Impacts on water quality and fisheries

Climate change is altering the mixing patterns in the water column of lakes and oceans,
with deeper mixed layers in some regions and shallower mixed layers in others. These changes
are altering the UV exposure and fundamental structure of aquatic ecosystems and
consequently their ecosystem services (e.g., water quality, productivity of fisheries) in regionally
specific ways®2. The sensitivity to damage induced by UV radiation for the transparent larvae of
many commercially important fish species, combined with the distribution of these larvae in high
UV surface waters, have the potential to reduce juvenile population sizes and subsequent
harvest potential for fisheries™. In contrast, reductions in the transparency of clear-water lakes
to UV radiation may increase the potential for invasions of UV-sensitive warm-water species
that can negatively affect native species’®.

Climate change-related increases in heavy precipitation and melting of glaciers and
permafrost are increasing the concentration and color of UV-absorbing dissolved organic matter
and particulates®>#3, This is causing the “browning” of many inland and coastal waters, with
consequent loss of the valuable ecosystem service in which solar UV radiation disinfects
surface waters of parasites and microbial pathogens®®. Region-specific increases in the
frequency and duration of droughts have the opposite effect, increasing water clarity and
enhancing solar disinfection, as well as altering the depth distribution of plankton that provide

critical food resources for fish*451.

3.3.4 Impacts on biogeochemical cycles, climate system feedbacks and biodiversity

Solar UV radiation inhibits primary production in the surface waters of the oceans by as
much as 20%, reducing carbon fixation rates in one of the most important biogeochemical
cycles on Earth”®7”. Exposure to solar UV and visible radiation can also accelerate the
decomposition of natural organic matter (e.qg., terrestrial plant litter, aquatic detritus, and
dissolved organic matter) through the process of photodegradation, resulting in the emission of
greenhouse gases including carbon dioxide and nitrous oxide’®7°. Climate change-driven
increases in droughts, wildfires, and thawing of permafrost soils have the potential to increase
photodegradation*38°, thereby fueling a positive feedback on global warming; however, the

scale of this effect remains an important knowledge gap.
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Species of aquatic and terrestrial organisms differ in their tolerances to UV radiation and
these differences can lead to alterations in the composition and diversity of ecological
communities under conditions of elevated UV radiation®'32, UV radiation also modifies herbivory
and predator-prey interactions, which then alters trophic interactions, energy transfer, and the
food webs in ecosystems®!. Presently, ozone-driven changes in regional climate in the southern
hemisphere are threatening the habitat and survival of a number of species. These include
plants growing in the unique high-elevation woodlands of the South American Altiplano® and
moss and other plant communities in Antarctica®. At the same time, the ozone-driven changes
in climate are enhancing reproductive success of some marine birds and mammals®'*3(Box 3).
To what extent the Montreal Protocol has specifically contributed to the maintenance of
biodiversity in ecosystems is unknown, but losses in species diversity in aquatic ecosystems are
known to be linked to high exposure to UV radiation which can then lead to a decline in the

health and stability of these systems*.

3.3.5 Impacts on contaminants and materials

Solar UV radiation plays a critical role in altering the toxicity of contaminants3243,
Exposure to UV radiation can increase the toxicity of contaminants such as pesticides and
polycyclic aromatic hydrocarbons (PAHs) to aquatic organisms but, more commonly, results in
the formation of less toxic breakdown products. For example, UV-B radiation transforms the
most toxic form of methyl mercury to forms that are less toxic, reducing the accumulation of
mercury in fish®. Although the degradation of many pollutants and water-borne pathogens by
solar UV radiation is affected by changes in stratospheric ozone, other factors such as dissolved
organic matter are more important in regulating penetration of UV radiation into water, and
hence photodegradation of these pollutants*®. Advances in modeling approaches are allowing
improved quantification of the effects of global changes on the fate of aquatic pollutants.

Sunscreens are in widespread use, including in cosmetics, as part of the suite of
approaches to UV protection for humans. It is now recognized that sunscreens wash into
coastal waters, with potential effects on aquatic ecosystems. The toxicity of artificial sunscreens
to corals®, sea urchins®, fish®, and other aquatic organisms, has led Palau, the State of
Hawaii, USA, and the city of Key West in Florida, USA, to ban the use of some sunscreens.
Similar legislation is under consideration by the European Union®’.

Microplastics (defined as plastic particles < 5mm) are now ubiquitous in the world’s
oceans and pose an emerging serious threat to marine ecosystems with many organisms now

known to ingest them?®. Microplastics are formed by the UV-induced degradation and
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breakdown of plastic products exposed to sunlight. Microplastic pollutants occur in up to 20% or
more of fish marketed globally for human consumption®. Although the toxicity of microplastics is
unknown, higher temperatures and increased exposure to UV radiation accelerate the
fragmentation of plastics, potentially threatening food security.

Until very recently, plastics used in packaging and building materials were selected and
optimized on the basis of durability and performance®. However, the present focus on
increased sustainability with the trend towards ‘green’ buildings, now requires such choices to
be environmentally acceptable as well. This includes the increased use of wood, which can be
renewable, carbon-neutral, and low in embodied energy, in place of plastics. Many of the
materials used are vulnerable to accelerated aging when exposed to UV radiation. At present,
industrial activities are aimed at identifying and developing novel, safer, effective, and ‘greener’
additives (colorants, plasticizers, and stabilizers) for plastic materials and wood coatings, but
continued research and development is required to further combat harsher weathering resulting
from climate change.

Some compounds being used as substitutes for CFCs, such as
hydrochlorofluorocarbons (HCFCs), HFCs, and hydrofluoroolefins (HFOs), are known to
degrade to trifluoroacetic acid (TFA) in the atmosphere. TFA is a strong acid, and in sufficiently
large concentrations could produce damage to organisms. Because no sinks in the atmosphere
or in surface soils and waters have been identified, concern has been raised about its potential
accumulation over time in sensitive environments (e.g., salt lakes, wetlands, vernal pools).
Large natural sources of TFA have been invoked to explain high TFA concentrations in deep
oceanic waters®' that have no contact with atmospheric gases for several millennia.
Anthropogenic sources include pesticides, pharmaceuticals, and industrial reagents. Current
estimates indicate that any incremental TFA burden from the CFC substitutes would be minor
compared to the other natural and anthropogenic sources, and the overall TFA concentrations

(from all sources) are expected to remain well below levels harmful to the environment®2.

4. Conclusions and Knowledge Gaps

The Montreal Protocol has prevented the global depletion of stratospheric ozone and
consequently large-scale increases in solar UV-B radiation. Changes in the ozone layer over the
next few decades are expected to be variable with increases and decreases in different
regions.'? The return of column ozone to 1980 levels is expected to occur in the 2030s and
2050s respectively over northern- and southern-hemisphere mid-latitudes and around the 2060s

in Antarctica'>9%%. Thus, because of the Montreal Protocol, we have averted a “worst-case”
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466  scenario of stratospheric ozone destruction, prevented the resultant high levels of UV-B at
467  Earth’s surface, and so avoided major environmental and health impacts (Box 2).

468 We are confident in our qualitative predictions of the environmental effects that have
469 been avoided as a result of the implementation of the Montreal Protocol. However,

470 quantification of many of the environmental benefits resulting from the success of the Montreal
471  Protocol remains a challenge. The same knowledge gaps that constrain modelling of most
472  environmental effects in the ‘World Avoided’ scenario also constrain quantification of the

473  potential impacts of any current or future threats to the ozone layer. At present, no quantitative
474  estimates are available on the effects of the recently reported unexpected increases in

475  emissions of CFC-11% on stratospheric ozone, UV radiation or the environment. However,
476  were such unexpected emissions to persist and increase in the future, or new threats emerge,
477  environmental and health impacts could be substantial. New threats to the integrity of the

478  stratospheric ozone layer include ‘geoengineering’ activities proposed for combating warming
479  caused by greenhouse gases, which could have consequences for UV radiation. In particular,
480 proposals to inject sulfate aerosols into the stratosphere to reduce solar radiation at Earth’s
481  surface® would likely reduce stratospheric ozone at most latitudes. The combined effect of
482  increased scattering by the aerosols and reduced absorption by ozone would then lead to

483  complex net changes in surface UV-B radiation®>97-%,

484 Meeting the challenge of improving quantification of the environmental effects of future
485 changes in stratospheric ozone requires addressing several significant gaps in current

486  knowledge. First, we need a better understanding of the fundamental responses of humans and
487  other species to UV radiation, particularly how organisms respond to the different wavelengths
488  of UV radiation. Second, we need to better understand the full scope of not only the adverse
489  (e.g., skin cancer, impaired vision and unfavorable ecosystem changes), but the beneficial
490 effects (e.g., vitamin D, defense against plant pests and purification of surface waters) of UV
491  radiation on humans and other organisms. Third, we need long-term, large-scale field studies to
492  better understand how changes in UV radiation, together with other climate change factors,
493 including extreme events, affect intact ecosystems'®. Taken together, all three would increase
494  our ability to develop models that could be used to quantify effects of UV radiation on living
495  organisms and materials on scales ranging from individuals to ecosystems and the planet.
496 As a consequence of rapid climate change, many organisms, including humans, are
497  being exposed to novel and interactive combinations of UV radiation and other environmental
498 factors. These environmental changes will continue into the future and will result in alterations in

499 the structure and composition of ecological communities'!, which will then indirectly affect the
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growth, reproduction, and survival of many species. How humans and ecosystems respond to
changes in UV radiation against this backdrop of simultaneous, multi-factor environmental
change remains a major knowledge gap. Quantifying these effects is extremely challenging,
where many of the outcomes are contingent upon human behavior and societal responses that
are difficult to predict or measure (Fig. 2).

The focus of concern regarding increased exposure to UV radiation has historically been
on human health. However, terrestrial and aquatic ecosystems provide essential services on
which human health and well-being ultimately depend. In addition to being critical for human
health and well-being, environmental sustainability and the maintenance of biodiversity are also
important at a higher level if we are to maintain a healthy planet'®2. The topics covered by the
UNEP EEAP Quadrennial Assessment Report embrace the full complexity and inter-relatedness
of our living planet, and the outcomes of the Montreal Protocol (and Amendments and
Adjustments) demonstrate that globally united and successful actions on complex

environmental issues are possible.
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