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ABSTRACT:

This article announces VERDE materials DB, the first database to include downloadable excited-
state structures (So, S1, T1) and photophysical properties. VERDE materials DB is searchable,
open-access via www.verdedb.org, and focused on light-responsive n-conjugated organic
molecules with applications in green chemistry, organic solar cells, and organic redox flow
batteries. It includes results of our active and past virtual screening studies; to date, more than
13,000 density functional theory (DFT) calculations have been performed on 1,500 molecules to
obtain frontier molecular orbitals, and photophysical properties, including excitation energies,
dipole moments, and redox potentials. To improve community access, we have made VERDE
materials DB available via an integration with the Materials Data Facility. We are leveraging
VERDE materials DB to train machine learning algorithms to identify new materials and
structure-property relationships between molecular ground- and excited-states. We present a case-
study involving photoaffinity labels, where we identify new diazirine-based photoaffinity labels
with optimal photostabilities.

Introduction

Approximately 50,000 exajoules of harvestable solar energy reach the Earth each year, far
exceeding the 400 exajoule total global energy consumption in 2016.1,2 The most recent inorganic
photovoltaic devices are able to capture this energy with power conversion efficiencies (PCEs)
exceeding 47%:; in contrast, the highest confirmed PCEs for organic photovoltaics (OPVs) recently
surpassed 16%.3,4 The solar day-night cycle interrupts solar energy conversion, thus making solar
energy storage an equal priority for renewable energy research. Organic redox flow batteries,
which use dissolved, electronically-active organic materials (e.g., quinone and anthraquinone
derivatives), have shown potential for large-scale energy storage.s, s While inorganic materials
have higher PCEs and battery efficiencies, their relatively high cost makes commercialization
difficult and often requires subsidies.7 In addition, organic energy materials provide green
alternatives to commonly used inorganic materials.s, 8, 9 Renewable solar energy has led to
increasingly sustainable chemical reactions by eliminating the need for Earth-rare and
organometallic catalysts for powerful organic transformations. The low-cost of organic materials
combined with their straightforward processability and tunability suggests that sustainable next-
generation devices and reactions, including singlet fission materials, organic photoredox catalyst-
substrate pairs, and photoaffinity labels, are possible, but have yet to be discovered.10-12

Organic chromophores of broadest general interest absorb UV, visible, or near-IR light,
depending on the application. They are typically n-conjugated and often feature aromatic moieties.



Porphyrins, quinones, and dibenzoperylenes are representative examples and are shown in Scheme
1. The vast number of possible chromophores compounded by the substitution patterns and
possible functional groups makes the number of possible accessible organic molecules approach
1023.13

Scheme 1. Examples of n-conjugated and aromatic molecule and their applications.
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Experimental determination of molecular structure and properties is extremely expensive in terms
of human time and chemical costs. An emerging approach involving quantum mechanical (QM)
calculations combined with data-driven techniques (e.g., machine learning) has facilitated the
navigation of chemical space and ‘smart’ searches of chemical space. The QM calculations are
typically density functional theory (DFT) and provide optimized geometries and electronic
structures at reasonable cost. Machine learning (ML) algorithms—especially neural nets—require
large datasets that are relatively rare in academia and proprietary in industry. The QM/ML
approach allows scientists to determine the structures and properties of molecules and materials
relatively quickly with high performance computing (HPC) resources and large datasets can be
compiled. Indeed, the Harvard Clean Energy Project (CEP) contains an open-access dataset of 2.3
million candidate organic photovoltaic (OPV) materials and their predicted highest occupied
molecular orbitals (HOMOs), lowest unoccupied molecular orbitals (LUMOs), and corresponding
short-circuit current densities, open circuit voltages, and power conversion efficiencies, computed
with the Scharber model.14-16

Databases of computed physicochemical properties of organic compounds can reveal
trends in properties and help establish QSPR models which guide the rational design of new
materials. Existing databases of organic compounds highlight their utility. GDB-13 enumerates
970 million synthetically-accessible, organic molecules containing up to 13 heavy atoms (C, N, O,
S, Cl).17 The QM7 dataset provides, for the subset of GDB-13 containing up to seven heavy atoms,
Coulomb matrices and atomization energies for 7,165 organic molecules and was successfully
used to train a nonlinear regression machine learning model to predict atomization energies based
on molecular geometry and nuclear charges.18 QM7b extends QM7 with 13 additional properties,
such as HOMO and LUMO energies, polarizabilities, and excitation energies for 7,211 organic
molecules.19 Montavon et al. used this dataset to train multi-task deep neural network to predict,
with reasonable accuracy, these additional properties using Coulomb matrices as descriptors.
GDB-17, which extends GDB-13 to organic molecules containing up to 17 heavy atoms,
enumerates 166 billion molecules. Von Lilienfeld et al. constructed the QM9 dataset, the subset
of GDB-17 containing up to 9 heavy atoms, featuring ground state geometries, dipole moments,
polarizabilities, enthalpies, and free energies for approximately 134,000 molecules.2o QM9 has



been used by many groups to construct neural networks to predict, with DFT-level accuracy,
molecular properties at a relatively low computational cost.21-23

These databases of computed chemical properties have proven to be useful in the material
discovery process.2i-24 Organic electronics function when constituent materials are in non-
equilibrium states (e.g., oxidized or photoexcited). The non-equilibrium structures are critically
important to understanding the properties of these materials yet absent from current open-source
large databases. However, current open-access databases, including QM7, QM9, and CEP, do not
include excited state properties, such as structures and transition energies, which we have shown
to be useful in understanding photophysical properties and photochemical reaction mechanisms.
As shown in our case study below, the optimized excited-state structures of diazirines provide
important clues about the photostabilities of diazirines. The open-access nature of VERDE
materials DB means that research groups everywhere can discover new materials and infer
fundamental structure-property relationships.

Results/Discussion
Organization of the data into the VERDE materials DB

This manuscript introduces the Virtual Excited State Reference for the Discovery of
Electronic materials database (VERDE materials DB). We make VERDE materials DB and the
associated data (i.e., calculation output files, and derived calculation results) openly available
through an integration with data services provided by the Materials Data Facility (MDF).2s We
have implemented a flow where data supporting VERDE materials DB are published to MDF as
they become available, important information about each calculation is automatically extracted
and loaded into a search index, and the associated data are discoverable via advanced search
capabilities, including partial matching and range queries. The open access nature of this database
is meant to speed the discovery of new materials through simplified collection of data upon which
machine learning and other analyses may be performed. We see opportunities in the future to
leverage other data services, like the Data and Learning Hub for Science (DLHub), to act as a
central repository of machine learning models derived from this database, to enable users to run
models on new data, to benchmark and compare models, and to directly link these models to
training data from VERDE materials DB.

As such, VERDE materlals DB mﬂ_mgﬂ_a_subsiannaanﬁdimm_thc_expﬁnm@nlaLand
VERDE materlals DB is the first

containing extensive ground and excited state, DFT-optimized geometries and thermochemical
calculations for organic materials. The computed electronic states include the So, S1, T1, and radical
cation states (see Methods for computational methodology). Further, VERDE materials DB
includes properties computed from these DFT calculations such as redox potentials, 0-0 transition
energies (interchangeable with E°° throughout the manuscript), and ionization potentials.26, 27
E°0 requires the optimization of the chromophore in a given excited state. Computations of
vertical excitation energies are shown to be functional-dependent because the functionals can be
overfit for classes of chromophores. Given the vast molecular diversity in VERDE materials DB,
we chose to report E°° values.




High-throughput virtual screening library generation

VERDE materials DB relies on standardized high-throughput virtual screening (HTVS) libraries
and an automated computational workflow. HTVS libraries are generated using an in-house
algorithm that systematically links 20 spacer and 11 terminal groups shown in Scheme 2. These
linking reactions are meant to resemble well-established cross-coupling reactions.2s8
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Scheme 2. Combinatorial method used for generating high-throughput virtual screening libraries.
Spacer groups are attached at user-defined substitution positions, then each spacer is combined

with a terminal group.

Generated molecules are then processed through the computational workflow illustrated in Scheme
3. The workflow is composed of four phases (computational details are elaborated in the
computational methods section).

Phase 1: The workflow uses RDKit29 to generate 3-D coordinates from the SMILES30 string
followed by a low-mode conformational search that produces up to four low-lying conformers
minimized with the Universal Force Field.31

Phase 2: Each conformer in this ensemble is refined with two sequential semi-empirical
optimization calculations: PM732 followed by RMI1-D,33 which includes the empirical D3-
dispersion correction.3s Our group has shown that RM1-D produces geometries that are
remarkably close to DFT-optimized (0B97XD/jun-cc-pvdz) structures. We then perform M06/6-
31+G(d,p)3s-37 single point energy calculations on each of these optimized structures to determine
the lowest-energy conformer.

Phase 3 and 4: The lowest-energy structure is subjected to an M06/6-31+G(d,p) optimization (with
IEFPCMMecN to account for bulk solvent effects)3s and frequency calculation to confirm the
stationary point as true minimum on the ground- and excited-states (So, St1, and T1). In addition,
we perform an optimization of the Sn excited state where N is the lowest singlet excited state less
than or equal to 5 which has an oscillator strength greater than 0.1. This provides optimized
geometries and Eo-o values. The optimized structure and energies of the molecular radical cations
afford the redox potentials of each molecule in the database.



Scheme 3. Illustration of the automated computational workflow used to run calculations for
VERDE materials DB.
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VERDE materials DB and MDF Integration

VERDE materials DB leverages MDF-operated data services, MDF Connect, Publish, and
Discover to allow for streamlined access to, and discovery of, the data by researchers.2s MDF
Publish is a decentralized dataset repository, that allows a user to publish a dataset to any Globus
endpoint,39, 40 in the process creating a permanent identifier (e.g., DOI) for the dataset, and
following a defined user-driven dataset curation flow to help ensure data quality. MDF Discover
is an access-controlled, cloud-hosted search index with supportive Python software tools that
support data search and facilitate data retrieval. MDF Connect is a service that supports the flow
of data provided by a user from many storage locations to many services in the scientific data
ecosystem. MDF Connect supports three key actions: 1) submission via user requests, made by
script or web interface, triggers MDF Connect to collect the data from common storage locations
including Google Drive, Box, or a Globus endpoint; 2) enrichment of collected data through
extraction of general and domain-specific metadata (e.g., molecular information from output files,
.Xyz, .mol and other common chemistry data formats), combination of extracted and user-provided
metadata into MDF metadata records, and transformation of dataset contents (e.g., from
proprietary to open formats); and 3) dispatch of data to MDF Publish, metadata to MDF Discover,
and combinations of data and metadata to other community data services (e.g., NIST Materials
Resource Registry, Citrine) selected by the user.

In the case of VERDE materials DB, data generated through high-throughput computations are
submitted to MDF Connect via an automated Python script as it becomes available. Following
submission, MDF Connect extracts important metadata describing the molecule being studied
(e.g., InChl and SMILES strings, molecular mass) as well as calculated properties (e.g., dipole
moments, redox potentials, and 0-0 transition energies) from files included in the submission to
improve data discoverability (see SI for a full description of the extracted metadata). These
metadata are dispatched to MDF Discover where it is loaded into a search index to facilitate



discovery and usage and then dispatched to MDF Publish to create a dataset, mint a permanent
identifier, and move the data to storage endpoints at Argonne National Laboratory’s Petrel
Facilitys1 and at the University of Illinois at Urbana-Champaign Blue Waters to hold the associated
data files and metadata. Further, VERDE Materials DB is made available to other community
services for example, the NIST Materials Resource Registry for dataset registration. All dataset
contents can be accessed via REST API or with the MDF Forge Python client. Users may then
discover and download the entire dataset contents or the results of individual or matching
calculations using the MDF Discover API and Python client.

MDF Publish
(Central Data
Uploaded Repository)
via Python
Data generated by high Script MDF Connect
throughput ——>»  (Extractions and
calculations transformations) MDE Discover

(enables search
through MDF Forge
and REST API)

Figure 1. Data flow overview. Excited state data are submitted to MDF Connect. MDF Connect
automatically extracts metadata (e.g., redox potentials, dipole moments, and 0-0 transition
energies) from the submission, and the data and extracted metadata are dispatched to MDF Publish
for long-term data storage, minting of a persistent identifier, and versioning, and to MDF Discover
for loading into a search index to facilitate querying, aggregation, and data consumption.

Case-study: Screening of new photoaffinity labels

Photoaffinity labeling (PAL) is a technique used to identify the binding site of a protein through
the regulated, covalent addition of a photoactive moiety to the protein of interest.42 A ligand
functionalized with a photoactive group can be irradiated once the ligand binds to the target
protein, covalently binding the ligand to the protein. Further spectrometric analysis can be used to
elucidate the location of binding. Knowledge of the binding site can guide the rational design of
compounds that bind more strongly and specifically to the target protein.42-44 Diazirines are a
commonly used class of photoaffinity labels (PALs) and aryl diazirines, in particular, are known
for their chemical and thermal stability, especially compared to other photoaffinity labels such as
azides and benzophenones.42, 45 Further, diazirines are one of the smallest photoreactive groups
(PGs) used in PALSs and therefore result in PALSs that better mimic the ligand than do larger PGs.45
Diazirines which exhibit greater photostability are desired to increase ambient light stability and
increase the fidelity and specificity of PAL. Kumar et al. has determined the photostabilities of the
3-trifluoromethyl-3-aryldiazirines, which are summarized in Figure 2.46
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Figure 2. Percentage of 3-trifluoromethyl-3-aryldiazirines remaining after 31 days of ambient
light exposure.

The 0-0 transition energy (E°°) is defined in Eq. 1 as the difference in energy between the So and
S\ states minus the difference in zero-point vibrational energy (AZPVE') between the two states.
This value empirically corresponds to the midpoint between the Amax of the emission and
absorption spectra.

E%° = E;, —Es, —AZPVE Eq. (1)

E°9 values were computed for the aryldiazirines in Figure 2. The computed E°° values are 2.80,
2.97, and 3.12 eV for compounds 1, 2, and 3 respectively. Larger E°° energies correspond with
increasing stability along the series shown in Figure 2. This trend appears to correlate with the
electron-withdrawing nature of the substituents, with more strongly electron-withdrawing
substituents resulting in greater E%% values. Our groups were also interested in understanding the
concerted or stepwise nature of the photochemical diazirine ring-opening mechanism (Scheme 4),
which is largely outside the scope of this manuscript.
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thus pre-distorted—towards an adjacent conical intersection.

Figure 3. Geometries of diazo intermediate in the ground (So) and excited (S1) states. The length
of the N=N bond and the C=N=N bond angle are labeled.

The mechanistic study in on-going between our groups and will be published in due course. After
consulting with Manetsch and co-workers, we jointly designed a virtual library of 206 diazirines
(following a modified combinatorial method shown in Scheme 5) that were subjected to the
workflow in Scheme 3.



Scheme 5. Combinatorial method for generating HTVS library of diazirines
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The 206 diazirines were screened to find those which had vertical excitations with oscillator
strengths > 0.1 within the first five singlet excited states (S1—Ss). Twelve diazirines met this
criterion (See SI for candidate diazirines). These 12 diazirines had E°° values ranging from 1.15
to 3.88 V. We identified 4 candidates that met the E%~% > 3.12 eV threshold, informed by the high
photostability of compound 3 (Figure 2). Figure 4 shows these top candidates.
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Figure 4. Theoretical diazirines with ES 0> 3,12 eV. Eoo values and oscillator strengths for Sz

vertical excitations are shown. Geometry optimizations and frequency calculations were
performed with M06/6-31+G(d,p) and E¢:° values were computed.

The greatest E°° correspond to those diazirines with electron-withdrawing substituents. In these
diazirines, the HOMOs are strongly stabilized by the electron-withdrawing group and the LUMOs
are relatively unperturbed, leading to larger excitation energies, manifested as higher E°°
transition energies. Experimental verification of these results is currently underway in our groups;
we anticipate that the diazirines in Figure 4 will be at least as stable as 3. Solar and fluorescent



light have vanishingly few photons in UV-range; those diazirines requiring relatively high-energy
photons will be slower to react under these standard illumination conditions.

Conclusions

Our pyMolGen code and high throughput virtual screening workflow has been used to determine
the ground- and excited-state structures (So, Si, T1) for 1,500 organic m-conjugated organic
molecules. We established the VERDE materials DB as the first database to feature these
optimized geometries and corresponding properties, including redox potentials, dipole moments,
excitation energies, redox potentials, and 0-0 transition energies. It is hosted on the Materials Data
Facility in a form conducive to consumption by researchers, and is continually growing through
internal projects and collaborations. Data gathered from high-throughput virtual screening (HTVS)
of diazirine derivatives for photoaffinity labeling showcases the utility of computed excited
structures and properties. Ongoing HTVS projects are examining dibenzoperylene and
anthraquinone derivatives for organic photoredox catalysis and new candidates for singlet fission
solar cells, respectively. We are working to make VERDE materials DB even more interactive
by including features for users to upload structures to be computed with our resources.

Computational Methods

We developed a Python-based code that generates molecular SMILES30 strings based on a
n-conjugated core moiety with substituent sites informed by literature and commercial precedent.
These SMILES strings are organized in a virtual screening library to begin the automatic
computational workflow. We employ the RDKit29 Python library to generate four conformers,
which undergo structural relaxation with the Universal Force Field. Each conformer is subjected
to the following series of calculations: (1) PM732 optimization, (2) RM1-D optimization (using
DFT-D3 dispersion correction),33, 34 and (3) single-point DFT calculation. The lowest energy
conformer, determined based on the aforementioned single-point DFT calculation, undergoes the
following series of DFT optimizations and frequency calculations (4) So in vacuo, (5) So in
IEFPCMMecN, (6) S1 in IEFPCMwecn, (7) T1 in IEFPCMwecn, (8) radical cation in vacuo, (9)
radical cation in IEFPCMwmecn.3s All DFT calculations are performed by using MO06/6-
31+G(d,p).35-37 All calculations are performed with the default settings provided by the Gaussian
16 software package,47 with the exception of the RM1-D optimization which is performed by using
GAMESS version 2018 R1.48,49 0-0 transition energies are derived from these calculations based
on a method described by Jacquemin et al.2¢ Redox and ionization potentials are computed as
described by Fu er al.27 Excited state redox potentials are computed as described by Romero et
al.1o
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